1,130
Views
3
CrossRef citations to date
0
Altmetric
Plant-Environment Interactions

Network during light-induced cotyledons opening and greening in Astragalus membranaceus

, , , , , , , & show all
Pages 358-370 | Received 06 Jul 2020, Accepted 25 Sep 2020, Published online: 19 Oct 2020

References

  • Abbas M, Berckhan S, Rooney DJ, Gibbs DJ, Vicente Conde J, Sousa Correia C, Bassel GW, Marín-de la Rosa N, León J, Alabadí D, Blázquez MA, Holdsworth MJ. 2015. Oxygen sensing coordinates photomorphogenesis to facilitate seedling survival. Curr Biol. 25:1483–1488. doi:10.1016/j.cub.2015.03.060
  • Agati G, Azzarello E, Pollastri S, Tattini M. 2012. Flavonoids as antioxidants in plants: location and functional significance. Plant Sci. 196:67–76. doi:10.1016/j.plantsci.2012.07.014
  • Agati G, Brunetti C, Di Ferdinando M, Ferrini F, Pollastri S, Tattini M. 2013. Functional roles of flavonoids in photoprotection: new evidence, lessons from the past. Plant Physiol Biochem. 72:35–45. doi:10.1016/j.plaphy.2013.03.014
  • Alboresi A, Dall'Osto L, Aprile A, Carillo P, Roncaglia E, Cattivelli L, Bassi R. 2011. Reactive oxygen species and transcript analysis upon excess light treatment in wild-type Arabidopsis thaliana vs a photosensitive mutant lacking zeaxanthin and lutein. BMC Plant Biol. 11:62. doi:10.1186/1471-2229-11-62
  • Alves da Silva H, de Oliveira DFA, Avelino AP, Costa de Macêdo CE, Galvão TB, Voigt EL. 2019. Salt stress differentially regulates mobilization of carbon and nitrogen reserves during seedling establishment of Pityrocarpa moniliformis. Plant Biol. 21(6):1110–1118.
  • Arsovski AA, Galstyan A, Guseman JM, Nemhauser JL. 2012. Photomorphogenesis. The Arabidopsis Book. 10:e0147. doi:10.1199/tab.0147
  • Barber J, Andersson B. 1992. Too much of a good thing: light can be bad for photosynthesis. Trends Biochem Sci. 17:61–66. doi:10.1016/0968-0004(92)90503-2
  • Bellaire A, Ischebeck T, Staedler Y, Weinhaeuser I, Mair A, Parameswaran S, Ito T, Schönenberger J, Weckwerth W. 2014. Metabolism and development–integration of micro computed tomography data and metabolite profiling reveals metabolic reprogramming from floral initiation to silique development. New Phytol. 202:322–335. doi:10.1111/nph.12631
  • Bowler C, Botto J, Deng X-W. 2013. Photomorphogenesis, B-Box transcription factors, and the legacy of Magnus Holm. Am Soc Plant Biol. 25(4):1192–1195.
  • Brouquisse R, James F, Pradet A, Raymond P. 1992. Asparagine metabolism and nitrogen distribution during protein degradation in sugar-starved maize root tips. Planta. 188:384–395. doi:10.1007/BF00192806
  • Carpita NC, Gibeaut DM. 1993. Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant J. 3:1–30. doi:10.1111/j.1365-313X.1993.tb00007.x
  • Chacón I-l-C, Riley-Saldaña CA, González-Esquinca AR. 2013. Secondary metabolites during early development in plants. Phytochem Rev. 12:47–64. doi:10.1007/s11101-012-9250-8
  • Chen Q, Lu X, Guo X, Liu J, Liu Y, Guo Q, Tang Z. 2018. The specific responses to mechanical wound in leaves and roots of Catharanthus roseus seedlings by metabolomics. J Plant Interact. 13:450–460. doi:10.1080/17429145.2018.1499970
  • Cho YH, Yoo SD, Sheen J. 2006. Regulatory functions of nuclear hexokinase1 complex in glucose signaling. Cell. 127:579–589. doi:10.1016/j.cell.2006.09.028
  • Daniel RL, Guosheng W, Karin L, Spalding EP. 2009. Auxin transport into cotyledons and cotyledon growth depend similarly on the ABCB19 Multidrug Resistance-like transporter. Plant J Cell Mol Biol. 60:91–101. doi:10.1111/j.1365-313X.2009.03941.x
  • Doss M, Oette K. 1965. Rapid method for the preparation of fatty acid methyl esters for gas chromatographic analysis. Z Klin Chem Klin Biochem. 3:125–129.
