2,243
Views
5
CrossRef citations to date
0
Altmetric
Plant-Environment Interactions

Ethylene mediated physiological response for in vitro development of salinity tolerant tomato

, ORCID Icon, , , , , , , , , , , , , & show all
Pages 406-416 | Received 13 Apr 2020, Accepted 02 Sep 2020, Published online: 11 Nov 2020

References

  • Abdallah NA, Moses V, Prakash CS. 2014. The impact of possible climate changes on developing countries: the needs for plants tolerant to abiotic stresses. GM Crops Food. 5:77–80. doi: 10.4161/gmcr.32208
  • Abdelaziz ME, Abdelsattar M, Abdeldaym EA, Atia MA, Mahmoud AWM, Saad MM, Hirt H. 2019. Piriformospora indica alters Na+/K+ homeostasis, antioxidant enzymes and LeNHX1 expression of greenhouse tomato grown under salt stress. Sci Hort. 256:108532. doi: 10.1016/j.scienta.2019.05.059
  • Abdel Latef AAH. 2011. Ameliorative effect of calcium chloride on growth, antioxidant enzymes, protein patterns and some metabolic activities of canola (Brassica napus L.) under seawater stress. J Plant Nutr. 34(9):1303–1320. doi: 10.1080/01904167.2011.580817
  • Acosta-Motos JR, Dias-Vivancos P, Álvarez S, Fernández-García N, Sánchez-Blanco MJ, Hernández JA. 2015. NaCl-induced physiological and biochemical adaptative mechanismsin the ornamental Myrtus communis L. plants. J Plant Physiol. 183:41–51. doi: 10.1016/j.jplph.2015.05.005
  • Acosta-Motos J, Ortuño MF, Bernal-Vicente A, Diaz-Vivancos P, Sanchez-Blanco MJ, Hernandez JA. 2017. Plant responses to salt stress: adaptive mechanisms. Agronomy. 7:1–38. doi: 10.3390/agronomy7010018
  • Al-Daej MI. 2018. Salt tolerance of some tomato (Solanum lycoversicum L.) cultivars for salinity under controlled conditions. Am J Plant Physiol. 13:58–64. doi: 10.3923/ajpp.2018.58.64
  • Albacete A, Martínez-Andújar C, Ghanem ME, Acosta M, Sánchez-Bravo J, Asins MJ, Cuartero J, Lutts S, Dodd IC, Pérez-Alfocea F. 2009. Rootstock-mediated changes in xylem ionic and hormonal status are correlated with delayed leaf senescence, and increased leaf area and crop productivity in salinized tomato. Plant Cell Environ. 32:928–938. doi: 10.1111/j.1365-3040.2009.01973.x
  • Albaladejo I, Meco V, Plasencia F, Flores FB, Bolarin MC, Egea I. 2017. Unravelling the strategies used by the wild tomato species Solanum pennellii to confront salt stress: from leaf anatomical adaptations to molecular responses. Environ Exp Bot. 135:1–12. doi: 10.1016/j.envexpbot.2016.12.003
  • Anil VS, Bennur S, Lobo S. 2018. Somaclonal variations for crop improvement: selection for disease resistant variants in vitro. Plant Sci. 5:44–54.
  • Annunziata MG, Ciarmiello LF, Woodrow P, Maximova E, Fuggi A, Carillo P. 2017. Durum wheat roots adapt to salinity remodeling the cellular content of nitrogen metabolites and sucrose. Front Plant Sci. 7:2035. doi: 10.3389/fpls.2016.02035
  • Ansari MW, Kaushik S, Bains G, Tula S, Joshi B, Rani V, Wattal RK, Rakwal R, Shukla A, Pant RC, et al. 2019. Cyanide produced with ethylene by ACS and its incomplete detoxification by β-CAS in mango inflorescence leads to malformation. Sci Rep. 9:18361. doi: 10.1038/s41598-019-54787-7
  • Ansari MW, Rani V, Shukla A, Bains G, Pant RC, Tuteja N. 2015. Mango (Mangifera indica L.) malformation: a malady of stress ethylene origin. Physiol Mol Biol Plants. 21:1–8. doi: 10.1007/s12298-014-0258-y
  • Arshi A, Ahmad A, Aref IM, Iqbal M. 2010. Calcium interaction with salinity-induced effects on growth and metabolism of soybean (Glycine max L.) cultivars. J Environ Biol. 31(5):795.
