5,472
Views
6
CrossRef citations to date
0
Altmetric
Plant-Microorganism interactions

Advances in endophytic fungi research: a data analysis of 25 years of achievements and challenges

ORCID Icon, ORCID Icon, & ORCID Icon
Pages 244-266 | Received 16 Sep 2021, Accepted 13 Jan 2022, Published online: 09 Feb 2022

References

REFERENCES OF THE ANALYSIS

  • Abadi VAJM, Sepehri M. 2016. Effect of Piriformospora indica and azotobacter chroococcum on mitigation of zinc deficiency stress in wheat (Triticum aestivum L.). Symbiosis. 69(1):9–19.
  • Abdelaziz ME, Kim D, Ali S, Fedoroff NV, Al-Babili S. 2017. The endophytic fungus Piriformospora indica enhances Arabidopsis thaliana growth and modulates Na+/K+ homeostasis under salt stress conditions. Plant Sci. 263:107–115.
  • Abou Alhamed MF, Shebany YM. 2012. Endophytic Chaetomium globosum enhances maize seedling copper stress tolerance. Plant Biol. 14(5):859–863. http://doi.wiley.com/10.1111/j.1438-8677.2012.00608.x
  • Acuña-Rodríguez IS, Galán A, Torres-Díaz C, Atala C, Molina-Montenegro MA. 2020. Fungal symbionts enhance N-uptake for Antarctic plants even in Non-N limited soils. Front Microbiol. 11.
  • Ahmadvand G, Hajinia S. 2018. Effect of endophytic fungus Piriformospora indica on yield and some physiological traits of millet (Panicum miliaceum) under water stress. Crop Pasture Sci. 69(6):594–605.
  • Al Khoury C. 2021. Molecular insight into the endophytic growth of Beauveria bassiana within Phaseolus vulgaris in the presence or absence of tetranychus urticae. Mol Biol Rep. 48(3):2485–2496.
  • Al-Hosni K, Shahzad R, Khan AL, Imran QM, Al Harrasi A, Al Rawahi A, Asaf S, Kang SM, Yun BW, Lee IJ. 2018. Preussia sp. BSL-10 producing nitric oxide, gibberellins, and indole acetic acid and improving rice plant growth. J Plant Interact . 13(1):112–118. https://www.tandfonline.com/doi/full/10.1080/17429145.2018.1432773
  • Aletaha R, Sinegani AAS. 2020. Water availability in Soil affect performance of different Root Fungal colonizers on Metabolism of wheat. Iran J Sci Technol Trans A Sci. 44(4):919–931.
  • Ali AH, Abdelrahman M, Radwan U, El-Zayat S, El-Sayed MA. 2018. Effect of Thermomyces fungal endophyte isolated from extreme hot desert-adapted plant on heat stress tolerance of cucumber. Appl Soil Ecol. 124:155–162.
  • Ali AH, Radwan U, El-Zayat S, El-Sayed MA. 2019. The role of the endophytic fungus, Thermomyces lanuginosus, on mitigation of heat stress to its host desert plant cullen plicata. Biol Futur. 70(1.
  • Ali R, Gul H, Hamayun M, Rauf M, Iqbal A, Shah M, Hussain A, Bibi H, Lee IJ. 2021. Aspergillus awamori ameliorates the physicochemical characteristics and mineral profile of mung bean under salt stress. Chem Biol Technol Agric. 8(1.
  • Alikhani M, Khatabi B, Sepehri M, Nekouei MK, Mardi M, Salekdeh GH. 2013. A proteomics approach to study the molecular basis of enhanced salt tolerance in barley (Hordeum vulgare L.) conferred by the root mutualistic fungus Piriformospora indica. Mol Biosyst. 9(6):1498–1510. https://pubs.rsc.org/en/content/articlehtml/2013/mb/c3mb70069k
  • Amalric C, Sallanon H, Monnet F, Hitmi A, Coudret A. 1999. Gas exchange and chlorophyll fluorescence in symbiotic and non-symbiotic ryegrass under water stress. Photosynthetica. 37(1):107–112. https://ps.ueb.cas.cz/pdfs/phs/1999/01/14.pdf
  • Arora P, Wani ZA, Ahmad T, Sultan P, Gupta S, Riyaz-Ul-Hassan S. 2019. Community structure, spatial distribution, diversity and functional characterization of culturable endophytic fungi associated with glycyrrhiza glabra L. Fungal Biol. 123(5):373–383.
  • Asay KH, Jensen KB, Waldron BL. 2001. Responses of tall fescue cultivars to an irrigation gradient. Crop Sci. 41(2):350–357. https://onlinelibrary.wiley.com/doi/abs/10.2135/cropsci2001.412350x
  • Ashrafi J, Rahnama K, Babaeizad V, Ramezanpour SS, Keel C. 2021. Induction of wheat resistance to stb by the endophytic fungus serendipita indica and pseudomonas protegens. Iran J Biotechnol. 19(2):30–39.
  • Assuero SG, Tognetti JA, Colabelli MR, Agnusdei MG, Petroni EC, Posse MA. 2006. Endophyte infection accelerates morpho-physiological responses to water deficit in tall fescue. New Zeal J Agric Res. 49(4):359–370. https://www.tandfonline.com/action/journalInformation?journalCode=tnza20
  • Attitalla IH, Latiffah Z, Salleh B, Brishammar S. 2011. Biology and partial sequencing of an endophytic Fusarium oxysporum and plant defense complex. Am J Biochem Mol Biol. 1(2):121–144.
  • Azad K, Kaminskyj S. 2016. A fungal endophyte strategy for mitigating the effect of salt and drought stress on plant growth. Symbiosis. 68(1–3):73–78.
  • Aziz L, Hamayun M, Rauf M, Iqbal A, Arif M, Husssin A, Khan SA. 2021. Endophytic Aspergillus Niger reprograms the physicochemical traits of tomato under cadmium and chromium stress. Environ Exp Bot. 186.
  • Aziz L, Hamayun M, Rauf M, Iqbal A, Husssin A, Khan SA, Irshad M, Jung LI. 2021. Aspergillus flavus reprogrammed morphological and chemical attributes of Solanum lycopersicum through SlGSH1 and SlPCS1 genes modulation under heavy metal stress. J Plant Interact. 16(1):104–115.
