965
Views
5
CrossRef citations to date
0
Altmetric
Plant-Environment Interactions

Advances in the elucidation of nuclear proteins in the model plant Arabidopsis thaliana: based on protein interactions and bioinformatics analysis

, , , , &
Pages 481-493 | Received 09 Aug 2021, Accepted 20 Oct 2021, Published online: 13 Nov 2021

References

  • Afrin T, Diwan D, Sahawneh K, Pajerowska-Mukhtar K. 2020. Multilevel regulation of endoplasmic reticulum stress responses in plants: where old roads and new paths meet. J Exp Bot. 71(5):1659–1667. doi:10.1093/jxb/erz487.
  • Altmann M, Altmann S, Rodriguez PA, Weller B, Vergara LE, Palme J, la Rosa NMD, Sauer M, Wenig M, Villaecija-Aguilar JA, et al. 2020. Extensive signal integration by the phytohormone protein network. Nature. 12:631. doi:10.1038/s41586-020-2585-1.
  • Asano S, Kimura T, Ishizuka H, Morii M, Takeguchi N. 2003. Quality control of gastric proton pump in the endoplasmic reticulum by ubiquitin/proteasome system. Ann N Y Acad Sci. 986:655–657. doi:10.1111/j.1749-6632.2003.tb07278.x.
  • Assenov Y, Ramirez F, Schelhorn SE, Lengauer T, Albrecht M. 2008a. Computing topological parameters of biological networks. Bioinformatics. 24(2):282–284. doi:10.1093/bioinformatics/btm554.
  • Assenov Y, Ramirez F, Schelhorn SE, Lengauer T, Albrecht M. 2008b. Computing topological parameters of biological networks. Bioinformatics. 24(2):282–284. doi:10.1093/bioinformatics/btm554.
  • Balasubramanian S, Schneitz K. 2000. NOZZLE regulates proximal-distal pattern formation, cell proliferation and early sporogenesis during ovule development in Arabidopsis thaliana. Development. 127(19):4227–4238.
  • Balasubramanian S, Schneitz K. 2002. NOZZLE links proximal-distal and adaxial-abaxial pattern formation during ovule development in Arabidopsis thaliana. Development. 129(18):4291–4300.
  • Batada NN, Hurst LD, Tyers M. 2006. Evolutionary and physiological importance of hub proteins. Plos Comput Biol. 2(7):e88. doi:10.1371/journal.pcbi.0020088.
  • Bencivenga S, Simonini S, Benkova E, Colombo L. 2012. The transcription factors BEL1 and SPL are required for cytokinin and auxin signaling during ovule development in arabidopsis. Plant Cell. 24(7):2886–2897. doi:10.1105/tpc.112.100164.
  • Blazquez MA, Nelson DC, Weijers D. 2020. Evolution of plant hormone response pathways. Annu Rev Plant Biol. 71:327–353. doi:10.1146/annurev-arplant-050718-100309.
  • Boon R, Kumar M, Tricot T, Elia I, Ordovas L, Jacobs F, One J, De Smedt J, Eelen G, Bird M, et al. 2020a. Amino acid levels determine metabolism and CYP450 function of hepatocytes and hepatoma cell lines. Nat Commun. 11(1):1393. doi:10.1038/s41467-020-15058-6.
  • Boon R, Silveira GG, Mostoslavsky R. 2020b. Nuclear metabolism and the regulation of the epigenome. Nat Metab. 2(11):1190–1203. doi:10.1038/s42255-020-00285-4.
  • Brandizzi F. 2018. Transport from the endoplasmic reticulum to the Golgi in plants: where are we now? Semin Cell Dev Biol. 80:94–105. doi:10.1016/j.semcdb.2017.06.024.
  • Chen L, Su ZZ, Huang L, Xia FN, Qi H, Xie LJ, Xiao S, Chen QF. 2017. The AMP-activated protein kinase KIN10 is involved in the regulation of autophagy in arabidopsis. Front Plant Sci. 8. doi:ARTN 120110.3389/fpls.2017.01201.
  • Chen XW, Liu M. 2005. Prediction of protein-protein interactions using random decision forest framework. Bioinformatics. 21(24):4394–4400. doi:10.1093/bioinformatics/bti721.
  • Choi SW, Lee SB, Na YJ, Jeung SG, Kim SY. 2017. Arabidopsis MAP3K16 and other salt-inducible MAP3Ks regulate ABA response redundantly. Mol Cells. 40(3):230–242. doi:10.14348/molcells.2017.0002.
  • Chong LP, Wang Y, Gad N, Anderson N, Shah B, Zhao R. 2015. A highly charged region in the middle domain of plant endoplasmic reticulum (ER)-localized heat-shock protein 90 is required for resistance to tunicamycin or high calcium-induced ER stresses. J Exp Bot. 66(1):113–124. doi:10.1093/jxb/eru403.
