2,318
Views
18
CrossRef citations to date
0
Altmetric
Plant-Environment Interactions

Cooperative effects of iron oxide nanoparticle (α-Fe2O3) and citrate on germination and oxidative system of evening primrose (Oenthera biennis L.)

, , &
Pages 166-179 | Received 13 Jan 2020, Accepted 20 May 2020, Published online: 04 Jun 2020

References

  • Alexieva V, Sergiev I, Mapelli S, Karanov E. 2001. The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant Cell Environ. 24:1337–1344. doi: 10.1046/j.1365-3040.2001.00778.x
  • Alidoust D, Isoda A. 2013. Effect of γFe2O3 nanoparticle on the photosynthetic characteristic of soybean (Glycine max (L.) Merr.): foliar spray versus soil amendment. Acta Physiol Plant. 35:3365–3375. doi: 10.1007/s11738-013-1369-8
  • Amooaghaie R, Tabatabaei F, Ahadi AM. 2015. Role of hematin and sodium nitroprusside in regulating Brassica nigra seed germination under nanosilver and silver nitrate stresses. Ecotoxicol Environ Saf. 113:259–270. doi: 10.1016/j.ecoenv.2014.12.017
  • Ashkan A, Moemeni J. 2013. Effect of salinity stress on seed germination and seedling vigor indices of two halophytic plant species (Agropyron elongatum and A. pectiniforme). Int J Agric Crop Sci. 5:2669–2676.
  • Babajani A, Iranbakhsh A, Oraghi Ardebili Z, Eslami B. 2018. Seed priming with non-thermal plasma modified plant reactions to selenium or zinc oxide nanoparticles: cold plasma as a novel emerging tool for plant science. Plasma Chem Plasma Process. 39:21–34. doi:10.1007/s11090-018-9934-y.
  • Babajani A, Iranbakhsh A, Oraghi Ardebili Z, Eslami B. 2019. Differential growth, nutrition, physiology, and gene expression in Melissa officinalis mediated by zinc oxide and elemental selenium nanoparticles. Environ Sci Pollut Res. 26:24430–24444. doi:10.1007/s11356-019-05676-z.
  • Barcelo J, Poschenrieder C. 2004. Heavy Metal Stress in Plants. From Biomolecules to Ecosystems, Edition: Second Chapter: 9 Publisher: Springer. Editors: Prasad M N V. pp: 223–248.
  • Barrios AC, Rico CM, Trujillo-Reyes J, Medina-Velo IA, Peralta-Videa JR, Gardea-Torresdey JL. 2015. Effects of uncoated and citric acid coated cerium oxide nanoparticles, bulk cerium oxide, cerium acetate, and citric acid on tomato plants. Sci Total Environ. doi:10.1016/j.scitotenv.2015.11.143.
  • Cui Y, Zhao N. 2011. Oxidative stress and change in plant metabolism of maize (Zea mays L.) growing in contaminated soil with elemental sulfur and toxic effect of zinc. Plant Soil Environ. 57:34–39. doi: 10.17221/193/2010-PSE
  • Darandeh N, Hadavi E. 2012. Effect of pre-harvest foliar application of citric acid and malic acid on chlorophyll content and post-harvest vase life of Lilium cv. Brunello. Front Plant Sci. January. Volume 2: article106.
  • Dhoke SK, Mahajan P, Kamble R, Khanna A. 2013. Effect of nanoparticles suspension on the growth of mung (Vigna radiata) seedlings by foliar spray method. Nanotechnol Dev. 3:e1. doi:10.4081/nd.2013.e1.
  • Dietz KJ, Herth S. 2011. Plant nanotoxicology. Trends Plant Sci. 16(11):582–589. doi: 10.1016/j.tplants.2011.08.003
  • Eidyan B, Hadavi E, Moalemi N. 2014. Pre-harvest foliar application of iron sulfate and citric acid combined with urea fertigation affects growth and vase life of tuberose (Polianthes tuberosa L.) ‘por-par’. Hortic Environ Biotechnol. 55:9–13. doi: 10.1007/s13580-014-0061-2
  • Elemike EE, Uzoh IM, Onwudiwe DC, Babalola OO. 2019. The role of nanotechnology in the Fortification of plant nutrients and improvement of crop production. Appl Sci. 9:499. doi: 10.3390/app9030499
  • Farrant JM. 2000. A comparison of mechanisms of desiccation tolerance among three angiosperm resurrection plant species. Plant Ecol. 151:29–39. doi: 10.1023/A:1026534305831
  • Ghasempour M, Iranbakhsh A, Ebadi M, Oraghi Ardebili Z. 2019. Multi-walled carbon nanotubes improved growth, anatomy, physiology, secondary metabolism, and callus performance in Catharanthus roseus: an in vitro study. 3 Biotech. 9:404. doi:10.1007/s13205-019-1934-y.