  • Bai Y, Kissoudis C, Yan Z, Visser RGF, van der Linden G. 2018. Plant behaviour under combined stress: tomato responses to combined salinity and pathogen stress. Plant J. 93:781–793. doi: 10.1111/tpj.13800
  • Balliu A, Sallaku G, Rewald B. 2015. AMF inoculation enhances growth and improves the nutrient uptake rates of transplanted, salt-stressed tomato seedlings. Sustainability. 7:15967–15981. doi: 10.3390/su71215799
  • Besada C1, Gil R2, Bonet L2, Quiñones A2, Intrigliolo D2, Salvador A2. 2016 Mar. Chloride stress triggers maturation and negatively affects the postharvest quality of persimmon fruit. Involvement of calyx ethylene production. Plant Physiol Biochem. 100:105–112. Epub 2016 Jan 14. doi: 10.1016/j.plaphy.2016.01.006
  • Bolger A, Scossa F, Bolger ME, Lanz C, Maumus F, Tohge T. 2014. The genome of the stress tolerant wild tomato species Solanum pennellii. Nat Genet. 46:1034–1038. doi: 10.1038/ng.3046
  • Chandler SF, Thorpe TA. 1986. Variation from plant tissue cultures: biotechnological application to improving salinity tolerance. Biotechnol Adv. 4:117–135. doi: 10.1016/0734-9750(86)90007-8
  • Chen THH, Murata N. 2002. Enhancement of tolerance of abiotic stress by metabolic engineering of betaines and other compatible solutes. Curr Opin Plant Biol. 5:250–257. doi: 10.1016/S1369-5266(02)00255-8
  • Chrysargyris A, Michailidi E, Tzortzakis N. 2018. Physiological and biochemical responses of Lavandula angustifolia to salinity under mineral foliar application. Front Plant Sci. 9:489. doi: 10.3389/fpls.2018.00489
  • Costa-Rodrigues J, Pinho O, Monteiro PRR. 2018. Can lycopene be considered an effective protection against cardiovascular disease? Food Chem. 245:1148–1153. doi: 10.1016/j.foodchem.2017.11.055
  • Cuartero J, Bolarin MC, Asins MJ, Moreno V. 2006. Increasing salt tolerance in the tomato. J Exp Bot. 57:1045–1058. doi: 10.1093/jxb/erj102
  • Dahal K, Li XQ, Tai H, Creelman A, Bizimungu B. 2019. Improving potato stress tolerance and tuber yield under a climate change scenario – a current overview. Front Plant Sci. 10:563. doi: 10.3389/fpls.2019.00563
  • D’Amico ML, Izzo R, Tognoni F, Pardossi A, Navari-Izzo F. 2003. Application of diluted sea water to soilless culture of tomato (Lycopersicon esculentum Mill.): effects on plant growth, yield, fruit quality and antioxidant capacity. J Food Agr Environ. 1:112–116.
  • De-la-Torre-González A, Navarro-León E, Albacete A, Blasco B, Ruiz JM. 2017. Study of phytohormone profile and oxidative metabolism as key process to identification of salinity response in tomato commercial genotypes. J Plant Physiol. 216:164–173. doi: 10.1016/j.jplph.2017.05.016
  • Diao M, Ma L, Wang J, Cui J, Fu A, Liu HY. 2014. Selenium promotes the growth and photosynthesis of tomato seedlings under salt stress by enhancing chloroplast antioxidant defense system. J Plant Grow Regul. 33:671–682. doi: 10.1007/s00344-014-9416-2
  • Egea I, Pineda B, Ortíz-Atienza A, Plasencia FA, Drevensek S, García-Sogo B, Yuste-Lisbona FJ, Barrero-Gil J, Atarés A, Flores FB, et al. 2018. The SlCBL10 calcineurin B-like protein ensures plant growth under salt stress by regulating Na+ and Ca2+ homeostasis. Plant Physiol. 176:1676–1693. doi: 10.1104/pp.17.01605
  • Epstein E, Norlyn JD, Rush DW, Kingsbury RW, Kelly DB, Gunningham GA, Wrona AF. 1980. Saline culture of crops: a genetic approach. Science. 210:399–404. doi: 10.1126/science.210.4468.399
  • Evans DA, Sharp WR. 1986. Applications of somaclonal variation. Nature Biotechnol. 4:528–532. doi: 10.1038/nbt0686-528
  • Fei Z, Tang X, Alba R, Giovannoni J. 2006. Tomato expression database (TED): a suite of data presentation and analysis tools. Nucleic Acids Res. 34:766–770. doi: 10.1093/nar/gkj110
  • Foolad MR. 2004. Recent advances in genetics of salt tolerance in tomato. Plant Cell Tiss Org. 76:101–119. doi: 10.1023/B:TICU.0000007308.47608.88
  • García-Martí M, Piñero MC, García-Sanchez F, Mestre TC, López-Delacalle M, Martínez V, Rivero RM. 2019. Amelioration of the oxidative stress generated by simple or combined abiotic stress through the K+ and Ca2+ supplementation in tomato plants. Antioxidants. 8(4). doi:10.3390/antiox8040081.