  • Bacetty AA, Snook ME, Glenn AE, Noe JP, Hill N, Culbreath A, Timper P, Nagabhyru P, Bacon CW. 2009. Toxicity of endophyte-infected tall fescue alkaloids and grass metabolites on pratylenchus scribneri. Phytopathology. 99(12):1336–1345. https://apsjournals.apsnet.org/doi/abs/10.1094/PHYTO-99-12-1336
  • Badawy AA, Alotaibi MO, Abdelaziz AM, Osman MS, Khalil AMA, Saleh AM, Mohammed AE, Hashem AH. 2021. Enhancement of seawater stress tolerance in barley by the endophytic fungus aspergillus ochraceus. Metabolites. 11(7.
  • Bae H, Sicher RC, Kim MS, Kim S-H, Strem MD, Melnick RL, Bailey BA. 2009. The beneficial endophyte Trichoderma hamatum isolate DIS 219b promotes growth and delays the onset of the drought response in theobroma cacao. J Exp Bot. 60(11):3279–3295. https://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erp165
  • Bagde US, Prasad R, Varma A. 2011. Influence of culture filtrate of Piriformospora indica on growth and yield of seed oil in Helianthus annus. Symbiosis. 53(2):83–88. https://link.springer.com/article/10.1007/s13199-011-0114-6
  • Bajaj R, Hu W, Huang YY, Chen S, Prasad R, Varma A, Bushley KE. 2015. The beneficial root endophyte Piriformospora indica reduces egg density of the soybean cyst nematode. Biol Control. 90:193–199.
  • Ban Y, Xu Z, Yang Y, Zhang H, Chen H, Tang M. 2017. Effect of Dark septate endophytic fungus gaeumannomyces cylindrosporus on plant growth, photosynthesis and Pb tolerance of maize (Zea mays L.). Pedosphere. 27(2):283–292.
  • Bao G, Song M, Wang Y, Saikkonen K, Wang H. 2019. Interactive effects of Epichloë fungal and host origins on the seed germination of Achnatherum inebrians. Symbiosis. 79(1):49–58. doi:10.1007/s13199-019-00636-0.
  • Barrera A, Hereme R, Ruiz-Lara S, Larrondo LF, Gundel PE, Pollmann S, Molina-Montenegro MA, Ramos P. 2020. Fungal Endophytes Enhance the photoprotective mechanisms and photochemical efficiency in the Antarctic Colobanthus quitensis (kunth) bartl. exposed to UV-B radiation. Front Ecol Evol. 8:122. https://www.frontiersin.org/article/10.3389/fevo.2020.00122/full
  • Bayat F, Mirlohi A, Khodambashi M. 2009. Effects of endophytic fungi on some drought tolerance mechanisms of tall fescue in a hydroponics culture. Russ J Plant Physiol. 56(4):510–516. https://link.springer.com/article/10.1134/S1021443709040104
  • Belesky DP, Burner DM, Ruckle JM. 2008. Does endophyte influence resource acquisition and allocation in defoliated tall fescue as a function of microsite conditions? Environ Exp Bot. 63(1–3):368–377.
  • Berthelot C, Leyval C, Foulon J, Chalot M, Blaudez D. 2016. Plant growth promotion, metabolite production and metal tolerance of dark septate endophytes isolated from metal-polluted poplar phytomanagement sites. FEMS Microbiol Ecol. 92(10. https://academic.oup.com/femsec/article/92/10/fiw144/2197742
  • Bhattacharjee S, Roy Das A, Saha AK, Das P. 2019. Fungal endophytes from medicinal plants: growth promotion in Oryza sativa L. and Cicer arietinum L. Vegetos. 32(3):381–386.
  • Bibi N, Jan G, Jan FG, Hamayun M, Iqbal A, Hussain A, Rehman H, Tawab A, Khushdil F. 2019. Cochliobolus sp. acts as a biochemical modulator to alleviate salinity stress in okra plants. Plant Physiol Biochem. 139:459–469.
  • Bibi S, Hussain A, Hamayun M, Rahman H, Iqbal A, Shah M, Irshad M, Qasim M, Islam B. 2018. Bioremediation of hexavalent chromium by endophytic fungi; safe and improved production of lactuca sativa L. Chemosphere. 211:653–663.
  • Bilal L, Asaf S, Hamayun M, Gul H, Iqbal A, Ullah I, Lee IJ, Hussain A. 2018. Plant growth promoting endophytic fungi asprgillus fumigatus TS1 and Fusarium proliferatum BRL1 produce gibberellins and regulates plant endogenous hormones. Symbiosis. 76(2):117–127. doi:10.1007/s13199-018-0545-4.
  • Bilal S, Khan AL, Shahzad R, Asaf S, Kang SM, Lee IJ. 2017. Endophytic paecilomyces formosus LHL10 augments glycine max L. Adaptation to ni-contamination through affecting endogenous phytohormones and oxidative stress. Front Plant Sci. 8:870. www.frontiersin.org
  • Bilal S, Shahzad R, Imran M, Jan R, Kim KM, Lee IJ. 2020. Synergistic association of endophytic fungi enhances Glycine max L. resilience to combined abiotic stresses: heavy metals, high temperature and drought stress. Ind Crops Prod. 143:111931.
  • Bilal S, Shahzad R, Khan AL, Al-Harrassi A, Kim CK, Lee IJ. 2019. Phytohormones enabled endophytic Penicillium funiculosum LHL06 protects Glycine max L. from synergistic toxicity of heavy metals by hormonal and stress-responsive proteins modulation. J Hazard Mater. 379:120824.
  • Bilal S, Shahzad R, Khan AL, Kang S-M, Imran QM, Al-Harrasi A, Yun B-W, Lee I-J. 2018. Endophytic Microbial Consortia of Phytohormones-Producing Fungus Paecilomyces formosus LHL10 and Bacteria Sphingomonas sp. LK11 to Glycine max L. regulates physio-hormonal changes to Attenuate Aluminum and Zinc stresses. Front Plant Sci. 9:1273. https://www.frontiersin.org/article/10.3389/fpls.2018.01273/full
  • Bilal S, Shahzad R, Lee IJ. 2021. Synergistic interaction of fungal endophytes, Paecilomyces formosus LHL10 and Penicillium funiculosum LHL06, in alleviating multi-metal toxicity stress in Glycine max L. Environ Sci Pollut Res. 28(47):67429–67444.