  • Ghazijahani N, Hadavi E, Jeong BR. 2014. Foliar sprays of citric acid and salicylic acid alter the pattern of root acquisition of some minerals in sweet basil (Ocimum basilicum L.). Front Plant Sci. 5. article 573. doi:10.3389/fpls.2014.00573.
  • Granica S, Czerwińska ME, Piwowarski JP, Ziaja M, Kiss AK. 2013. Chemical composition, antioxidative and anti-inflammatory activity of extracts prepared from aerial parts of Oenothera biennis L. and Oenothera paradoxa Hudziok obtained after seeds cultivation. J Agric Food Chem. 61:801–810. doi: 10.1021/jf304002h
  • Greiner S, Köhl K. 2014. Growing evening primroses (Oenothera). Front. Plant sci. 5. article 38. doi:10.3389/fpls.2014.00038.
  • Heath RL, Packer L. 1968. Photoperoxidation in isolated chloroplasts: Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys. 125:189–198. doi: 10.1016/0003-9861(68)90654-1
  • Hell R, Stephan UW. 2003. Iron uptake, trafficking, and homeostasis in plants. Planta. 216(4):541–551. doi: 10.1007/s00425-002-0920-4
  • Hu J, Guo H, Li J, Gan Q, Wang Y, Xing B. 2017a. Comparative impacts of iron oxide nanoparticles and ferric ions on the growth of Citrus maxima. Environ Pollut. 221:199–208. doi: 10.1016/j.envpol.2016.11.064
  • Hu J, Guo H, Li J, Wang Y, Xiao L, Xing B. 2017b. Interaction of γ-Fe2O3 nanoparticles with Citrus maxima leaves and the corresponding physiological effects via foliar application. J Nanobiotechnol. 15:51. doi: 10.1186/s12951-017-0286-1
  • Hu L, Zhang Z, Xiang Z, Yang Z. 2016. Exogenous application of citric acid Ameliorates the adverse effect of heat stress in Tall Fescue (Lolium arundinaceum). Front Plant Sci. 7:179.
  • Huang B. 2006. Plant-environment interactions. 3rd ed. CRC Press. Taylor and Francis group; p. 388. ISBN-13: 978-0849337277.
  • Hwang SS, Park JS, Namkoong W. 2007. Ultrasonic-assisted extraction to release heavy metals from contaminated soil. J Ind Eng Che. 13(4):650–656.
  • Iranbakhsh A, Ardebili NO, Ardebili ZO, Shafaati M, Ghoranneviss M. 2018a. Non-thermal plasma-induced expression of heat shock factor A4A and improved wheat (Triticum aestivum L.) growth and resistance against salt stress. Plasma Chem Plasma Process. 38(1):29–44. doi: 10.1007/s11090-017-9861-3
  • Iranbakhsh A, Ardebili ZO, Molaei H, Ardebili NO, Amini M. 2020. Cold plasma up-regulated expressions of WRKY1 transcription factor and genes involved in biosynthesis of cannabinoids in Hemp (Cannabis sativa L.). Plasma Chem Plasma Process. 40(2):527–537. doi:10.1007/s11090-020-10058-2.
  • Iranbakhsh A, Ghoranneviss M, Oraghi Ardebili Z, Oraghi Ardebili N, Hesami Tackallou S, Nikmaram H. 2017. Non-thermal plasma modified growth and physiology in Triticum aestivum via generated signaling molecules and UV radiation. Biol Plant. 61:702–708. doi: 10.1007/s10535-016-0699-y
  • Iranbakhsh A, Oraghi Ardebili Z, Oraghi Ardebili N, Ghoranneviss M, Safari N. 2018b. Cold plasma relieved toxicity signs of nano zinc oxide in Capsicum annuum cayenne via modifying growth, differentiation, and physiology. Acta Physiol Plant. 40:154. doi: 10.1007/s11738-018-2730-8
  • ISTA. ISTA rules. 2009. International seed testing association. Zurich, Switzerland: International Seed Testing Association. seedtest.org.
  • Jahani S, Saadatmand S, Mahmoodzadeh H, Khavari-Nejad RA. 2019. Effect of foliar application of cerium oxide nanoparticles on growth, photosynthetic pigments, electrolyte leakage, compatible osmolytes, and antioxidant enzymes activities of Calendula officinalis L. Biologia. 74:1063–1075. doi:10.2478/s11756-019-00239-6.