  • Gerszberg A, Hnatuszko-Konka K. 2017. Tomato tolerance to abiotic stress: a review of most often engineered target sequence. Plant Growth Regul. 83:175–198. doi: 10.1007/s10725-017-0251-x
  • Ghanem ME, Albacete A, Martínez-Andújar C, Acosta M, Romero-Aranda R, Dodd IC, Lutts S, Pérez-Alfocea F. 2008. Hormonal changes during salinity-induced leaf senescence in tomato (Solanum lycopersicum L.). J Exp Bot. 59:3039–3050. doi: 10.1093/jxb/ern153
  • Ghassemi F, Jakeman AJ, Nix HA. 1995. Salinisation of land and water resources: human causes, extent, management and case studies. Sydney: UNSW Press.
  • Golldack D, Li C, Mohan H, Probst N. 2014. Tolerance to drought and salt stress in plants: unraveling the signaling networks. Front Plant Sci. 5:151. doi: 10.3389/fpls.2014.00151
  • Gorham J, Läuchli A, Leidi EO. 2010. Plant responses to salinity in physiology of cotton. eds JM Stewart, DM Oosterhuis, JJ Heitholt, JR Mauney. Dordrecht: Springer, 129–141.
  • Grabowska M, Wawrzyniak D, Rolle K, Chomczyński P, Oziewicz S, Jurga S, Barciszewski J. 2019. Let food be your medicine: nutraceutical properties of lycopene. Food Funct. 10:3090–3102. doi: 10.1039/C9FO00580C
  • Guo Y, Halfter U, Ishitani M, Zhu JK. 2001. Molecular characterization of functional domains in the protein kinase SOS2 that is required for plant salt tolerance. Plant Cell. 13:1383–1400. doi: 10.1105/TPC.010021
  • Guo LL, Hao LH, Jia HH, Li F, Zhang XX, Cao X, Xu M, Zheng YP. 2018. Effects of NaCl stress on stomatal traits, leaf gas exchange parameters, and biomass of two tomato cultivars. Ying Yong Sheng Tai Xue Bao. 29:3949–3958.
  • Gupta S, Schillaci M, Walker R, Smith PMC, Watt M, Roessner U. 2020. Alleviation of salinity stress in plants by endophytic plant-fungal symbiosis: current knowledge, perspectives and future directions. Plant Soil. doi:10.1007/s11104-020-04618-w.
  • Gurbachan S. 2018. Climate change and sustainable management of salinity in agriculture. Res Med Eng Sci. 6(2):1–7.
  • Hajiboland R, Aliasgharzadeh N, Laiegh SF, Poschenrieder C. 2010. Colonization with arbuscular mycorrhizal fungi improves salinity tolerance of tomato (Solanum lycopersicum L.) plants. Plant Soil. 331:313–327. doi: 10.1007/s11104-009-0255-z
  • Halim NSA, Tan BC, Midin MR, Madon M, Khalid N, Yaacob JS. 2017. Abscisic acid and salinity stress induced somaclonal variation and increased histone deacetylase (HDAC) activity in Ananas comosus var. MD2. Plant Cell Tissue Organ Cult. 133(6). doi: 10.1007/s11240-017-1367-4
  • Haq TU, Gorham J, Akhtar J, Akhtar N, Steele KA. 2010. Dynamic quantitative trait loci for salt stress components on chromosome 1 of rice. Functional Plant Biol. 37(7):634–645. doi: 10.1071/FP09247
  • Hossain MS. 2019. Present scenario of global salt affected soils, its management and importance of salinity research. Int J Biol Sci. 1:1–3.
