1,658
Views
7
CrossRef citations to date
0
Altmetric
Plant-Microorganism Interactions

Unveiling the hidden interaction between thermophiles and plant crops: wheat and soil thermophilic bacteria

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 127-138 | Received 03 Apr 2020, Accepted 29 Apr 2020, Published online: 01 Jun 2020

References

  • Abid M, Tian Z, Ata-Ul-Karim ST, Cui Y, Liu Y, Zahoor R, Jiang D, Dai T. 2016. Nitrogen nutrition improves the potential of wheat (Triticum aestivum L.) to alleviate the effects of drought stress during vegetative growth periods. Front Plant Sci. 7:981. doi: 10.3389/fpls.2016.00981
  • Baon JB, Smith SE, Alston AM. 1993. Phosphorus allocation in P-efficient and inefficient barley cultivars as affected by mycorrhizal infection. Plant Soil. 155:277–280. doi:10.1007/BF00025036.
  • Bartholomew JW, Paik G. 1966. Isolation and identification of obligate thermophilic sporeforming bacilli from ocean basin cores. J Bacteriol. 92(3):635–638. doi: 10.1128/JB.92.3.635-638.1966
  • Burdman S, Dulguerova G, Okon Y, Jurkevitch E. 2001. Purification of the major outer membrane protein of Azospirillum brasilense, its affinity to plant roots, and its involvement in cell aggregation. Mol Plant Microbe Interact. 14(4):555–561. doi: 10.1094/MPMI.2001.14.4.555
  • Das AJ, Kumar M, Kumar R. 2013. Plant Growth Promoting Rhizobacteria (PGPR): an alternative of chemical fertilizer for sustainable, environment friendly agriculture. Res J Agric For Sci. 1(4):21–23.
  • Dercon G, Clymans E, Diels J, Merckx R, Deckers J. 2006. Differential 13C isotopic discrimination in maize at varying water stress and at low to high nitrogen availability. Plant Soil. 282(1-2):313–326. doi:10.1007/s11104-006-0001-8.
  • Dutta S, Rani TS, Podile AR. 2013. Root exudate-induced alterations in Bacillus cereus cell wall contribute to root colonization and plant growth promotion. PLoS One. 8(10):e78369. doi:10.1371/journal.pone.0078369.
  • Eriksen J. 1996. Incorporation of S into soil organic matter in the field as determined by the natural abundance of stable S isotopes. Biol Fertil Soils. 22:149–155. doi:10.1007/BF00384447.
  • Gonzalez JM, Portillo MC, Piñeiro-Vidal M. 2015. Latitude-dependent underestimation of microbial extracellular enzyme activity in soils. Int J Environ Sci Technol. 12(7):2427–2434. doi: 10.1007/s13762-014-0635-7
  • Gonzalez Grau JM, Delgado Romero JA, Gómez Fernández EJ, Santana MM, Cruz CM. 2016. P201630900. Thermophilic microorganisms for phosphate solubilization at high temperatures. “Oficina Espanõla de Patentes y marcas” (OEPM).
  • Haque MA, Russell NJ. 2004. Strains of Bacillus cereus vary in the phenotypic adaptation of their membrane lipid composition in response to low water activity, reduced temperature and growth in rice starch. Microbiology. 150(5):1397–1404. doi: 10.1099/mic.0.26767-0
  • Haris PI, Severcan F. 1999. FTIR spectroscopic characterization of protein structure in aqueous and non-aqueous media. J Mol Catal B Enzym. 7(1-4):207–221. doi:10.1016/S1381-1177(99)00030-2.
  • Kamnev AA. 2008. FTIR spectroscopic studies of bacterial cellular responses to environmental factors, plant-bacterial interactions and signaling. Spectroscopy. 22:83–95. doi: 10.1155/2008/862085
  • Lugtenberg B, Kamilova F. 2009. Plant-growth-promoting rhizobacteria. Annu Rev Microbiol. 63(1):541–556. doi:10.1146/annurev.micro.62.081307.162918.
  • Marchant R, Banat IM, Rahman TJ, Berzano M. 2002b. The frequency and characteristics of highly thermophilic bacteria in cool soil environments. Environ Microbiol. 4(10):595–602. doi: 10.1046/j.1462-2920.2002.00344.x