  • Konate A, He X, Rui Y, Zhang Z. 2017. Magnetite (Fe3O4) nanoparticles alleviate growth inhibition and oxidative stress caused by heavy metals in young seedlings of cucumber (Cucumis Sativus L). ITM Web of Conferences. 12:03034. doi:10.1051/itmconf/20171203034.
  • Laware S, Raskar S. 2014. Influence of zinc oxide nanoparticles on growth, flowering, and seed productivity in onion. Int J Curr Microbiol Appl Sci. 3(7):874–881.
  • Lebedev SV, Korotkova AM, Osipova EA. 2014. Influence of Fe0 nanoparticles, magnetite Fe3O4 nanoparticles, and iron (II) sulfate (FeSO4) solutions on the content of photosynthetic pigments in Triticum vulgare. Russ J Plant Physl+. 61(4):564–569. doi: 10.1134/S1021443714040128
  • Lee CW, Mahendra S, Zodrow K, Li D, Chang Y, Braam J, Alvarez PJJ. 2010. Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis Taliana. Environ Toxicol Chem. 29:669–675. doi: 10.1002/etc.58
  • Li J, Chang PR, Huang J, Wang Y, Yuan H, Ren O. 2013. Physiological effects of magnetic iron oxide nanoparticles towards watermelon. J Nanosci Nanotechno. 13:5561–5567. doi: 10.1166/jnn.2013.7533
  • Lin D, Xing B. 2007. Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut. 150(2):243–250. doi: 10.1016/j.envpol.2007.01.016
  • Miller G, Suzuki N, Rizhsky L, Hegie A, Koussevitzky S, Mittler R. 2007. Double mutant deficient in cytosolic and thylakoid ascorbate peroxidase reveals a complex mode of interaction between reactive oxygen species, plant development and response to abiotic stresses. Plant Physiol. 144:1777–1785. doi: 10.1104/pp.107.101436
  • Mittler R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 7:405–410. doi: 10.1016/S1360-1385(02)02312-9
  • Moghanloo M, Iranbakhsh A, Ebadi M, Nejad Satari T, Oraghi Ardebili Z. 2019a. Seed priming with cold plasma and supplementation of culture medium with silicon nanoparticle modified growth, physiology, and anatomy in Astragalus fridae as an endangered species. Acta Physiol Plant. 41:54. doi:10.1007/s11738-019-2846-5.
  • Moghanloo M, Iranbakhsh A, Ebadi M, Oraghi Ardebili Z. 2019b. Differential physiology and expression of phenylalanine ammonia-lyase (PAL) and universal stress protein (USP) in the endangered species Astragalus fridae following seed priming with cold plasma and manipulation of culture medium with silica nanoparticles. 3 Biotech. 9:288. doi:10.1007/s13205-019-1822-5.
  • Nazerieh H, Oraghi Ardebili Z, Iranbakhsh A. 2018. Potential benefits and toxicity of nano selenium and nitric oxide in peppermint. Acta Agric Slov. 111:357–368. doi: 10.14720/aas.2018.111.2.11
  • Oyaizu M. 1986. Studies on products of browning reaction: antioxidative activities of products of browning reaction prepared from glucosamine. Japanese Journal of Nutrition and Dietetics. 44:307–315. doi: 10.5264/eiyogakuzashi.44.307
  • Pariona N, Martinez AI, Hdz-Garci HM, Cruz LA, Hernandez-Valdes A. 2017. Effects of hematite and ferrihydrite nanoparticles on germination and growth of maize seedlings. Saudi J Biol Sci. 24:1547–1554. doi: 10.1016/j.sjbs.2016.06.004
  • Pariona N, Martinez AI, Hernandez-Flores H, Ricardo CT. 2016. Effect of magnetite nanoparticles on the germination and early growth of Quercus macdougallii. Sci Total Environ. 575:869–875. doi:10.1016/j.scitotenv.2016.09.128.
  • Pinheiro HA, DaMatta FM, Chaves ARM, Fontes EPB, Loureiro ME. 2004. Drought tolerance in relation to protection against oxidative stress in clones of Coffea canephora subjected to long-term drought. Plant Sci. 167:1307–1314. doi: 10.1016/j.plantsci.2004.06.027
  • Racuciu M. 2012. Iron oxide nanoparticles coated with β-cyclodextrin polluted of Zea mays plantlets. Nanotechnol Dev. 2:e6. doi: 10.4081/nd.2012.e6
  • Ren HX, Liu L, Ch L, He SY, Huang J, Li JL, Zhang Y, Huang XJ, Gu N. 2011. Physiological investigation of magnetic iron oxide nanoparticles towards Chinese mung bean. J Biomed Nanotechnol. 7:677–684. doi: 10.1166/jbn.2011.1338
  • Rui M, Ma C, Hao Y, Guo J, Rui Y, Tang X, Zhao Q, Fan X, Zhang Z, Hou T, Zhu S. 2016. Iron oxide nanoparticles as a potential iron fertilizer for peanut (Arachis hypogaea). Front Plant Sci. 7:815. doi: 10.3389/fpls.2016.00815
  • Safari M, Oraghi Ardebili Z, Iranbakhsh A. 2018. Selenium nano-particle induced alterations in expression patterns of heat shock factor A4A (HSFA4A), and high molecular weight glutenin subunit 1Bx (Glu-1Bx) and enhanced nitrate reductase activity in wheat (Triticum aestivum L.). Acta Physiol Plant. 40:117. doi:10.1007/s11738-018-2694-8.