  • Huang Z, Zhang Z, Zhang X, Zhang H, Huang D, Huang R. 2004. Tomato TERF1 modulates ethylene response and enhances osmotic stress tolerance by activating expression of downstream genes. FEBS Lett. 573:110–116. doi: 10.1016/j.febslet.2004.07.064
  • Isayenkov SV, Maathuis FJM. 2019. Plant salinity stress: many unanswered questions remain. Front Plant Sci. 10:80. doi: 10.3389/fpls.2019.00080
  • Jaleel CA, Kishorekumar A, Manivannan P, Saankar B, Gomathinayagam M, Panneerselvam R. 2008. Salt stress mitigation by calcium chloride in Phyllanthus amarus. Acta Bot Croat. 67(1):53–62.
  • Jaspers P, Brosché M, Overmyer K, Kangasjär J. 2010. The transcription factor interacting protein RCD1 contains a novel conserved domain. Plant Signal Behav. 5:78–80. doi: 10.4161/psb.5.1.10293
  • Ji HT, Pardo JM, Batelli G, Van Oosten MJ, Bressan RA, Li X. 2013. The salt overly sensitive (SOS) pathway: established and emerging roles. Mol Plant. 6:275–286. doi: 10.1093/mp/sst017
  • Johansen K, Morton MJL, Malbeteau YM, Aragon B, Al-Mashharawi SK, Ziliani MG, Angel Y, Fiene GM, Negrão SSC, Mousa MAA, et al. 2019 Mar 29. Unmanned aerial vehicle-based phenotyping using morphometric and spectral analysis can quantify responses of wild tomato plants to salinity stress. Front Plant Sci. 10:370. doi:10.3389/fpls.2019.00370.eCollection 2019. doi: 10.3389/fpls.2019.00370
  • Johnson HE, Broadhurst D, Goodacre R, Smith AR. 2003. Metabolic fingerprinting of salt-stressed tomatoes. Phytochemistry. 62:919–928. doi: 10.1016/S0031-9422(02)00722-7
  • Jones RA, El-Beltagy AS. 1989. Epinasty promoted by salinity or ethylene is an indicator of salt-sensitivity in tomatoes. Plant Cell Environ. 12:813–817. doi: 10.1111/j.1365-3040.1989.tb01643.x
  • Joseph JT, Poolakkalody NJ, Shah JM. 2018. Plant reference genes for development and stress response studies. J Biosci. 43:173–187. doi: 10.1007/s12038-017-9728-z
  • Julkowska MM, Testerink C. 2015. Tuning plant signaling and growth to survive salt. Trends Plant Sci. 20:586–594. doi: 10.1016/j.tplants.2015.06.008
  • Kalaji HM, Jajoo A, Oukarroum A, Brestic M, Zivcak M, Samborska IA, Cetner MD, Łukasik I, Goltsev V, Ladle RJ. 2016. Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. Acta Physiol Planta. 38(4). doi:10.1007/s11738-016-2113-y.
  • Kamei A, Seki M, Umezawa T, Ishida J, Satou M, Akiyama K, Zhu JK, Shinozaki K. 2005. Analysis of gene expression profiles in Arabidopsis salt overly sensitive mutants sos2-1 and sos3-1. Plant Cell Environ. 28:1267–1275. doi: 10.1111/j.1365-3040.2005.01363.x
  • Katiyar-Agarwal S, Zhu J, Kim K, Agarwal M, Fu X, Huang A, Zhu JK. 2006. The plasmamembrane Na+/H+ antiporter SOS1 interacts with RCD1 and functions in oxidative stress tolerance in Arabidopsis. Proc Natl Acad Sci USA. 103:18816–18821. doi: 10.1073/pnas.0604711103
  • Kaushal SS, Duan S, Doody TR, Haq S, Smith RM, Newcomer Johnson TA, Newcomb KD, Gorman J, Bowman N, Mayer PM, et al. 2017. Human-accelerated weathering increases salinization, major ions, and alkalinization in fresh water across land use. Appl Geochem. 83:121–135. doi: 10.1016/j.apgeochem.2017.02.006
  • Khalloufi M, Martínez-Andújar C, Lachaâl M, Karray-Bouraoui N, Pérez- Alfocea F, Albacete A. 2017. The interaction between foliar GA3 application and arbuscular mycorrhizal fungi inoculation improves growth in salinized tomato (Solanum lycopersicum L.) plants by modifying the hormonal balance. J Plant Physiol. 214:134–144. doi:10.1016/j.jplph.2017.04.012.