  • Eastmond PJ. 2006. SUGAR-DEPENDENT1 encodes a patatin domain triacylglycerol lipase that initiates storage oil breakdown in germinating Arabidopsis seeds. Plant Cell. 18:665–675. doi:10.1105/tpc.105.040543
  • Gommers CM, Monte E. 2018. Seedling establishment: a dimmer switch-regulated process between dark and light signaling. Plant Physiol. 176:1061–1074. doi:10.1104/pp.17.01460
  • Goulas Y, Cerovic ZG, Cartelat A, Moya I. 2004. Dualex: a new instrument for field measurements of epidermal ultraviolet absorbance by chlorophyll fluorescence. Appl Opt. 43:4488–4496. doi:10.1364/AO.43.004488
  • He D, Damaris RN., Fu J, Tu J, Fu T, Xi C, Yi B, Yang P. 2016. Differential Molecular responses of rapeseed cotyledons to light and dark reveal metabolic Adaptations toward Autotrophy establishment. Front Plant Sci. 7:988..
  • Hildebrandt TM, Nunes Nesi A, Araújo WL, Braun HP. 2015. Amino acid Catabolism in plants. Mol Plant. 8(11):1563–1579. doi:10.1016/j.molp.2015.09.005
  • Jun YM, Kim EH, Lim JJ, Kim SH, Kim SH, Lim JD. 2012. Variation of phenolic compounds contents in cultivated Astragalus membranaceus Korean. J Med Crop Sci. 20:447–453. doi:10.7783/KJMCS.2012.20.6.447
  • Laitinen ML, Julkunen-Tiitto R, Rousi M. 2002. Foliar phenolic composition of European white birch during bud and leaf development. Physiol Plant. 114:450–460. doi:10.1034/j.1399-3054.2002.1140315.x
  • Le Guedard M, Faure O, Bessoule JJ. 2012. Early changes in the fatty acid composition of photosynthetic membrane lipids from Populus nigra grown on a metallurgical landfill. Chemosphere. 88:693–698. doi:10.1016/j.chemosphere.2012.03.079
  • Li Y, Guo S, Zhu Y, Yan H, Qian DW, Wang HQ, Yu JQ, Duan JA. 2019. Comparative analysis of twenty-five compounds in different parts of Astragalus membranaceus var. mongholicus and Astragalus membranaceus by UPLC-MS/MS. J Pharm Anal. 9(6):392–399.
  • Liu WC, Han TT, Yuan HM, Yu ZD, Zhang LY, Zhang BL, Zhai S, Zheng SQ, Lu YT. 2017b. CATALASE2 functions for seedling postgerminative growth by scavenging H2O2 and stimulating ACX2/3 activity in Arabidopsis. Plant Cell Environ. 40:2720–2728. doi:10.1111/pce.13031
  • Liu J, Liu Y, Wang Y, Abozeid A, Zu Y-G, Tang Z-H. 2017a. The integration of GC–MS and LC–MS to assay the metabolomics profiling in Panax ginseng and Panax quinquefolius reveals a tissue-and species-specific connectivity of primary metabolites and ginsenosides accumulation. J Pharm Biomed Anal. 135:176–185. doi:10.1016/j.jpba.2016.12.026
  • Luis OM, Tegelburg R, Brosche M, Lindfors A, Siipola S, Aphalo PJ. 2011. Temporal variation in epidermal flavonoids due to altered solar UV radiation is moderated by the leaf position in Betula pendula. Physiol Plant. 143:261–270. doi:10.1111/j.1399-3054.2011.01511.x
  • Mackender R, Leech RM. 1974. The Galactolipid, phospholipid, and fatty acid composition of the chloroplast envelope membranes of Vicia faba. L. Plant Physiol. 53:496–502. doi:10.1104/pp.53.3.496
  • Nobusawa T, Okushima Y, Nagata N, Kojima M, Sakakibara H, Umeda M. 2013. Synthesis of very-long-chain fatty acids in the epidermis controls plant organ growth by restricting cell proliferation. PLoS Biol. 11:e1001531. doi:10.1371/journal.pbio.1001531
  • Noh B, Murphy AS, Spalding EP. 2001. Multidrug resistance-like genes of Arabidopsis required for auxin transport and auxin-mediated development. Plant Cell. 13:2441–2454.