  • Seddighinia FS, Iranbakhsh A, Oraghi Ardebili Z, Nejad Satari T, Soleimanpour S. 2020. Seed priming with cold plasma and multi-walled carbon nanotubes modified growth, tissue differentiation, anatomy, and yield in bitter melon (Momordica charantia). J Plant Growth Regul. 39:87–98. doi:10.1007/s00344-019-09965-2.
  • Seneviratne M, Rajakaruna N, Rizwan M, Madawala HMSP, Ok YS, Vithanage M. 2017. Heavy metal-induced oxidative stress on seed germination and seedling development: a critical review. Environ Geochem Health. doi:10.1007/s10653-017-0005-8.
  • Sotoodehnia-Korani S, Iranbakhsh A, Ebadi M, Majd A, Ardebili ZO. 2020. Selenium nanoparticles induced variations in growth, morphology, anatomy, biochemistry, gene expression, and epigenetic DNA methylation in Capsicum annuum; an in vitro study. Environ Pollut. doi:10.1016/j.envpol.2020.114727.
  • Talebi M, Hadavi E, Jaafari N. 2014. Foliar sprays of citric acid and malic acid modify growth, flowering, and root to shoot ratio of Gazania (Gazania rigens L.): A comparative analysis by ANOVA and structural equation modeling. Adv Agric. Article ID 147278, 6 pages.
  • Taran N, Batsmanova L, Kovalenko M, Okanenko A. 2016. Impact of metal nanoform colloidal solution on the adaptive potential of plants. Nanoscale Res Lett. 11:89. doi: 10.1186/s11671-016-1294-z
  • Tombuloglu H, Slimani Y, Tombuloglu G, Korkmaz AD, Baykal A, Almessiere M, Ercan I. 2019. Impact of superparamagnetic iron oxide nanoparticles (SPIONs) and ionic iron on the physiology of summer squash (Cucurbita pepo): A comparative study. Plant Physiol Bioch. 139:56–65. doi: 10.1016/j.plaphy.2019.03.011
  • Tommasi F, Paciolla C, De Pinto MC, De Gara L. 2001. A comparative study of glutathione and ascorbate metabolism during germination of Pinus pinea L. seeds. J Exp Bot. 52(361):1647–1654. doi: 10.1093/jexbot/52.361.1647
  • Tripathi DK, Singh S, Gaur S, Singh SW, Yadav V, Liu S, Singh VP, Sharma S, Srivastava P, Prasad SM, Dubey NK, Chauhan DK, Sahi S. 2018. Acquisition and homeostasis of iron in higher plants and their Probable role in Abiotic stress tolerance. Front Environ Sci. February, Volume 5, article 86.
  • Vashisth A, Nagarajan S. 2010. Effect on germination and early growth characteristics in sunflower (Helianthus annuus) seeds exposed to the static magnetic field. J. Plant Physiol. 167:149–156. doi: 10.1016/j.jplph.2009.08.011
  • Wang H, Kou X, Pei Z, Xiao JQ, Shan X, Xing B. 2011. Effects of magnetite (Fe3O4) nanoparticles on perennial ryegrass (Lolium perenne L.) and pumpkin (Cucurbita maxima). Plant Nanotoxicol. 5:30–42. doi: 10.3109/17435390.2010.489206
  • Wang YH, Ying Y, Chen J, Wang XC. 2004. Transgenic Arabidopsis overexpressing Mn-SOD enhanced salt-tolerance. Plant Sci. 167:671–677. doi: 10.1016/j.plantsci.2004.03.032
  • Zhang J, Cui S, Li J, Kirkham MB. 1995. Protoplasmic factors, antioxidant responses, and chilling resistance in maize. Plant Physiol Bioch. 33:567–575.
  • Zhao J, Davis LC, Verpoorte R. 2005. . Elicitor signal transduction leading to the production of plant secondary metabolites. Biotechnol Adv. 23:283–333. doi: 10.1016/j.biotechadv.2005.01.003