  • Khan MN. 2016. Growth and physiological attributes of tomato (Lycopersicon esculentum Mill.) genotypes as affected by NaCl stress. American J Plant Sci. 7:453–460. doi: 10.4236/ajps.2016.73039
  • Khan MN, Siddiqui MH, Mohammad F, Naeem M, Khan MMA. 2010. Calcium chloride and gibberellic acid protect linseed (Linum usitatissimum L.) from NaCl stress by inducing antioxidative defence system and osmoprotectant accumulation. Acta Physiol Plant. 32(1):121. doi:10.1007/s11738-009-0387-z.
  • Kiegle E, Moore CA, Haseloff J, Tester MA, Knight MR. 2000. Cell-type-specific calcium responses to drought, salt and cold in the Arabidopsis root. Plant J. 23:267–278. doi: 10.1046/j.1365-313x.2000.00786.x
  • Krishna H, Alizadeh M, Singh D, Singh U, Chauhan N, Eftekhari M, Sadh RK. 2016. Somaclonal variations and their applications in horticultural crops improvement. 3 Biotech. 6:54. doi: 10.1007/s13205-016-0389-7
  • Krishna R, Karkute SG, Ansari WA, Jaiswal DK, Verma JP, Singh M. 2019. Transgenic tomatoes for abiotic stress tolerance: status and way ahead. 3 Biotech. 9:143. doi: 10.1007/s13205-019-1665-0
  • Latef AAHA, Chaoxing H. 2011. Effect of arbuscular mycorrhizal fungi on growth, mineral nutrition, antioxidant enzymes activity and fruit yield of tomato grown under salinity stress. Sci Hortic. 127:228–233. doi:10.1016/j.scienta.2010.09.020.
  • Lestari EG. 2006. In vitro selection and somaclonal variation for biotic and abiotic stress tolerance. Biodiversita. 7:297–301. doi: 10.13057/biodiv/d070320
  • Lin Z, Zhong S, Grierson D. 2009. Recent advances in ethylene research. J Exp Bot. 60:3311–3336. doi: 10.1093/jxb/erp204
  • Liu J, Ishitani M, Halfter U, Kim CS, Zhu JK. 2000. The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance. Proc Nat Acad Sci USA. 97:3730–3734. doi: 10.1073/pnas.97.7.3730
  • Machado RMA, Serralheiro RP. 2017. Soil salinity: effect on vegetable crop growth. management practices to prevent and mitigate soil salinization. Horticulturae. 3:30. doi: 10.3390/horticulturae3020030
  • Manaa A, Ben Ahmed H, Valot B, Bouchet JP, Aschi-Smiti S, Causse M, Faurobert M. 2011. Salt and genotype impact on plant physiology and root proteome variations in tomato. J Exp Bot. 62:2797–2813. doi: 10.1093/jxb/erq460
  • Manchanda P, Kaur A, Gosal SS. 2018. Somaclonal variation for sugarcane improvement. In: Gosal S, Wani S, editors. Biotechnologies of crop improvement, Volume. Cham: Springer; p. 1.
  • Mandal AK, Obi-Reddy GP, Ravisankar T. 2011. Digital database of salt affected soils in India using geographic information system. JSSWQ. 3:16–29.