  • Danquah A, de Zelicourt A, Boudsocq M, Neubauer J, Frei Dit Frey N, Leonhardt N, Pateyron S, Gwinner F, Tamby JP, Ortiz-Masia D, et al. 2015. Identification and characterization of an ABA-activated MAP kinase cascade in Arabidopsis thaliana. Plant J. 82(2):232–244. doi:10.1111/tpj.12808.
  • Danquah A, de Zelicourt A, Colcombet J, Hirt H. 2014. The role of ABA and MAPK signaling pathways in plant abiotic stress responses. Biotechnol Adv. 32(1):40–52. doi:10.1016/j.biotechadv.2013.09.006.
  • de Silva E, Thorne T, Ingram P, Agrafioti I, Swire J, Wiuf C, Stumpf MP. 2006. The effects of incomplete protein interaction data on structural and evolutionary inferences. BMC Biol. 4:39. doi:10.1186/1741-7007-4-39.
  • Dezfulian MH, Jalili E, Roberto DK, Moss BL, Khoo K, Nemhauser JL, Crosby WL. 2016. Oligomerization of SCFTIR1 Is essential for Aux/IAA degradation and auxin signaling in arabidopsis. PLoS Genet. 12(9):e1006301. doi:10.1371/journal.pgen.1006301.
  • Dong J, Ni W, Yu R, Deng XW, Chen H, Wei N. 2017. Light-dependent degradation of PIF3 by SCF(EBF1/2) promotes a photomorphogenic response in arabidopsis. Curr Biol. 27(16):2420–2430. e2426. doi:10.1016/j.cub.2017.06.062.
  • Evlampiev K, Isambert H. 2008. Conservation and topology of protein interaction networks under duplication-divergence evolution. Proc Natl Acad Sci U S A. 105(29):9863–9868. doi:10.1073/pnas.0804119105.
  • Farras R, Ferrando A, Jasik J, Kleinow T, Okresz L, Tiburcio A, Salchert K, del Pozo C, Schell J, Koncz C. 2001. SKP1-SnRK protein kinase interactions mediate proteasomal binding of a plant SCF ubiquitin ligase. EMBO J. 20(11):2742–2756. doi:10.1093/emboj/20.11.2742.
  • Fernandez-Calvo P, Chini A, Fernandez-Barbero G, Chico JM, Gimenez-Ibanez S, Geerinck J, Eeckhout D, Schweizer F, Godoy M, Franco-Zorrilla JM, et al. 2011. The Arabidopsis bHLH transcription factors MYC3 and MYC4 are targets of JAZ repressors and act additively with MYC2 in the activation of jasmonate responses. Plant Cell. 23(2):701–715. doi:10.1105/tpc.110.080788.
  • Freitas N, Cunha C. 2009. Mechanisms and signals for the nuclear import of proteins. Curr Genomics. 10(8):550–557. doi:10.2174/138920209789503941.
  • Friedel CC, Zimmer R. 2007. Influence of degree correlations on network structure and stability in protein-protein interaction networks. BMC Bioinformatics. 8:297. doi:10.1186/1471-2105-8-297.
  • Geisler-Lee J, O'Toole N, Ammar R, Provart NJ, Millar AH, Geisler M. 2007. A predicted interactome for arabidopsis. Plant Physiol. 145(2):317–329. doi:10.1104/pp.107.103465.
  • Giot L, Bader JS, Brouwer C, Chaudhuri A, Kuang B, Li Y, Hao YL, Ooi CE, Godwin B, Vitols E, et al. 2003. A protein interaction map of Drosophila melanogaster. Science. 302(5651):1727–1736. doi:10.1126/science.1090289.
  • Gu H, Zhu P, Jiao Y, Meng Y, Chen M. 2011. PRIN: a predicted rice interactome network. BMC Bioinformatics. 12:161. doi:10.1186/1471-2105-12-161.
  • Guo J, Lu C, Zhao F, Gao S, Wang B. 2020. Improved reproductive growth of euhalophyte suaeda salsa under salinity is correlated with altered phytohormone biosynthesis and signal transduction. Funct Plant Biol. 47(2):170–183. doi:10.1071/FP19215.
  • Habibi M, Eslahchi C, Wong L. 2010. Protein complex prediction based on k-connected subgraphs in protein interaction network. BMC Syst Biol. 4:129. doi:10.1186/1752-0509-4-129.
  • Hanton SL, Bortolotti LE, Renna L, Stefano G, Brandizzi F. 2005. Crossing the divide–transport between the endoplasmic reticulum and Golgi apparatus in plants. Traffic. 6(4):267–277. doi:10.1111/j.1600-0854.2005.00278.x.
  • Harmon FG, Kay SA. 2003. The F box protein AFR is a positive regulator of phytochrome A-mediated light signaling. Curr Biol. 13(23):2091–2096. doi:10.1016/j.cub.2003.11.019.
  • Hawkins T, Kihara D. 2007. Function prediction of uncharacterized proteins. J Bioinform Comput Biol. 5(1):1–30. doi:10.1142/s0219720007002503.