  • Bouzouina M, Kouadria R, Lotmani B. 2021. Fungal endophytes alleviate salt stress in wheat in terms of growth, ion homeostasis and osmoregulation. J Appl Microbiol. 130(3):913–925.
  • Bu Y, Guo P, Ji Y, Zhang S, Yu H, Wang Z. 2019. Effects of Epichloë sinica on roegneria kamoji seedling physiology under PEG-6000 simulated drought stress. Symbiosis. 77(2):123–132. doi:10.1007/s13199-018-0570-3.
  • Bultman TL, Bell G, Martin WD. 2004. A fungal endophyte mediates reversal of wound-induced resistance and constrains tolerance in a grass. Ecology. 85(3):679–685. http://doi.wiley.com/10.1890/03-0073
  • Bultman TL, Bell GD. 2003. Interaction between fungal endophytes and environmental stressors influences plant resistance to insects. Oikos. 103(1):182–190. http://doi.wiley.com/10.1034/j.1600-0706.2003.11574.x
  • Casler MD, Van Santen E. 2008. Fungal endophyte removal does not reduce cold tolerance of tall fescue. Crop Sci. 48(5):2033–2039.
  • Chand K, Shah S, Sharma J, Paudel MR, Pant B. 2020. Isolation, characterization, and plant growth-promoting activities of endophytic fungi from a wild orchid vanda cristata. Plant Signal Behav. 15(5.
  • Chen N, He R, Chai Q, Li C, Nan Z. 2016. Transcriptomic analyses giving insights into molecular regulation mechanisms involved in cold tolerance by Epichloë endophyte in seed germination of Achnatherum inebrians. Plant Growth Regul. 80(3):367–375. http://www.ebi.ac.uk/arrayexpress/
  • Chen T, Johnson R, Chen S, Lv H, Zhou J, Li C. 2018. Infection by the fungal endophyte Epichloë bromicola enhances the tolerance of wild barley (Hordeum brevisubulatum) to salt and alkali stresses. Plant Soil. 428(1–2):353–370. doi:10.1007/s11104-018-3643-4.
  • Chen T, Li C, White JF, Nan Z. 2019. Effect of the fungal endophyte Epichloë bromicola on polyamines in wild barley (Hordeum brevisubulatum) under salt stress. Plant Soil. 436(1–2):29–48. doi:10.1007/s11104-018-03913-x.
  • Chen T, White JF, Li C. 2021. Fungal endophyte Epichloë bromicola infection regulates anatomical changes to account for salt stress tolerance in wild barley (Hordeum brevisubulatum). Plant Soil. 461(1–2):533–546.
  • Chen XM, Dong HL, Hu KX, Sun ZR, Chen J, Guo SX. 2010. Diversity and antimicrobial and plant-growth-promoting activities of endophytic fungi in Dendrobium loddigesii rolfe. J Plant Growth Regul. 29(3):328–337. https://link.springer.com/article/10.1007/s00344-010-9139-y
  • Chen Z, Jin Y, Yao X, Chen T, Wei X, Li C, White JF, Nan Z. 2020. Fungal endophyte improves survival of Lolium perenne in Low fertility soils by increasing root growth, Metabolic activity and absorption of nutrients. Plant Soil. 452(1–2):185–206. doi:10.1007/s11104-020-04556-7.
  • Cheong SL, Cheow YL, Ting ASY. 2017. Characterizing antagonistic activities and host compatibility (via simple endophyte-calli test) of endophytes as biocontrol agents of ganoderma boninense. Biol Control. 105:86–92.
  • Cheplick GP. 2004. Recovery from drought stress in Lolium perenne (poaceae): Are fungal endophytes detrimental? Am J Bot. 91(12):1960–1968. http://doi.wiley.com/10.3732/ajb.91.12.1960
  • Cheplick GP, Harrichandra AP, Liu A. 2014. Competitive outcomes depend on host genotype, but not clavicipitaceous fungal endophytes, in Lolium perenne (poaceae). Am J Bot. 101(12):2068–2078.
  • Cheplick GP, Perera A, Koulouris K. 2000. Effect of drought on the growth of Lolium perenne genotypes with and without fungal endophytes. Funct Ecol. 14(6):657–667. http://doi.wiley.com/10.1046/j.1365-2435.2000.00466.x
  • Cong GQ, Yin CL, He BI, Li L, Gao KX. 2015. Effect of the endophytic fungus chaetomium globosum ND35 on the growth and resistance to drought of winter wheat at the seedling stage under water stress. Shengtai Xuebao/ Acta Ecol Sin. 35(18):6120–6128.
  • Connor EW, Sandy M, Hawkes CV. 2017. Microbial tools in agriculture require an ecological context: stress-dependent Non-additive symbiont interactions. Agron J. 109(3):917–926. http://doi.wiley.com/10.2134/agronj2016.10.0568
  • Cosme M, Lu J, Erb M, Stout MJ, Franken P, Wurst S. 2016. A fungal endophyte helps plants to tolerate root herbivory through changes in gibberellin and jasmonate signaling. New Phytol. 211(3):1065–1076. https://onlinelibrary.wiley.com/doi/abs/10.1111/nph.13957
  • Craig S, Kannadan S, Flory SL, Seifert EK, Whitney KD, Rudgers JA. 2011. Potential for endophyte symbiosis to increase resistance of the native grass Poa alsodes to invasion by the non-native grass microstegium vimineum. Symbiosis. 53(1):17–28. https://link.springer.com/article/10.1007/s13199-010-0102-2
  • Cruz C, Martins-Loução MA, Varma A. 2010. The influence of plant co-culture of tomato plants with Piriformospora indica on biomass accumulation and stress tolerance. In: Acta Hortic. Vol. 868. [place unknown]: International Society for Horticultural Science; p. 123–127.