  • Manzano S, Aguado E, Martínez C, Megías Z, García A, Jamilena M. 2016. The ethylene biosynthesis gene CitACS4 regulates monoecy/andromonoecy in watermelon (Citrullus lanatus). PLoS One. 11:e0154362. doi: 10.1371/journal.pone.0154362
  • Martinez-Rodriguez MM, Estan MT, Moyano E, Garcia-Abellan JO, Flores FB. 2008. The effectiveness of grafting to improve salt tolerance in tomato when an excluder genotype is used as scion. Environ Exp Bot. 63:392–401. doi: 10.1016/j.envexpbot.2007.12.007
  • Martinez V, Nieves-Cordones M, Lopez-Delacalle M, Rodenas R, Mestre TC, Garcia-Sanchez F, Rubio F, Nortes PA, Mittler R, Rivero RM. 2018. Tolerance to stress combination in tomato plants: new insights in the protective role of melatonin. Molecules. 23(3). doi: 10.3390/molecules23030535
  • Miller JM, Conn JE. 1980. Metabolism of hydrogen cyanide in higher plants. Plant Physiol. 65:1199–1202. doi: 10.1104/pp.65.6.1199
  • Mitchell AE, Hong YJ, Koh E. 2007. Ten-year comparison of the influence of organic and conventional crop management practices on the content of flavonoids in tomatoes. J Agric Food Chem. 55:6154–6159. doi: 10.1021/jf070344+
  • Mozafariyan M, Kamelmanesh MM, Hawrylak-Nowak B. 2016. Ameliorative effect of selenium on tomato plants grown under salinity stress. Arch Agron Soil Sci. 62:1368–1380. doi: 10.1080/03650340.2016.1149816
  • Mueller LA, Solow TH, Taylor N, Skwarecki B, Buels R, Binns J, Lin C, Wright MH, Ahrens R, Wang Y. 2005. The SOL genomics network. A comparative resource for solanaceae biology and beyond. Plant Physiol. 138:1310–1317. doi: 10.1104/pp.105.060707
  • Munns R, Gilliham M. 2015. Salinity tolerance of crops-what is the cost? New Phytol. 208:668–673. doi: 10.1111/nph.13519
  • Munns R, Tester M. 2008. Mechanisms of salinity tolerance. Annu Rev Plant Biol. 59:651–681. doi: 10.1146/annurev.arplant.59.032607.092911
  • Nakagami H, Pitzschke A, Hirt H. 2005. Emerging MAP kinase pathways in plant stress signalling. Trends Plant Sci. 10:339–346. doi: 10.1016/j.tplants.2005.05.009
  • Ndhlala AR, Moyo M, Van Staden J. 2010. Natural antioxidants: fascinating or mythical biomolecules? Molecules. 15:6905–6930. doi: 10.3390/molecules15106905
  • Olías R, Eljakaoui ZLJUN, De Morales PA, Marín-Manzano MC, Pardo JM, Belver A. 2009. The plasma membrane Na+/H+ antiporter SOS1 is essential for salt tolerance in tomato and affects the partitioning of Na+ between plant organs. Plant Cell Environ. 32:904–916. doi: 10.1111/j.1365-3040.2009.01971.x
  • Ouyang B, Yang T, Hanxia L, Zhang L, Zhang Y, Zhang J, Fei Z, Ye Z. 2007. Identification of early salt stress response genes in tomato root by suppression subtractive hybridization and microarray analysis. J Exp Bot. 58:507–520. doi: 10.1093/jxb/erl258
  • Ouziad F, Wilde P, Schmelzer E, Hildebrandt U, Bothe H. 2006. Analysis of expression of aquaporins and NaC/HC transporters in tomato colonized by arbuscular mycorrhizal fungi and affected by salt stress. Environ Exp Bot. 57:177–186. doi: 10.1016/j.envexpbot.2005.05.011
  • Pan Y, Seymour GB, Lu C, Hu Z, Chen X, Chen G. 2012. An ethylene response factor (ERF5) promoting adaptation to drought and salt tolerance in tomato. Plant Cell Rep. 31:349–360. doi: 10.1007/s00299-011-1170-3
  • Periago MJ, García-Alonso J, Jacob K. 2009. Bioactive compounds, folates and antioxidant properties of tomatoes (Lycopersicum esculentum) during vine ripening. Intr J Food Sci Nutr. 60:694–708. doi: 10.3109/09637480701833457
  • Quan R, Lin H, Mendoza I, Zhang Y, Cao W, Yang Y, Shang M, Chen S, Pardo JM, Guo Y. 2007. SCABP8/CBL10, a putative calcium sensor, interacts with the protein kinase SOS2 to protect Arabidopsis shoots from salt stress. Plant Cell. 19:1415–1431. doi: 10.1105/tpc.106.042291
  • Rahman MM, Hossain M, Hossain KFB, Sikder MT, Shammi M, Rasheduzzaman M, Hossain MA, Mahbubul-Alam AKM, Uddin MK. 2018. Effects of NaCl salinity on tomato (Lycopersicon esculentum Mill.) plants in a pot Experiment. Open Agric. 3:578–585. doi: 10.1515/opag-2018-0061
  • Rengasamy P. 2006. World salinization with emphasis on Australia. J Exp Bot. 57:1017–1023. doi: 10.1093/jxb/erj108