  • Marchant R, Banat IM, Rahman TJS, Berzano M. 2002a. What are high temperature bacteria doing in cold environments? Trends Microbiol. 10(3):120–121. doi:10.1016/S0966-842X(02)02311-9.
  • Marchant R, Franzetti A, Pavlostathis SG, Tas DO, Erdbrűgger I, Űnyayar A, Mazmanci MA, Banat IM. 2008. Thermophilic bacteria in cool temperate soils: are they metabolically active or continually added by global atmospheric transport? Appl Microbiol Biotechnol. 78(5):841–852. doi: 10.1007/s00253-008-1372-y
  • Melin AM, Allery A, Perromat A, Bebear C, Delleris G, De Barbeyrac B. 2004. Fourier transform infrared spectroscopy as a new tool for characterization of mollicutes. J Microbiol Methods. 56(1):73–82. doi: 10.1016/j.mimet.2003.09.020
  • Moxley E, Puerta-Fernandez E, Gomez EJ, Gonzalez JM. 2019. Influence of abiotic factors, temperature and water content on bacterial 2-chlorophenol biodegradation in soils. Front Environ Sci. 7:41. doi: 10.3389/fenvs.2019.00041
  • Phillips JM, Hayman DS. 1970. Improved procedures for clearing roots and staining parasitic and vesicular arbuscular mycorrhizal fungi for rapid assessment of infection. Trans British Mycol Soc. 55(1):158–161. doi: 10.1016/S0007-1536(70)80110-3
  • Portillo MC, Santana M, Gonzalez JM. 2012. Presence and potential role of thermophilic bacteria in temperate terrestrial environments. Naturwissenschaften. 99(1):43–53. doi:10.1007/s00114-011-0867-z.
  • Rubio C, Ott C, Amiel C, Dupont-Moral I, Travert J, Mariey L. 2006. Sulfato/thiosulfato reducing bacteria characterization by FT-IR spectroscopy: a new approach to biocorrosion control. J Microbiol Methods. 64(3):287–296. doi: 10.1016/j.mimet.2005.05.013
  • Santana MM, Gonzalez JM, Clara MI. 2016. Inferring pathways leading to organic-S mineralization in the Bacillales. Crit Rev Microbiol. 42(1):31–45. doi: 10.3109/1040841X.2013.877869
  • Santana MM, Portillo MC, Gonzalez JM, Clara MIE. 2013. Characterization of new soil thermophilic bacteria potentially involved in soil fertilization. J Plant Nutr Soil Sci. 176(1):47–56. doi: 10.1002/jpln.201100382
  • Savka MA, Dessaux Y, McSpadden Gardener BB, Mondy S, Kohler PRA, de Bruijn FJ, Rossbach S. 2013. The “biased rhizosphere” concept and advances in the omics era to study bacterial competitiveness and persistence in the phytosphere. In: de Bruijn FJ, editor. Molecular microbial ecology of the rhizosphere. Vol. 1& 2. Hoboken: John Wiley & Sons; p. 1145–1161. doi:10.1002/9781118297674.ch110.
  • Scheidegger Y, Saurer M, Bahn M, Siegwolf R. 2000. Linking stable oxygen and carbon isotopes with stomatal conductance and photosynthetic capacity: a conceptual model. Oecologia. 125(3):350–357. doi: 10.1007/s004420000466.
  • Sokal RR, Rohlf JF. 1981. Biometry. NewYork: Freeman WH & Co.
  • Tak HI, Ahmad F, Babalola OO. 2013. Advances in the application of plant growth-promoting rhizobacteria in phytoremediation of heavy metals. Rev Environ Contam Toxicol. 223:33–52. doi:10.1007/978-1-4614-5577-6_2.
  • Vivas A, Biró B, Németh T, Barea JM, Azcón R. 2006. Nickel-tolerant Brevibacillus brevis and arbuscular mycorrhizal fungus can reduce metal acquisition and nickel toxicity effects in plant growing in nickel supplemented soil. Soil Biol Biochem. 38(9):2694–2704. doi:10.1016/j.soilbio.2006.04.020.
  • Weon H-Y, Lee S-Y, Kim B-Y, Noh H-J, Schumann P, Kim J-S, Kwon S-W. 2007. Ureibacillus composti sp. nov. and Ureibacillus thermophilus sp. nov., isolated from livestock-manure composts. Int J Syst Evol Microbiol. 57(12):2908–2911. doi:10.1099/ijs.0.65232-0.
  • Zhang R, Vivanco JM, Shen Q. 2017. The unseen rhizosphere root–soil–microbe interactions for crop production. Curr Opin Microbiol. 37:8–14. doi: 10.1016/j.mib.2017.03.008