  • Dastogeer KMG, Li H, Sivasithamparam K, Jones MGK, Wylie SJ. 2018. Fungal endophytes and a virus confer drought tolerance to Nicotiana benthamiana plants through modulating osmolytes, antioxidant enzymes and expression of host drought responsive genes. Environ Exp Bot. 149:95–108.
  • de Siqueira KA, Senabio JA, Pietro-Souza W, de Oliveira Mendes TA, Soares MA. 2021. Aspergillus sp. A31 and Curvularia geniculata P1 mitigate mercury toxicity to Oryza sativa L. Arch Microbiol. 203(9):5345–5361.
  • Deng Z, Wang W, Tan H, Cao L. 2012. Characterization of heavy metal-resistant endophytic yeast cryptococcus sp. CBSB78 from rapes (brassica chinensis) and its potential in promoting the growth of brassica spp. in metal-contaminated soils. Water Air Soil Pollut . 223(8):5321–5329. https://link.springer.com/article/10.1007/s11270-012-1282-6
  • Deng Z, Zhang R, Shi Y, Hu L, Tan H, Cao L. 2014. Characterization of Cd-, Pb-, Zn-resistant endophytic lasiodiplodia sp. MXSF31 from metal accumulating portulaca oleracea and its potential in promoting the growth of rape in metal-contaminated soils. Environ Sci Pollut Res. 21(3):2346–2357.
  • Deshmukh SD, Kogel KH. 2007. Piriformospora indica protects barley from root rot caused by Fusarium graminearum. J Plant Dis Prot. 114(6):263–268.
  • Diene O, Takahashi T, Yonekura A, Nitta Y, Narisawa K. 2010. A new fungal endophyte, helminthosporium velutinum, promoting growth of a bioalcohol plant, sweet sorghum. Microbes Environ. 25(3):216–219.
  • Dinkins RD, Nagabhyru P, Young CA, West CP, Schardl CL. 2019. Transcriptome analysis and differential expression in tall fescue harboring different endophyte strains in response to water deficit. Plant Genome. 12(2):180071. https://onlinelibrary.wiley.com/doi/10.3835/plantgenome2018.09.0071
  • Doan TT, Jäschke D, Ludwig-Müller J. 2010. An endophytic fungus induces tolerance against the clubroot pathogen plasmodiophora brassicae in Arabidopsis thaliana and Brassica rapa roots. In: Acta Hortic. Vol. 867. [place unknown]: International Society for Horticultural Science; p. 173–180.
  • Domka A, Rozpądek P, Ważny R, Turnau K. 2019. Mucor sp.-An endophyte of Brassicaceae capable of surviving in toxic metal-rich sites. J Basic Microbiol. 59(1):24–37. http://doi.wiley.com/10.1002/jobm.201800406
  • Dovana F, Mucciarelli M, Mascarello M, Fusconi A. 2015. In Vitro Morphogenesis of Arabidopsis to Search for Novel Endophytic Fungi Modulating Plant growth.Labra M, editor. PLoS One. 10(12):e0143353. https://dx.plos.org/10.1371/journal.pone.0143353
  • Druege U, Baltruschat H, Franken P. 2007. Piriformospora indica promotes adventitious root formation in cuttings. Sci Hortic (Amsterdam). 112(4):422–426.
  • Elmi W, Robbins K. 2000. Endophyte effects on reproduction of a root-knot nematode (Meloidogyne marylandi) and osmotic adjustment in tall fescue. Grass Forage Sci. 55(2):166–172. http://doi.wiley.com/10.1046/j.1365-2494.2000.00210.x
  • Escudero N, Lopez-Llorca LV. 2012. Effects on plant growth and root-knot nematode infection of an endophytic GFP transformant of the nematophagous fungus Pochonia chlamydosporia. Symbiosis. 57(1):33–42. https://link.springer.com/article/10.1007/s13199-012-0173-3
  • Faeth SH. 2009. Asexual fungal symbionts alter reproductive allocation and herbivory over time in their native perennial grass hosts. Am Nat. 173(5):554–565. https://www.journals.uchicago.edu/doi/10.1086/597376
  • Fakhro A, Andrade-Linares DR, von Bargen S, Bandte M, Büttner C, Grosch R, Schwarz D, Franken P. 2010. Impact of Piriformospora indica on tomato growth and on interaction with fungal and viral pathogens. Mycorrhiza. 20(3):191–200. https://link.springer.com/article/10.1007/s00572-009-0279-5
  • Ferus P, Barta M, Konôpková J. 2019. Endophytic fungus Beauveria bassiana can enhance drought tolerance in red oak seedlings. Trees - Struct Funct. 33(4):1179–1186. doi:10.1007/s00468-019-01854-1.
  • Fiorini L, Guglielminetti L, Mariotti L, Curadi M, Picciarelli P, Scartazza A, Sarrocco S, Vannacci G. 2016. Trichoderma harzianum T6776 modulates a complex metabolic network to stimulate tomato cv. micro-Tom growth. Plant Soil. 400(1–2):351–366. https://link.springer.com/article/10.1007/s11104-015-2736-6
  • Formenti L, Caggìa V, Puissant J, Goodall T, Glauser G, Griffiths R, Rasmann S. 2021. The effect of root-associated microbes on plant growth and chemical defence traits across two contrasted elevations. J Ecol. 109(1):38–50. https://besjournals.onlinelibrary.wiley.com/doi/full/10.1111/1365-2745.13440
  • Forouzi A, Ghasemnezhad A, Nasrabad RG. 2020. Phytochemical response of stevia plant to growth promoting microorganisms under salinity stress. South African J Bot. 134:109–118.
  • Fu W, Xu M, Sun K, Hu L, Cao W, Dai C, Jia Y. 2018. Biodegradation of phenanthrene by endophytic fungus Phomopsis liquidambari in vitro and in vivo. Chemosphere. 203:160–169.
  • Furtado BU, Szymańska S, Hrynkiewicz K. 2019. A window into fungal endophytism in Salicornia europaea: deciphering fungal characteristics as plant growth promoting agents. Plant Soil. 445(1–2):577–594. doi:10.1007/s11104-019-04315-3.