  • Rho H, Hsieh M, Kandel SL, Cantillo J, Doty SL, Kim S-H. 2018. Do endophytes promote growth of host plants under stress? A meta-analysis on plant stress mitigation by endophytes. Microb Ecol. 75:407–418. doi: 10.1007/s00248-017-1054-3
  • Rivero RM, Mestre TC, Mittler R, Rubio F, Garcia-Sanchez F, Martinez V. 2014. The combined effect of salinity and heat reveals a specific physiological, biochemical and molecular response in tomato plants. Plant Cell Environ. 37:1059–1073. doi: 10.1111/pce.12199
  • Rodríguez-Ortega WM, Martínez V, Nieves M, Simón I, Lidón V, Fernandez-Zapata JC, Martinez-Nicolas JJ, Cámara-Zapata JM, García-Sánchez F. 2019. Agricultural and physiological responses of tomato plants grown in different soilless culture systems with saline water under greenhouse conditions. Sci Rep. 9:6733. doi: 10.1038/s41598-019-42805-7
  • Rouphael Y, Raimondi C, Lucini L, Carillo P, Kyriacou MC, Colla G, Cirillo V, Pannico A, El-Nakhel C, De-Pascale S. 2018. Physiological and metabolic responses triggered by omeprazole improve tomato plant tolerance to NaCl stress. Front Plant Sci. doi: 10.3389/fpls.2018.00249
  • Sahoo RK, Ansari MW, Tuteja N. 2014. OsSUV3 transgenic rice maintained higher endogenous level of plant hormones to eradicate the adverse effects of salinity on crop productivity. Rice. 7:1–3. doi: 10.1186/s12284-014-0017-2
  • Sanchez-Barrena MJ, Martinez-Ripoll M, Zhu JK, Albert A. 2005. The structure of the Arabidopsis thaliana SOS3: molecular mechanism of sensing calcium for salt stress response. J Mol Biol. 345:1253–1264. doi: 10.1016/j.jmb.2004.11.025
  • Sanders D, Brownlee C, Harper JF. 1999. Communicating with calcium. Plant Cell. 11:691–706. doi: 10.1105/tpc.11.4.691
  • Sato T, Theologis A. 1989. Cloning the mRNA encoding 1aminocyclopropane-1-carboxylate synthase, the key enzyme for ethylene biosynthesis in plants. Proc Natl Acad Sci USA. 86:6621–6625. doi: 10.1073/pnas.86.17.6621
  • Shabala L, Cuin TA, Newman IA, Shabala S. 2005. Salinity-induced ion flux patterns from the excised roots of Arabidopsis sos mutants. Planta. 222:1041–1050. doi: 10.1007/s00425-005-0074-2
  • Shah N, Anwar S, Xu J, Hou Z, Salah A, Khan S, Gong J, Shang Z, Qian L, Zhang C. 2018. The response of transgenic Brassica species to salt stress: a review. Biotechnol Lett. 40:1159–1165. doi: 10.1007/s10529-018-2570-z
  • Shi H, Quintero FJ, Pardo JM, Zhu JK. 2002. The putative plasma membrane Na+/H+ antiporter SOS1 controls long distance Na+ transport in plants. Plant Cell. 14:465–477. doi: 10.1105/tpc.010371
  • Shibli RA, Kushad M, Yousef GG, Lila MA. 2007. Physiological and biochemical responses of tomato microshoots to induced salinity stress with associated ethylene accumulation. Plant Growth Regul. 51:159–169. doi: 10.1007/s10725-006-9158-7
  • Singh LP, Gill SS, Tuteja N. 2011. Unraveling the role of fungal symbionts in plant abiotic stress tolerance. Plant Signal Behav. 6:175–191. doi: 10.4161/psb.6.2.14146
  • Tanaka Y, Sano T, Tamaoki M, Nakajima N, Kondo N, Hasezawa S. 2005. Ethylene inhibits abscisic acid-induced stomatal closure in Arabidopsis. Plant Physiol. 138:2337–2343. doi: 10.1104/pp.105.063503
  • Tanveer K, Gilani S, Hussain Z, Ishaq R, Adeel M, Ilyas N. 2020. Effect of salt stress on tomato plant and the role of calcium. J Plant Nutri. 43(1):28–35. doi: 10.1080/01904167.2019.1659324
  • Tao J-J, Chen H-W, Ma B, Zhang W-K, Chen S-Y, Zhang J-S. 2015. The role of ethylene in plants under salinity stress. Front Plant Sci. 6:1059. doi: 10.3389/fpls.2015.01059
  • Tavakkoli E, Rengasamy P, McDonald GK. 2010. High concentrations of Naþand Cl–ions in soil solution have simultaneous detrimental effects on growth of Faba bean under salinity stress. J Exp Bot. 61(15):4449–4459. doi: 10.1093/jxb/erq251
  • Toth G, Adhikari K, Varallyay G, Toth T, Bodis K, Stolbovoy V. 2008. Updated map of salt affected soils in the European Union. In: Teth G, Montanarella L, Rusco E, editors. Threats to soil quality in Europe. EUR 23438 EN - 2008. Luxembourg: European Commission. Joint Research Centre. Institute for Environment and Sustainability; p. 65–77.