  • He K, Gou X, Yuan T, Lin H, Asami T, Yoshida S, Russell SD, Li J. 2007. BAK1 and BKK1 regulate brassinosteroid-dependent growth and brassinosteroid-independent cell-death pathways. Curr Biol. 17(13):1109–1115. doi:10.1016/j.cub.2007.05.036.
  • Hemerly AS, Ferreira PC, Van Montagu M, Engler G, Inze D. 2000. Cell division events are essential for embryo patterning and morphogenesis: studies on dominant-negative cdc2aAt mutants of arabidopsis. Plant J. 23(1):123–130. doi:10.1046/j.1365-313x.2000.00800.x.
  • Horak H. 2020. Defense, fast and slow: activation of different MAPK pathways in response to wounding. Plant Cell. 32(6):1788–1789. doi:10.1105/tpc.20.00282.
  • Howell SH. 2013. Endoplasmic reticulum stress responses in plants. Annu Rev Plant Biol. 64:477–499. doi:10.1146/annurev-arplant-050312-120053.
  • Jammes F, Song C, Shin D, Munemasa S, Takeda K, Gu D, Cho D, Lee S, Giordo R, Sritubtim S, et al. 2009. MAP kinases MPK9 and MPK12 are preferentially expressed in guard cells and positively regulate ROS-mediated ABA signaling. Proc Natl Acad Sci U S A. 106(48):20520–20525. doi:10.1073/pnas.0907205106.
  • Janota CS, Calero-Cuenca FJ, Gomes ER. 2020. The role of the cell nucleus in mechanotransduction. Curr Opin Cell Biol. 63:204–211. doi:10.1016/j.ceb.2020.03.001.
  • Jing D, Chen W, Xia Y, Shi M, Wang P, Wang S, Wu D, He Q, Liang G, Guo Q. 2020. Homeotic transformation from stamen to petal in Eriobotrya japonica is associated with hormone signal transduction and reduction of the transcriptional activity of EjAG. Physiol Plant. 168(4):893–908. doi:10.1111/ppl.13029.
  • Johnson LM, Du J, Hale CJ, Bischof S, Feng S, Chodavarapu RK, Zhong X, Marson G, Pellegrini M, Segal DJ, et al. 2014. SRA- and SET-domain-containing proteins link RNA polymerase V occupancy to DNA methylation. Nature. 507(7490):124–128. doi:10.1038/nature12931.
  • Johnson LM, Law JA, Khattar A, Henderson IR, Jacobsen SE. 2008. SRA-domain proteins required for DRM2-mediated de novo DNA methylation. PLoS Genet. 4(11):e1000280. doi:10.1371/journal.pgen.1000280.
  • Joseph T, Lee TL, Ning C, Nishiuchi Y, Kimura T, Jikuya H, Ou K, Chin YC, Tachibana S. 2006. Identification of mature nocistatin and nociceptin in human brain and cerebrospinal fluid by mass spectrometry combined with affinity chromatography and HPLC. Peptides. 27(1):122–130. doi:10.1016/j.peptides.2005.06.013.
  • Juan D, Pazos F, Valencia A. 2008. High-confidence prediction of global interactomes based on genome-wide coevolutionary networks. P Natl Acad Sci USA. 105(3):934–939. doi:10.1073/pnas.0709671105.
  • Juhlen R, Fahrenkrog B. 2018. Moonlighting nuclear pore proteins: tissue-specific nucleoporin function in health and disease. Histochem Cell Biol. 150(6):593–605. doi:10.1007/s00418-018-1748-8.
  • Kanehisa M. 2002. The KEGG database. Novartis Found Symp. 247:91–101. discussion 101–103, 119–128, 244–152.
  • Kelley DR, Estelle M. 2012. Ubiquitin-mediated control of plant hormone signaling. Plant Physiol. 160(1):47–55. doi:10.1104/pp.112.200527.
  • Kemmerling B, Schwedt A, Rodriguez P, Mazzotta S, Frank M, Qamar SA, Mengiste T, Betsuyaku S, Parker JE, Mussig C, et al. 2007. The BRI1-associated kinase 1, BAK1, has a brassinolide-independent role in plant cell-death control. Curr Biol. 17(13):1116–1122. doi:10.1016/j.cub.2007.05.046.
  • Kenworthy AK. 2001. Imaging protein-protein interactions using fluorescence resonance energy transfer microscopy. Methods. 24(3):289–296. doi:10.1006/meth.2001.1189.
  • Khan IK, Kihara D. 2016. Genome-scale prediction of moonlighting proteins using diverse protein association information. Bioinformatics. 32(15):2281–2288. doi:10.1093/bioinformatics/btw166.
  • Kim DH, Kang JG, Yang SS, Chung KS, Song PS, Park CM. 2002. A phytochrome-associated protein phosphatase 2A modulates light signals in flowering time control in arabidopsis. Plant Cell. 14(12):3043–3056. doi:10.1105/tpc.005306.