  • Gan H, Churchill ACL, Wickings K. 2017. Invisible but consequential: root endophytic fungi have variable effects on belowground plant-insect interactions. Ecosphere. 8(3):e01710. http://doi.wiley.com/10.1002/ecs2.1710
  • Gao Y, Li GP, Shi H, Liu H, Ren AZ, Gao YB. 2017. Allelopathic effect of endophyte-infected Achnatherum sibiricum on stipa grandis. Shengtai Xuebao/ Acta Ecol Sin. 37(4):1063–1073.
  • García-Latorre C, Rodrigo S, Santamaria O. 2021. Effect of fungal endophytes on plant growth and nutrient uptake in trifolium subterraneum and Poa pratensis as affected by plant host specificity. Mycol Prog. 20(9):1217–1231.
  • Geddes-Mcalister J, Sukumaran A, Patchett A, Hager HA, Dale JCM, Roloson JL, Prudhomme N, Bolton K, Muselius B, Powers J, Newman JA. 2020. Examining the impacts of co2 concentration and genetic compatibility on perennial ryegrass—epichloë festucae var lolii interactions. J Fungi. 6(4):1–38.
  • Gera Hol WH, de la Peña E, Moens M, Cook R. 2007. Interaction between a fungal endophyte and root herbivores of ammophila arenaria. Basic Appl Ecol. 8(6):500–509.
  • Ghezel Sefloo N, Wieczorek K, Steinkellner S, Hage-Ahmed K. 2019. Serendipita species trigger cultivar-specific responses to Fusarium wilt in tomato. Agronomy. 9(10):595. https://www.mdpi.com/2073-4395/9/10/595
  • Ghorbani A, Razavi SM, Ghasemi Omran VO, Pirdashti H. 2018. Piriformospora indica inoculation alleviates the adverse effect of NaCl stress on growth, gas exchange and chlorophyll fluorescence in tomato (Solanum lycopersicum L.). Franken P, editor. Plant Biol. 20(4):729–736. http://doi.wiley.com/10.1111/plb.12717
  • Giauque H, Connor EW, Hawkes CV. 2019. Endophyte traits relevant to stress tolerance, resource use and habitat of origin predict effects on host plants. New Phytol. 221(4):2239–2249. https://onlinelibrary.wiley.com/doi/abs/10.1111/nph.15504
  • Gibert A, Hazard L. 2011. Endophyte infection of Festuca eskia enhances seedling survival to drought and cutting at the expense of clonal expansion. J Plant Ecol. 4(4):201–208. https://academic.oup.com/jpe/article-lookup/doi/10.1093/jpe/rtr009
  • Gibert A, Volaire F, Barre P, Hazard L. 2012. A fungal endophyte reinforces population adaptive differentiation in its host grass species. New Phytol. 194(2):561–571.
  • Gonçalves DR, Pena R, Zotz G, Albach DC. 2021. Effects of fungal inoculation on the growth of Salicornia (amaranthaceae) under different salinity conditions. Symbiosis. 84(2):195–208.
  • Gong B, Liu G, Liao R, Song J, Zhang H. 2017. Endophytic fungus purpureocillium sp. A5 protect mangrove plant kandelia candel under copper stress. Brazilian J Microbiol. 48(3):530–536.
  • Gonzalez Mateu M, Baldwin AH, Maul JE, Yarwood SA. 2020. Dark septate endophyte improves salt tolerance of native and invasive lineages of phragmites australis. ISME J. 14(8):1943–1954. doi:10.1038/s41396-020-0654-y.
  • González-Mas N, Sánchez-Ortiz A, Valverde-García P, Quesada-Moraga E. 2019. Effects of endophytic Entomopathogenic ascomycetes on the life-history traits of aphis gossypii glover and Its interactions with melon plants. Insects. 10(6):165. https://www.mdpi.com/2075-4450/10/6/165
  • González-Teuber M, Urzúa A, Plaza P, Bascuñán-Godoy L. 2018. Effects of root endophytic fungi on response of Chenopodium quinoa to drought stress. Plant Ecol. 219(3):231–240. doi:10.1007/s11258-017-0791-1.
  • Gul Jan F, Hamayun M, Hussain A, Jan G, Iqbal A, Khan A, Lee IJ. 2019. An endophytic isolate of the fungus yarrowia lipolytica produces metabolites that ameliorate the negative impact of salt stress on the physiology of maize 06 biological Sciences 0607 plant biology 07 agricultural and veterinary Sciences 0703 crop and past. BMC Microbiol. 19(1):3. https://bmcmicrobiol.biomedcentral.com/articles/10.1186/s12866-018-1374-6
  • Gundel PE, Maseda PH, Vila-Aiub MM, Ghersa CM, Benech-Arnold R. 2006. Effects of Neotyphodium fungi on Lolium multiflorum seed germination in relation to water availability. Ann Bot. 97(4):571–577. http://academic.oup.com/aob/article/97/4/571/186410/Effects-of-Neotyphodium-Fungi-on-Lolium
  • Gundel PE, Sorzoli N, Ueno AC, Ghersa CM, Seal CE, Bastías DA, Martínez-Ghersa MA. 2015. Impact of ozone on the viability and antioxidant content of grass seeds is affected by a vertically transmitted symbiotic fungus. Environ Exp Bot. 113:40–46.
  • Guo J, McCulley RL, McNear DH. 2015. Tall fescue cultivar and fungal endophyte combinations influence plant growth and root exudate composition. Front Plant Sci. 6(APR):183. www.frontiersin.org
  • Guxdel PE, Bigaxzoli F, Freitas PP, Landesmaxn JB, Martínez-Ghersa MA, Ghersa CM. 2020. Plant damage, seed production and persistence of the fungal endophyte Epichloë occultans in Lolium multiflorum plants under an herbivore lepidopteran attack and ozone pollution. Ecol Austral. 30(2):321–330.
  • Hahn H, McManus MT, Warnstorff K, Monahan BJ, Young CA, Davies E, Tapper BA, Scott B. 2008. Neotyphodium fungal endophytes confer physiological protection to perennial ryegrass (Lolium perenne L.) subjected to a water deficit. Environ Exp Bot. 63(1–3):183–199.