  • UN-DESA. 2017. World population projected to reach 9.8 billion in 2050, and 11.2 billion in 2100. United Nations department of economic and social affairs. https://www.un.org/development/desa/en/news/population/world-population-prospects-2017.html.
  • Verma D, Ansari MW, Agrawal GK, Rakwal R, Shukla A, Tuteja N. 2013. In vitro selection and field responses of somaclonal variant plants of rice cv. PR113 for drought tolerance. Plant Signal Behav. 8:e23519. doi: 10.4161/psb.23519
  • Weckx S, Inzé D, Maene L. 2019. Tissue culture of oil palm: finding the balance between mass propagation and somaclonal variation. Front Plant Sci. 10:722. doi: 10.3389/fpls.2019.00722
  • Wicke B, Smeets E, Dornburg V, Vashev B, Gaiser T, Turkenburga W, Faaija A. 2011. The global technical and economic potential of bioenergy from salt-affected soils. Energy Environ Sci. 4:2669–2681. doi: 10.1039/C1EE01029H
  • Win KT, Fukuyo T, Keiki O, Ohwaki Y. 2018. The ACC deaminase expressing endophyte Pseudomonas spp. Enhances NaCl stress tolerance by reducing stress-related ethylene production, resulting in improved growth, photosynthetic performance, and ionic balance in tomato plants. Plant Physiol Biochem. 127:599–607. doi: 10.1016/j.plaphy.2018.04.038
  • Wu M, Kubota C. 2008. Effects of high electrical conductivity of nutrient solution and its application timing on lycopene, chlorophyll and sugar concentrations of hydroponic tomatoes during ripening. Sci Hortic. 116:122–129. doi: 10.1016/j.scienta.2007.11.014
  • Xie CG, Lin H, deng XW, Guo Y. 2009. Roles of SCaBP8 in salt stress response. Plant Signal Behav. 4:956–958. doi: 10.4161/psb.4.10.9641
  • Xiong L, Lee H, Ishitani M, Zhu JK. 2002. Regulation of osmotic stress-responsive gene expression by the LOS6/ABA1 locus in Arabidopsis. J Biol Chem. 277:8588–8569. doi: 10.1074/jbc.M109275200
  • Yang H, Shukla MK, Mao X, Kang S, Du T. 2019. Interactive regimes of reduced irrigation and salt stress depressed tomato water use efficiency at leaf and plant scales by affecting leaf physiology and stem sap flow. Front Plant Sci. 10:160. doi:10.3389/fpls.2019.00160.
  • Zhang HX, Blumwald E. 2001. Transgenic salt tolerant tomato plants accumulate salt in the foliage but not in the fruits. Nat Biotechnol. 19:765–768. doi: 10.1038/90824
  • Zhu JK. 2002. Salt and drought stress signal transduction in plants. Annu Rev Plant Biol. 53:247–273. doi: 10.1146/annurev.arplant.53.091401.143329
  • Zhu JK, Liu J, Xion L. 1998. Genetic analysis of salt tolerance in Arabidopsis: evidence for a critical role of potassium nutrition. Plant Cell. 10:1181–1191. doi: 10.1105/tpc.10.7.1181