  • King AD, Przulj N, Jurisica I. 2004. Protein complex prediction via cost-based clustering. Bioinformatics. 20(17):3013–3020. doi:10.1093/bioinformatics/bth351.
  • Klingstrom T, Plewczynski D. 2011. Protein-protein interaction and pathway databases, a graphical review. Brief Bioinform. 12(6):702–713. doi:10.1093/bib/bbq064.
  • Kohler B, Hills A, Blatt MR. 2003. Control of guard cell ion channels by hydrogen peroxide and abscisic acid indicates their action through alternate signaling pathways. Plant Physiol. 131(2):385–388. doi:10.1104/pp.016014.
  • Kumari M, Pandey S, Mishra SK, Giri VP, Agarwal L, Dwivedi S, Pandey AK, Nautiyal CS, Mishra A. 2020. Omics-based mechanistic insight into the role of bioengineered nanoparticles for biotic stress amelioration by modulating plant metabolic pathways. Front Bioeng Biotechnol. 8:242. doi:10.3389/fbioe.2020.00242.
  • Kwak JM, Mori IC, Pei ZM, Leonhardt N, Torres MA, Dangl JL, Bloom RE, Bodde S, Jones JD, Schroeder JI. 2003. NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in arabidopsis. EMBO J. 22(11):2623–2633. doi:10.1093/emboj/cdg277.
  • Li J, Zhao-Hui C, Batoux M, Nekrasov V, Roux M, Chinchilla D, Zipfel C, Jones JD. 2009. Specific ER quality control components required for biogenesis of the plant innate immune receptor EFR. Proc Natl Acad Sci U S A. 106(37):15973–15978. doi:10.1073/pnas.0905532106.
  • Li Q, Zhang L, Pan F, Guo W, Chen B, Yang H, Wang G, Li X. 2020. Transcriptomic analysis reveals ethylene signal transduction genes involved in pistil development of pumpkin. PeerJ. 8:e9677. doi:10.7717/peerj.9677.
  • Li S, Armstrong CM, Bertin N, Ge H, Milstein S, Boxem M, Vidalain PO, Han JD, Chesneau A, Hao T, et al. 2004. A map of the interactome network of the metazoan C. elegans. Science. 303(5657):540–543. doi:10.1126/science.1091403.
  • Liscum E, Reed JW. 2002. Genetics of Aux/IAA and ARF action in plant growth and development. Plant Mol Biol. 49(3-4):387–400.
  • Liu JX, Howell SH. 2010. Endoplasmic reticulum protein quality control and its relationship to environmental stress responses in plants. Plant Cell. 22(9):2930–2942. doi:10.1105/tpc.110.078154.
  • Liu ZW, Shao CR, Zhang CJ, Zhou JX, Zhang SW, Li L, Chen S, Huang HW, Cai T, He XJ. 2014. The SET domain proteins SUVH2 and SUVH9 are required for Pol V occupancy at RNA-directed DNA methylation loci. PLoS Genet. 10(1):e1003948. doi:10.1371/journal.pgen.1003948.
  • Liu ZW, Zhou JX, Huang HW, Li YQ, Shao CR, Li L, Cai T, Chen S, He XJ. 2016. Two components of the RNA-directed DNA methylation pathway associate with MORC6 and silence loci targeted by MORC6 in arabidopsis. PLoS Genet. 12(5):e1006026. doi:10.1371/journal.pgen.1006026.
  • Long JA, Ohno C, Smith ZR, Meyerowitz EM. 2006. TOPLESS regulates apical embryonic fate in arabidopsis. Science. 312(5779):1520–1523. doi:10.1126/science.1123841.
  • Ma X, Claus LAN, Leslie ME, Tao K, Wu Z, Liu J, Yu X, Li B, Zhou J, Savatin DV, et al. 2020. Ligand-induced monoubiquitination of BIK1 regulates plant immunity. Nature. 581(7807):199–203. doi:10.1038/s41586-020-2210-3.
  • Marrocco K, Bergdoll M, Achard P, Criqui MC, Genschik P. 2010. Selective proteolysis sets the tempo of the cell cycle. Curr Opin Plant Biol. 13(6):631–639. doi:10.1016/j.pbi.2010.07.004.
  • Marrocco K, Zhou Y, Bury E, Dieterle M, Funk M, Genschik P, Krenz M, Stolpe T, Kretsch T. 2006. Functional analysis of EID1, an F-box protein involved in phytochrome A-dependent light signal transduction. Plant J. 45(3):423–438. doi:10.1111/j.1365-313X.2005.02635.x.
  • McWhite CD, Papoulas O, Drew K, Cox RM, June V, Dong OX, Kwon T, Wan C, Salmi ML, Roux SJ, et al. 2020. A Pan-plant protein complex Map reveals deep Conservation and novel assemblies. Cell. 181(2):460–474. e414. doi:10.1016/j.cell.2020.02.049.