  • Hall SL, McCulley RL, Barney RJ, Phillips TD. 2014. Does Fungal Endophyte Infection Improve Tall Fescue’s Growth Response to Fire and Water limitation? Heil M, editor. PLoS One. 9(1):e86904. https://dx.plos.org/10.1371/journal.pone.0086904
  • Halo BA, Al-Yahyai RA, Al-Sadi AM. 2020. An endophytic talaromyces omanensis enhances reproductive, physiological and anatomical characteristics of drought-stressed tomato. J Plant Physiol. 249.
  • Hamayun M, Afzal Khan S, Ahmad N, Tang DS, Kang SM, Na CI, Sohn EY, Hwang YH, Shin DH, Lee BH, et al. 2009. Cladosporium sphaerospermum as a new plant growth-promoting endophyte from the roots of Glycine max (L.) merr. World J Microbiol Biotechnol. 25(4):627–632. https://link.springer.com/article/10.1007/s11274-009-9982-9
  • Hamayun M, Khan SA, Iqbal I, Ahmad B, Lee IJ. 2010. Isolation of a gibberellin-producing fungus (Penicillium sp. MH7) and growth promotion of crown daisy (chrysanthemum coronarium). J Microbiol Biotechnol . 20(1):202–207. http://www.jmb.or.kr/journal/view.html?doi=10.4014/jmb.0905.05040
  • Hamayun M, Khan SA, Khan AL, Ahmad N, Nawaz Y, Sher H, Lee IJ. 2011. Gibberellin producing neosartorya sp. CC8 reprograms Chinese cabbage to higher growth. Sci Hortic (Amsterdam). 129(3):347–352.
  • Hamayun M, Khan SA, Khan AL, Rehman G, Kim YH, Iqbal I, Hussain J, Lee IJ, Sohn EY. 2010. Gibberellin production and plant growth promotion from pure cultures of Cladosporium sp. MH-6 isolated from cucumber (Cucumis sativus L.). Mycologia. 102(5):989–995.
  • Hamayun M, Khan SA, Khan AL, Tang DS, Hussain J, Ahmad B, Anwar Y, Lee IJ. 2010. Growth promotion of cucumber by pure cultures of gibberellin-producing Phoma sp. GAH7. World J Microbiol Biotechnol . 26(5):889–894. https://link.springer.com/article/10.1007/s11274-009-0248-3
  • Haruma T, Yamaji K, Masuya H. 2021. Phialocephala fortinii increases aluminum tolerance in Miscanthus sinensis growing in acidic mine soil. Lett Appl Microbiol. 73(3):300–307.
  • Haruma T, Yamaji K, Masuya H, Hanyu K. 2018. Root endophytic Chaetomium cupreum promotes plant growth and detoxifies aluminum in Miscanthus sinensis andersson growing at the acidic mine site. Plant Species Biol. 33(2):109–122. http://doi.wiley.com/10.1111/1442-1984.12197
  • Hassan SED. 2017. Plant growth-promoting activities for bacterial and fungal endophytes isolated from medicinal plant of teucrium polium L. J Adv Res. 8(6):687–695. doi:10.1016/j.jare.2017.09.001.
  • He C, Wang W, Hou J. 2019. Characterization of Dark septate endophytic fungi and improve the performance of liquorice under organic residue treatment. Front Microbiol. 10(JUN):1364. https://www.frontiersin.org/article/10.3389/fmicb.2019.01364/full
  • He C, Wang W, Hou J. 2019. Plant growth and Soil microbial Impacts of enhancing Licorice With inoculating Dark septate endophytes under drought stress. Front Microbiol. 10:2277. https://www.frontiersin.org/article/10.3389/fmicb.2019.02277/full
  • He C, Wang W, Hou J, Li X. 2021. Dark septate endophytes isolated from wild Licorice roots grown in the desert regions of northwest China enhance the growth of host plants under water deficit stress. Front Microbiol. 12.
  • Heineck GC, Watkins E, Ehlke NJ. 2018. The fungal endophyte Epichloë festucae var. lolii Does Not Improve the Freezing Tolerance of Perennial ryegrass. Crop Sci. 58(4):1788–1800. http://doi.wiley.com/10.2135/cropsci2017.12.0731
  • Heinz KM, Harding PA, Ek-Ramos MJ, Hernandez H, Krauter PC, Sword GA. 2018. Fungal endophytes in knock out® rose and performance effects of entomopathogens on marigold and zinnia. HortScience. 53(12):1791–1798. doi:10.21273/HORTSCI13370-18.
  • Hereme R, Morales-Navarro S, Ballesteros G, Barrera A, Ramos P, Gundel PE, Molina-Montenegro MA. 2020. Fungal endophytes exert positive effects on Colobanthus quitensis under water stress but neutral under a projected climate change scenario in Antarctica. Front Microbiol. 11:264. https://www.frontiersin.org/article/10.3389/fmicb.2020.00264/full
  • Hesse U, Schöberlein W, Wittenmayer L, Förster K, Warnstorff K, Diepenbrock W, Merbach W. 2003. Effects of Neotyphodium endophytes on growth, reproduction and drought-stress tolerance of three Lolium perenne L. genotypes. Grass Forage Sci. 58(4):407–415. http://doi.wiley.com/10.1111/j.1365-2494.2003.00393.x
  • Hossain MM, Sultana F, Islam S. 2017. Plant growth-promoting fungi (PGPF): Phytostimulation and induced systemic resistance. In: Plant-Microbe Interact Agro-Ecological Perspect . Vol. 2. [place unknown]: Springer Singapore; p. 135–191. https://link.springer.com/chapter/10.1007/978-981-10-6593-4_6
  • Hosseini F, Mosaddeghi MR, Dexter AR. 2017. Effect of the fungus Piriformospora indica on physiological characteristics and root morphology of wheat under combined drought and mechanical stresses. Plant Physiol Biochem. 118:107–120.
  • Hosseini F, Mosaddeghi MR, Hajabbasi MA, Sabzalian MR. 2016. Role of fungal endophyte of tall fescue (Epichloë coenophiala) on water availability, wilting point and integral energy in texturally-different soils. Agric Water Manag. 163:197–211.