  • Peer WA, Brown DE, Tague BW, Muday GK, Taiz L, Murphy AS. 2001. Flavonoid accumulation patterns of transparent testa mutants of Arabidopsis. Plant Physiol. 126:536–548. doi:10.1104/pp.126.2.536
  • Peer WA, Murphy AS. 2007. Flavonoids and auxin transport: modulators or regulators? Trends Plant Sci. 12:556–563. doi:10.1016/j.tplants.2007.10.003
  • Pei G, Chen L, Zhang W. 2017. WGCNA application to proteomic and metabolomic data analysis. Methods in enzymology. Academic Press. 585:135–158. doi:10.1016/bs.mie.2016.09.016. Epub 2016 Dec 15. PMID: 28109426.
  • Pfeiffer A, Janocha D, Dong Y, Medzihradszky A, Schöne S, Daum G, Suzaki T, Forner J, Langenecker T, Rempel E, Schmid M, Wirtz M, Hell R, Lohmann JU. 2016. Integration of light and metabolic signals for stem cell activation at the shoot apical meristem. Elife. 5:e17023. doi:10.7554/eLife.17023
  • Pritchard SL, Charlton WL, Baker A, Graham IA. 2002. Germination and storage reserve mobilization are regulated independently in Arabidopsis. Plant J. 31:639–647. doi:10.1046/j.1365-313X.2002.01376.x
  • Qu C, Zuo Z, Cao L, Huang J, Sun X, Zhang P, Yang C, Li L, Xu Z, Liu G. 2019. Comprehensive dissection of transcript and metabolite shifts during seed germination and post-germination stages in poplar BMC. Plant Biology. 19:279.
  • Ribeiro PR, Willems LA, Mutimawurugo M-C, Fernandez LG, de Castro RD, Ligterink W, Hilhorst HW. 2015. Metabolite profiling of Ricinus communis germination at different temperatures provides new insights into thermo-mediated requirements for successful seedling establishment. Plant Sci. 239:180–191. doi:10.1016/j.plantsci.2015.08.002
  • Roldan MVG, Engel B, de Vos RCH, Vereijken P, Astola L, Groenenboom M, van de Geest H, Bovy A, Molenaar J, van Eeuwijk F. 2014. Metabolomics reveals organ-specific metabolic rearrangements during early tomato seedling development. Metabolomics. 10:958–974. doi:10.1007/s11306-014-0625-2
  • Rozema J, Björn LO, Bornman JF, Gaberscik A, Häder DP, Trost T, Germ M, Klisch M, Gröniger A, Sinha RP, Lebert M, He YY, Buffoni-Hall R, de Bakker NV, van de Staaij J, Meijkamp BB. 2002. The role of UV-B radiation in aquatic and terrestrial ecosystems—an experimental and functional analysis of the evolution of UV-absorbing compounds. J Photochem Photobiol, B. 66:2–12. doi:10.1016/S1011-1344(01)00269-X
  • Sieciechowicz KA, Joy KW, Ireland RJ. 1988. The metabolism of asparagine in plants. Phytochemistry. 27:663–671. doi:10.1016/0031-9422(88)84071-8
  • Silva AT, Ligterink W, Hilhorst HW. 2017. Metabolite profiling and associated gene expression reveal two metabolic shifts during the seed-to-seedling transition in Arabidopsis thaliana. Plant Mol Biol. 95:481–496. doi:10.1007/s11103-017-0665-x
  • Smeekens S, Ma J, Hanson J, Rolland F. 2010. Sugar signals and molecular networks controlling plant growth. Curr Opin Plant Biol. 13:273–278. doi:10.1016/j.pbi.2009.12.002
  • Stoynova-Bakalova E, Karanov E, Petrov P, Hall M. 2004. Cell division and cell expansion in cotyledons of Arabidopsis seedlings. New Phytol. 162:471–479. doi:10.1111/j.1469-8137.2004.01031.x
  • Sullivan JA, Deng XW. 2003. From seed to seed: the role of photoreceptors in Arabidopsis development. Dev Biol. 260:289–297. doi:10.1016/S0012-1606(03)00212-4
  • Sullivan JH, Muhammad D, Warpeha KM. 2014. Phenylalanine is required to promote specific developmental responses and prevents cellular damage in response to ultraviolet light in soybean (Glycine max) during the seed-to-seedling transition. PloS one. 9:e112301. doi:10.1371/journal.pone.0112301
  • Tamagnone L, Merida A, Stacey N, Plaskitt K, Parr A, Chang CF, Lynn D, Dow JM, Roberts K, Martin C. 1998. Inhibition of phenolic acid metabolism results in precocious cell death and altered cell morphology in leaves of transgenic tobacco plants. Plant Cell. 10:1801–1816. doi:10.1105/tpc.10.11.1801
  • Trémolières A, Lepage M. 1971. Changes in lipid composition during greening of etiolated pea seedlings. Plant Physiol. 47:329–334. doi:10.1104/pp.47.2.329
  • Xu RY, Nan P, Yang Y, Pan H, Zhou T, Chen J. 2011. Ultraviolet irradiation induces accumulation of isoflavonoids and transcription of genes of enzymes involved in the calycosin-7-.