  • Mehrtash AB, Hochstrasser M. 2019. Ubiquitin-dependent protein degradation at the endoplasmic reticulum and nuclear envelope. Semin Cell Dev Biol. 93:111–124. doi:10.1016/j.semcdb.2018.09.013.
  • Meier I, Richards EJ, Evans DE. 2017. Cell biology of the plant nucleus. Annu Rev Plant Biol. 68:139–172. doi:10.1146/annurev-arplant-042916-041115.
  • Mersmann S, Bourdais G, Rietz S, Robatzek S. 2010. Ethylene signaling regulates accumulation of the FLS2 receptor and is required for the oxidative burst contributing to plant immunity. Plant Physiol. 154(1):391–400. doi:10.1104/pp.110.154567.
  • Musungu B, Bhatnagar D, Brown RL, Fakhoury AM, Geisler M. 2015. A predicted protein interactome identifies conserved global networks and disease resistance subnetworks in maize. Front Genet. 6:201. doi:10.3389/fgene.2015.00201.
  • Mutte SK, Kato H, Rothfels C, Melkonian M, Wong GK, Weijers D. 2018. Origin and evolution of the nuclear auxin response system. Elife. 7. doi:10.7554/eLife.33399.
  • Najafabadi HS, Salavati R. 2008. Sequence-based prediction of protein-protein interactions by means of codon usage. Genome Biol. 9(5):R87. doi:10.1186/gb-2008-9-5-r87.
  • Naumann K, Fischer A, Hofmann I, Krauss V, Phalke S, Irmler K, Hause G, Aurich AC, Dorn R, Jenuwein T, Reuter G. 2005. Pivotal role of AtSUVH2 in heterochromatic histone methylation and gene silencing in arabidopsis. EMBO J. 24(7):1418–1429. doi:10.1038/sj.emboj.7600604.
  • Nawaz I, Tariq R, Nazir T, Khan I, Basit A, Gul H, Anwar T, Awan SA, Bacha SAS, Zhang L, et al. 2020. RNA-Seq profiling reveals the plant hormones and molecular mechanisms stimulating the early ripening in apple. Genomics. doi:10.1016/j.ygeno.2020.09.040.
  • Ning K, Ng HK, Srihari S, Leong HW, Nesvizhskii AI. 2010. Examination of the relationship between essential genes in PPI network and hub proteins in reverse nearest neighbor topology. BMC Bioinformatics. 11:505. doi:10.1186/1471-2105-11-505.
  • Noriane MLS, Jelena K, Fernandez-Lopez A, Chembath A, Belbin FE, Dodd AN. 2018. The energy-signaling hub SnRK1 is important for sucrose-induced hypocotyl elongation. Plant Physiol. 176(2):1299–1310. doi:10.1104/pp.17.01395.
  • Ohtaka K, Hori K, Kanno Y, Seo M, Ohta H. 2017. Primitive Auxin response without TIR1 and Aux/IAA in the Charophyte Alga Klebsormidium nitens. Plant Physiol. 174(3):1621–1632. doi:10.1104/pp.17.00274.
  • Ortigosa A, Fonseca S, Franco-Zorrilla JM, Fernandez-Calvo P, Zander M, Lewsey MG, Garcia-Casado G, Fernandez-Barbero G, Ecker JR, Solano R. 2020. The JA-pathway MYC transcription factors regulate photomorphogenic responses by targeting HY5 gene expression. Plant J. 102(1):138–152. doi:10.1111/tpj.14618.
  • Ota M, Gonja H, Koike R, Fukuchi S. 2016. Multiple-localization and hub proteins. PLoS One. 11(6):e0156455. doi:10.1371/journal.pone.0156455.
  • Park CJ, Seo YS. 2015. Heat shock proteins: a review of the molecular chaperones for plant immunity. Plant Pathol J. 31(4):323–333. doi:10.5423/PPJ.RW.08.2015.0150.
  • Petrovska B, Sebela M, Dolezel J. 2015. Inside a plant nucleus: discovering the proteins. J Exp Bot. 66(6):1627–1640. doi:10.1093/jxb/erv041.
  • Pham VN, Kathare PK, Huq E. 2018. Phytochromes and phytochrome interacting factors. Plant Physiol. 176(2):1025–1038. doi:10.1104/pp.17.01384.
  • Phee BK, Shin DH, Cho JH, Kim SH, Kim JI, Lee YH, Jeon JS, Bhoo SH, Hahn TR. 2006. Identification of phytochrome-interacting protein candidates in Arabidopsis thaliana by co-immunoprecipitation coupled with MALDI-TOF MS. Proteomics. 6(12):3671–3680. doi:10.1002/pmic.200500222.
  • Robinson DG, Brandizzi F, Hawes C, Nakano A. 2015. Vesicles versus tubes: Is endoplasmic reticulum-Golgi transport in plants fundamentally different from other eukaryotes? Plant Physiol. 168(2):393–406. doi:10.1104/pp.15.00124.