  • Hosseyni Moghaddam MS, Safaie N, Soltani J, Hagh-Doust N. 2021. Desert-adapted fungal endophytes induce salinity and drought stress resistance in model crops. Plant Physiol Biochem. 160:225–238.
  • Hou L, Li X, He X, Zuo Y, Zhang D, Zhao L. 2021. Effect of dark septate endophytes on plant performance of artemisia ordosica and associated soil microbial functional group abundance under salt stress. Appl Soil Ecol. 165.
  • Hou L, Yu J, Zhao L, He X. 2020. Dark septate endophytes improve the growth and the tolerance of Medicago sativa and Ammopiptanthus mongolicus under cadmium stress. Front Microbiol. 10:3061. https://www.frontiersin.org/article/10.3389/fmicb.2019.03061/full
  • Hoyos-Carvajal L, Orduz S, Bissett J. 2009. Growth stimulation in bean (Phaseolus vulgaris L.) by trichoderma. Biol Control. 51(3):409–416.
  • Hu LY, Li D, Sun K, Cao W, Fu WQ, Zhang W, Dai CC. 2018. Mutualistic fungus Phomopsis liquidambari increases root aerenchyma formation through auxin-mediated ethylene accumulation in rice (Oryza sativa L.). Plant Physiol Biochem. 130:367–376.
  • Huang G, Jin Q, Peng H, Zhu T, Ye H. 2019. Effect of a fungus, hypoxylon spp., on endophytes in the roots of asparagus. FEMS Microbiol Lett. 366(16.
  • Huang LQ, Niu YC, Su L, Deng H, Lyu H. 2020. The potential of endophytic fungi isolated from cucurbit plants for biocontrol of soilborne fungal diseases of cucumber. Microbiol Res. 231:126369.
  • Hubbard M, Germida J, Vujanovic V. 2012. Fungal endophytes improve wheat seed germination under heat and drought stress. Botany. 90(2):137–149. www.nrcresearchpress.com/cjb
  • Hubbard M, Germida JJ, Vujanovic V. 2014. Fungal endophytes enhance wheat heat and drought tolerance in terms of grain yield and second-generation seed viability. J Appl Microbiol. 116(1):109–122.
  • Hughes AR, Moore AFP, Gehring C. 2020. Plant response to fungal root endophytes varies by host genotype in the foundation species spartina alterniflora. Am J Bot. 107(12):1645–1653.
  • Hui F, Liu J, Gao Q, Lou B. 2015. Piriformospora indica confers cadmium tolerance in Nicotiana tabacum. J Environ Sci (China). 37:184–191.
  • Hussin S, Khalifa W, Geissler N, Koyro H-W. 2017. Influence of the root endophyte Piriformospora indica on the plant water relations, gas exchange and growth of Chenopodium quinoa at limited water availability. J Agron Crop Sci. 203(5):373–384. http://doi.wiley.com/10.1111/jac.12199
  • Hwang J-S, You Y-H, Bae J-J, Khan SA, Kim J-G, Choo Y-S. 2011. Effects of endophytic fungal secondary metabolites on the growth and physiological response of carex kobomugi ohwi. J Coast Res. 27(3):544–548. http://www.bioone.org/doi/abs/10.2112/JCOASTRES-D-10-00090.1
  • Iannone LJ, Pinget AD, Nagabhyru P, Schardl CL, De Battista JP. 2012. Beneficial effects of Neotyphodium tembladerae and Neotyphodium pampeanum on a wild forage grass. Grass Forage Sci. 67(3):382–390.
  • Ibiang SR, Sakamoto K, Kuwahara N. 2020. Performance of tomato and lettuce to arbuscular mycorrhizal fungi and Penicillium pinophilum EU0013 inoculation varies with soil, culture media of inoculum, and fungal consortium composition. Rhizosphere. 16: Article ID 100246.
  • Ikram M, Ali N, Jan G, Iqbal A, Hamayun M, Jan FG, Hussain A, Lee I-J. 2019. Trichoderma reesei improved the nutrition status of wheat crop under salt stress. J Plant Interact. 14(1):590–602. https://www.tandfonline.com/doi/full/10.1080/17429145.2019.1684582
  • Ikram M, Ali N, Jan G, Jan FG, Rahman IU, Iqbal A, Hamayun M. 2018. IAA producing fungal endophyte Penicillium roqueforti thom., enhances stress tolerance and nutrients uptake in wheat plants grown on heavy metal contaminated soils.berta G, editor. PLoS One. 13(11):e0208150. https://dx.plos.org/10.1371/journal.pone.0208150
  • Isabel Miranda M, Omacini M, Chaneton EJ. 2011. Environmental context of endophyte symbioses: interacting effects of water stress and insect herbivory. Int J Plant Sci. 172(4):499–508.
  • Ismail HA, Mehmood A, Qadir M, Husna IA, Hamayun M, Khan N. 2020. Thermal stress alleviating potential of endophytic fungus rhizopus oryzae inoculated to sunflower (Helianthus annuus L.) and soybean (glycine max L.). Pakistan J Bot. 52(5):1857–1865. http://pakbs.org/pjbot/paper_details.php?id=8656
  • Ismail HM, Hussain A, Afzal Khan S, Iqbal A, Lee IJ. 2019. Aspergillus flavus promoted the growth of soybean and sunflower seedlings at elevated temperature. Biomed Res Int. 2019: Article ID 1295457.
  • Ismail HM, Hussain A, Iqbal A, Khan SA, Ahmad A, Gul S, Kim HY, Lee IJ. 2021a. Aspergillus foetidus regulated the biochemical characteristics of soybean and sunflower under heat stress condition: role in sustainability. Sustain. 13(13): Article ID 7159.
  • Ismail HM, Hussain A, Iqbal A, Khan SA, Gul S, Khan H, Rehman KU, Bibi H, Lee IJ. 2021b. Penicillium glabrum acted as a heat stress relieving endophyte in soybean and sunflower. Polish J Environ Stud. 30(4):3099–3110.
  • Ismail HM, Hussain A, Iqbal A, Khan SA, Lee IJ. 2018. Endophytic fungus Aspergillus japonicus mediates host plant growth under normal and heat stress conditions. Biomed Res Int. 2018: Article ID 7696831.