  • Yang N, Guo X, Wu Y, Hu X, Ma Y, Zhang Y, Wang H & Tang Z. 2018. The inhibited seed germination by ABA and MeJA is associated with the disturbance of reserve utilizations in Astragalus membranaceus. Journal of Plant Interactions. 13:388–397. doi:10.1080/17429145.2018.1483034
  • Yang Y, Benning C. 2018. Functions of triacylglycerols during plant development and stress. Curr Opin Biotechnol. 49:191–198. doi:10.1016/j.copbio.2017.09.003
  • Yaniv Z, Shabelsky E, Schafferman D, Granot I, Kipnis T. 1998. Oil and fatty acid changes in Sinapis and Crambe seeds during germination and early development. Ind Crops Prod. 9:1–8. doi:10.1016/S0926-6690(98)00005-3
  • Yong W, Link B, O'Malley R, Tewari J, Hunter CT, Lu CA, Li X, Bleecker AB, Koch KE, McCann MC, McCarty DR, Patterson SE, Reiter WD, Staiger C, Thomas SR, Vermerris W, Carpita NC. 2005. Genomics of plant cell wall biogenesis. Planta. 221:747–751. doi:10.1007/s00425-005-1563-z
  • Yu B, Liu Y, Pan Y, Liu J, Wang H, Tang Z. 2018. Light enhanced the biosynthesis of terpenoid indole alkaloids to meet the opening of cotyledons in process of photomorphogenesis of Catharanthus roseus. Plant Growth Regul. 84:617–626. doi:10.1007/s10725-017-0366-0
  • Zhao J, Davis LC, Verpoorte R. 2005. Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnol Adv. 23:283–333.. doi:10.1016/j.biotechadv.2005.01.003
  • Zheng ZL. 2009. Carbon and nitrogen nutrient balance signaling in plants. Plant Signal Behav. 4:584–591.. doi:10.4161/psb.4.7.8540
  • Zheng Y, Cui X, Su L, Fang S, Chu J, Gong Q, Yang J, Zhu Z. 2017. Jasmonate inhibits COP1 activity to suppress hypocotyl elongation and promote cotyledon opening in etiolated Arabidopsis seedlings. Plant J. 90:1144–1155. doi:10.1111/tpj.13539
  • Zhou L, Jang J-C, Jones TL, Sheen J. 1998. Glucose and ethylene signal transduction crosstalk revealed by an Arabidopsis glucose-insensitive mutant. Proc Natl Acad Sci U S A. 95:10294–10299. doi:10.1073/pnas.95.17.10294
  • Zhou X-R, Shrestha P, Yin F, Petrie JR, Singh SP. 2013. AtDGAT2 is a functional acyl-CoA: diacylglycerol acyltransferase and displays different acyl-CoA substrate preferences than AtDGAT1. FEBS Lett. 587:2371–2376. doi:10.1016/j.febslet.2013.06.003
  • Zienkiewicz A, Jimenez-Lopez JC, Zienkiewicz K, de Dios Alche J, Rodriguez-Garcia MI. 2011. Development of the cotyledon cells during olive (Olea europaea L.) in vitro seed germination and seedling growth. Protoplasma. 248(4):751–765. doi:10.1007/s00709-010-0242-5