  • Rodriguez-Negrete E, Bejarano ER, Castillo AG. 2014. Using the yeast two-hybrid system to identify protein-protein interactions. Methods Mol Biol. 1072:241–258. doi:10.1007/978-1-62703-631-3_18.
  • Roelfsema MR, Levchenko V, Hedrich R. 2004. ABA depolarizes guard cells in intact plants, through a transient activation of R- and S-type anion channels. Plant J. 37(4):578–588. doi:10.1111/j.1365-313x.2003.01985.x.
  • Rosler J, Klein I, Zeidler M. 2007. Arabidopsis fhl/fhy1 double mutant reveals a distinct cytoplasmic action of phytochrome A. Proc Natl Acad Sci U S A. 104(25):10737–10742. doi:10.1073/pnas.0703855104.
  • Roux M, Schwessinger B, Albrecht C, Chinchilla D, Jones A, Holton N, Malinovsky FG, Tor M, de Vries S, Zipfel C. 2011. The Arabidopsis leucine-rich repeat receptor-like kinases BAK1/SERK3 and BKK1/SERK4 are required for innate immunity to hemibiotrophic and biotrophic pathogens. Plant Cell. 23(6):2440–2455. doi:10.1105/tpc.111.084301.
  • Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N, Berriz GF, Gibbons FD, Dreze M, Ayivi-Guedehoussou N, et al. 2005. Towards a proteome-scale map of the human protein-protein interaction network. Nature. 437(7062):1173–1178. doi:10.1038/nature04209.
  • Ruan SL, Ma HS, Wang SH, Xin Y, Qian LH, Tong JX, Zhao HP, Wang J. 2006. Advances in plant proteomics. II. Application of proteome techniques to plant biology research. Yi Chuan. 28(12):1633–1648. doi:10.1360/yc-006-1633.
  • Salehin M, Bagchi R, Estelle M. 2015. SCFTIR1/AFB-based auxin perception: mechanism and role in plant growth and development. Plant Cell. 27(1):9–19. doi:10.1105/tpc.114.133744.
  • Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. 2003. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13(11):2498–2504. doi:10.1101/gr.1239303.
  • Shen J, Zhang J, Luo X, Zhu W, Yu K, Chen K, Li Y, Jiang H. 2007. Predicting protein-protein interactions based only on sequences information. Proc Natl Acad Sci U S A. 104(11):4337–4341. doi:10.1073/pnas.0607879104.
  • Shen Y, Zhou Z, Feng S, Li J, Tan-Wilson A, Qu LJ, Wang H, Deng XW. 2009. Phytochrome A mediates rapid red light-induced phosphorylation of Arabidopsis FAR-RED ELONGATED HYPOCOTYL1 in a low fluence response. Plant Cell. 21(2):494–506. doi:10.1105/tpc.108.061259.
  • Sokolova V, Bindics J, Kircher S, Adam E, Schafer E, Nagy F, Viczian A. 2012. Missense mutation in the amino terminus of phytochrome A disrupts the nuclear import of the photoreceptor. Plant Physiol. 158(1):107–118. doi:10.1104/pp.111.186288.
  • Soong TT, Wrzeszczynski KO, Rost B. 2008. Physical protein-protein interactions predicted from microarrays. Bioinformatics. 24(22):2608–2614. doi:10.1093/bioinformatics/btn498.
  • Soto-Burgos J, Bassham DC. 2017. SnRK1 activates autophagy via the TOR signaling pathway in Arabidopsis thaliana. PLoS One. 12(8):e0182591. doi:10.1371/journal.pone.0182591.
  • Subba P, Narayana Kotimoole C, Prasad TSK. 2019. Plant proteome databases and Bioinformatic tools: an expert review and comparative insights. OMICS. 23(4):190–206. doi:10.1089/omi.2019.0024.
  • Sun K, Xue X, Liu N, Zhu Z, Li H. 2020. A point-to-point protein-protein interaction assay reveals the signaling interplays among plant hormones and environmental cues. Plant Direct. 4(5):e00228. doi:10.1002/pld3.228.
  • Szemenyei H, Hannon M, Long JA. 2008. TOPLESS mediates auxin-dependent transcriptional repression during Arabidopsis embryogenesis. Science. 319(5868):1384–1386. doi:10.1126/science.1151461.
  • Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, Simonovic M, Doncheva NT, Morris JH, Bork P, et al. 2019. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 47(D1):D607–D613. doi:10.1093/nar/gky1131.
  • Szklarczyk D, Morris JH, Cook H, Kuhn M, Wyder S, Simonovic M, Santos A, Doncheva NT, Roth A, Bork P, et al. 2017. The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res. 45(D1):D362–D368. doi:10.1093/nar/gkw937.
  • Takatsuka H, Umeda-Hara C, Umeda M. 2015. Cyclin-dependent kinase-activating kinases CDKD;1 and CDKD;3 are essential for preserving mitotic activity in Arabidopsis thaliana. Plant J. 82(6):1004–1017. doi:10.1111/tpj.12872.
  • Tatsis EC, O'Connor SE. 2016. New developments in engineering plant metabolic pathways. Curr Opin Biotechnol. 42:126–132. doi:10.1016/j.copbio.2016.04.012.
  • Tsai AY, Gazzarrini S. 2012. Overlapping and distinct roles of AKIN10 and FUSCA3 in ABA and sugar signaling during seed germination. Plant Signal Behav. 7(10):1238–1242. doi:10.4161/psb.21549.
  • Van der Does D, Leon-Reyes A, Koornneef A, Van Verk MC, Rodenburg N, Pauwels L, Goossens A, Korbes AP, Memelink J, Ritsema T, et al. 2013. Salicylic acid suppresses jasmonic acid signaling downstream of SCFCOI1-JAZ by targeting GCC promoter motifs via transcription factor ORA59. Plant Cell. 25(2):744–761. doi:10.1105/tpc.112.108548.
  • Vandereyken K, Van Leene J, De Coninck B, Cammue BPA. 2018. Hub protein controversy: taking a closer look at plant stress response hubs. Front Plant Sci. 9:694. doi:10.3389/fpls.2018.00694.
  • Volkening JD, Stecker KE, Sussman MR. 2019. Proteome-wide analysis of protein thermal stability in the model higher plant Arabidopsis thaliana. Mol Cell Proteomics. 18(2):308–319. doi:10.1074/mcp.RA118.001124.
  • Walhout AJ, Sordella R, Lu X, Hartley JL, Temple GF, Brasch MA, Thierry-Mieg N, Vidal M. 2000. Protein interaction mapping in C. elegans using proteins involved in vulval development. Science. 287(5450):116–122. doi:10.1126/science.287.5450.116.
  • Wang H, Li Y, Pan J, Lou D, Hu Y, Yu D. 2017. The bHLH transcription factors MYC2, MYC3, and MYC4 Are required for jasmonate-mediated inhibition of flowering in arabidopsis. Mol Plant. 10(11):1461–1464. doi:10.1016/j.molp.2017.08.007.
  • Wang K, Ndathe RW, Kumar N, Zeringue EA, Kato N, Larkin JC. 2020. The CDK inhibitor SIAMESE targets both CDKA;1 and CDKB1 complexes to establish endoreplication in trichomes. Plant Physiol. 184(1):165–175. doi:10.1104/pp.20.00271.
  • Wang X, Feng S, Nakayama N, Crosby WL, Irish V, Deng XW, Wei N. 2003. The COP9 signalosome interacts with SCF UFO and participates in Arabidopsis flower development. Plant Cell. 15(5):1071–1082. doi:10.1105/tpc.009936.
  • Watts DJ, Strogatz SH. 1998. Collective dynamics of ‘small-world’ networks. Nature. 393(6684):440–442. doi:10.1038/30918.
  • Wei B, Zhang J, Pang C, Yu H, Guo D, Jiang H, Ding M, Chen Z, Tao Q, Gu H, et al. 2015. The molecular mechanism of sporocyteless/nozzle in controlling Arabidopsis ovule development. Cell Res. 25(1):121–134. doi:10.1038/cr.2014.145.
  • Wijnker E, Harashima H, Muller K, Parra-Nunez P, de Snoo CB, van de Belt J, Dissmeyer N, Bayer M, Pradillo M, Schnittger A. 2019. The Cdk1/Cdk2 homolog CDKA;1 controls the recombination landscape in arabidopsis. Proc Natl Acad Sci U S A. 116(25):12534–12539. doi:10.1073/pnas.1820753116.
  • Woo HR, Chung KM, Park JH, Oh SA, Ahn T, Hong SH, Jang SK, Nam HG. 2001. ORE9, an F-box protein that regulates leaf senescence in arabidopsis. Plant Cell. 13(8):1779–1790. doi:10.1105/tpc.010061.
  • Wu R, Citovsky V. 2017. Adaptor proteins GIR1 and GIR2. II. interaction with the co-repressor TOPLESS and promotion of histone deacetylation of target chromatin. Biochem Biophys Res Commun. 488(4):609–613. doi:10.1016/j.bbrc.2017.05.085.
  • Wu X, Xiong E, Wang W, Scali M, Cresti M. 2014. Universal sample preparation method integrating trichloroacetic acid/acetone precipitation with phenol extraction for crop proteomic analysis. Nat Protoc. 9(2):362–374. doi:10.1038/nprot.2014.022.
  • Xing Y, Jia W, Zhang J. 2008. AtMKK1 mediates ABA-induced CAT1 expression and H2O2 production via AtMPK6-coupled signaling in arabidopsis. Plant J. 54(3):440–451. doi:10.1111/j.1365-313X.2008.03433.x.
  • Xiong E, Li Z, Zhang C, Zhang J, Liu Y, Peng T, Chen Z, Zhao Q. 2020. A study of leaf-senescence genes in rice based on a combination of genomics, proteomics and bioinformatics. Brief Bioinform. doi:10.1093/bib/bbaa305.
  • Yan J, Li H, Li S, Yao R, Deng H, Xie Q, Xie D. 2013. The Arabidopsis F-box protein CORONATINE INSENSITIVE1 is stabilized by SCFCOI1 and degraded via the 26S proteasome pathway. Plant Cell. 25(2):486–498. doi:10.1105/tpc.112.105486.
  • Yanes O, Clark J, Wong DM, Patti GJ, Sanchez-Ruiz A, Benton HP, Trauger SA, Desponts C, Ding S, Siuzdak G. 2010. Metabolic oxidation regulates embryonic stem cell differentiation. Nat Chem Biol. 6(6):411–417. doi:10.1038/nchembio.364.
  • Yang C, Sofroni K, Wijnker E, Hamamura Y, Carstens L, Harashima H, Stolze SC, Vezon D, Chelysheva L, Orban-Nemeth Z, et al. 2020. The Arabidopsis Cdk1/Cdk2 homolog CDKA;1 controls chromosome axis assembly during plant meiosis. EMBO J. 39(3):e101625. doi:10.15252/embj.2019101625.
  • Zhai Z, Liu H, Shanklin J. 2017. Phosphorylation of WRINKLED1 by KIN10 results in its proteasomal degradation, providing a link between energy homeostasis and lipid biosynthesis. Plant Cell. 29(4):871–889. doi:10.1105/tpc.17.00019.
  • Zhang H, Zhang S, Wang W, Wang Q, Kuang H, Wang Q. 2020. Characterizing metabolites and potential metabolic pathways changes to understanding the mechanism of medicinal plant phellodendri amurensis cortex against doxorubicin-induced nephritis rats using UPLC-Q/TOF-MS metabolomics. J Pharm Biomed Anal. 188:113336. doi:10.1016/j.jpba.2020.113336.
  • Zhang L, Du LQ, Shen CJ, Yang YJ, Poovaiah BW. 2014. Regulation of plant immunity through ubiquitin-mediated modulation of Ca2+-calmodulin-AtSR1/CAMTA3 signaling. Plant J. 78(2):269–281. doi:10.1111/tpj.12473.
  • Zhang QC, Petrey D, Deng L, Qiang L, Shi Y, Thu CA, Bisikirska B, Lefebvre C, Accili D, Hunter T, et al. 2012. Structure-based prediction of protein-protein interactions on a genome-wide scale. Nature. 490(7421):556–560. doi:10.1038/nature11503.
  • Zhang SB, Tang QR. 2016. Protein-protein interaction inference based on semantic similarity of Gene Ontology terms. J Theor Biol. 401:30–37. doi:10.1016/j.jtbi.2016.04.020.
  • Zhao X, Harashima H, Dissmeyer N, Pusch S, Weimer AK, Bramsiepe J, Bouyer D, Rademacher S, Nowack MK, Novak B, et al. 2012. A general G1/S-phase cell-cycle control module in the flowering plant Arabidopsis thaliana. PLoS Genet. 8(8):e1002847. doi:10.1371/journal.pgen.1002847.
  • Zhao Y, Feng Z, Zou Y, Liu Y. 2020. The E3 ubiquitin ligase SYVN1 ubiquitinates atlastins to remodel the endoplasmic reticulum network. iScience. 23(9):101494. doi:10.1016/j.isci.2020.101494.
  • Zhou X, Xiang Y, Li C, Yu G. 2020. Modulatory role of reactive oxygen species in Root development in model plant of Arabidopsis thaliana. Front Plant Sci. 11:485932. doi:10.3389/fpls.2020.485932.
  • Zhu P, Gu H, Jiao Y, Huang D, Chen M. 2011. Computational identification of protein-protein interactions in rice based on the predicted rice interactome network. Genomics Proteomics Bioinformatics. 9(4-5):128–137. doi:10.1016/S1672-0229(11)60016-8.
  • Zobel RW. 2016. Arabidopsis: an adequate model for dicot root systems? Front Plant Sci. 7:58. doi:10.3389/fpls.2016.00058.
  • Zong XJ, Li DP, Gu LK, Li DQ, Liu LX, Hu XL. 2009. Abscisic acid and hydrogen peroxide induce a novel maize group C MAP kinase gene, ZmMPK7, which is responsible for the removal of reactive oxygen species. Planta. 229(3):485–495. doi:10.1007/s00425-008-0848-4.
  • Zotenko E, Mestre J, O'Leary DP, Przytycka TM. 2008. Why do hubs in the yeast protein interaction network tend to be essential: reexamining the connection between the network topology and essentiality. Plos Comput Biol. 4(8):e1000140. doi:10.1371/journal.pcbi.1000140.