  • Jan FG, Hamayun M, Hussain A, Iqbal A, Jan G, Khan SA, Khan H, Lee IJ. 2019. A promising growth promoting meyerozyma caribbica from Solanum xanthocarpum alleviated stress in maize plants. Biosci Rep. 39(10):20190290. doi:10.1042/BSR20190290.
  • Javed A, Shah AH, Hussain A, Shinwari ZK, Khan SA, Khan W, Jan SA. 2020. Potential of endophytic fungus aspergillus terreus as potent plant growth promoter. Pakistan J Bot. 52(3):1083–1086. http://pakbs.org/pjbot/paper_details.php?id=8287
  • Jiang W, Pan R, Buitrago S, Wu C, Abdelaziz ME, Oelmüller R, Zhang W. 2021. Transcriptome analysis of Arabidopsis reveals freezing-tolerance related genes induced by root endophytic fungus Piriformospora indica. Physiol Mol Biol Plants. 27(2):189–201.
  • Jin HQ, Liu HB, Xie YY, Zhang YG, Xu QQ, Mao LJ, Li XJ, Chen J, Lin FC, Zhang CL. 2018. Effect of the dark septate endophytic fungus acrocalymma vagum on heavy metal content in tobacco leaves. Symbiosis. 74(2):89–95. https://link.springer.com/article/10.1007/s13199-017-0485-4
  • Jin W, Peng L, Zhang X, Sun H, Yuan Z. 2019. Effects of endophytic and ectomycorrhizal basidiomycetes on quercus virginiana seedling growth and nutrient absorption. J Sustain For. 38(5):457–470.
  • Kane KH. 2011. Effects of endophyte infection on drought stress tolerance of Lolium perenne accessions from the Mediterranean region. Environ Exp Bot. 71(3):337–344.
  • Kannadan S, Rudgers JA. 2008. Endophyte symbiosis benefits a rare grass under low water availability. Funct Ecol. 22(4):706–713. http://doi.wiley.com/10.1111/j.1365-2435.2008.01395.x
  • Kauppinen M, Helander M, Anttila N, Saloniemi I, Saikkonen K. 2018. Epichloë endophyte effects on leaf blotch pathogen (rhynchosporium sp.) of tall fescue (schedonorus phoenix) vary among grass origin and environmental conditions. Plant Ecol Divers. 11(5–6):625–635.
  • Kavroulakis N, Doupis G, Papadakis IE, Ehaliotis C, Papadopoulou KK. 2018. Tolerance of tomato plants to water stress is improved by the root endophyte Fusarium solani FsK. Rhizosphere. 6(March):77–85. doi:10.1016/j.rhisph.2018.04.003.
  • Khalmuratova I, Kim H, Nam YJ, Oh Y, Jeong MJ, Choi HR, You YH, Choo YS, Lee IJ, Shin JH, et al. 2015. Diversity and plant growth promoting capacity of endophytic fungi associated with halophytic plants from the west coast of korea. Mycobiology. 43(4):373–383.
  • Khan A, Hamayun M, Kang SM, Kim YH, Jung HY, Lee JH, Lee IJ. 2012. Endophytic fungal association via gibberellins and indole acetic acid can improve plant growth under abiotic stress: An example of Paecilomyces formosus LHL10. BMC Microbiol. 12(1):3. http://bmcmicrobiol.biomedcentral.com/articles/10.1186/1471-2180-12-3
  • Khan AL, Gilani SA, Waqas M, Al-Hosni K, Al-Khiziri S, Kim Y-H, Ali L, Kang S-M, Asaf S, Shahzad R, et al. 2017. Endophytes from medicinal plants and their potential for producing indole acetic acid, improving seed germination and mitigating oxidative stress. J Zhejiang Univ B. 18(2):125–137. http://link.springer.com/10.1631/jzus.B1500271
  • Khan AL, Hamayun M, Ahmad N, Hussain J, Kang SM, Kim YH, Adnan M, Tang DS, Waqas M, Radhakrishnan R, et al. 2011. Salinity stress resistance offered by endophytic fungal interaction between penicillium minioluteum LHL09 and glycine max. L. J Microbiol Biotechnol. 21(9):893–902. http://www.jmb.or.kr/journal/view.html?doi=10.4014/jmb.1103.03012
  • Khan AL, Hamayun M, Ahmad N, Waqas M, Kang SM, Kim YH, Lee IJ. 2011. Exophiala sp. LHL08 reprograms Cucumis sativus to higher growth under abiotic stresses. Physiol Plant. 143(4):329–343.
  • Khan AL, Hamayun M, Khan SA, Kang SM, Shinwari ZK, Kamran M, ur Rehman S, Kim JG, Lee IJ. 2012. Pure culture of Metarhizium anisopliae LHL07 reprograms soybean to higher growth and mitigates salt stress. World J Microbiol Biotechnol . 28(4):1483–1494. https://link.springer.com/article/10.1007/s11274-011-0950-9
  • Khan AL, Hamayun M, Kim YH, Kang SM, Lee IJ. 2011. Ameliorative symbiosis of endophyte (Penicillium funiculosum LHL06) under salt stress elevated plant growth of Glycine max L. Plant Physiol Biochem. 49(8):852–861.
  • Khan AL, Hamayun M, Radhakrishnan R, Waqas M, Kang SM, Kim YH, Shin JH, Choo YS, Kim JG, Lee IJ. 2012. Mutualistic association of Paecilomyces formosus LHL10 offers thermotolerance to Cucumis sativus. antonie van leeuwenhoek. Int J Gen Mol Microbiol. 101(2):267–279. https://link.springer.com/article/10.1007/s10482-011-9630-x
  • Khan AL, Hamayun M, Waqas M, Kang SM, Kim YH, Kim DH, Lee IJ. 2012. Exophiala sp.LHL08 association gives heat stress tolerance by avoiding oxidative damage to cucumber plants. Biol Fertil Soils . 48(5):519–529. https://link.springer.com/article/10.1007/s00374-011-0649-y
  • Khan AL, Kang SM, Dhakal KH, Hussain J, Adnan M, Kim JG, Lee IJ. 2013. Flavonoids and amino acid regulation in Capsicum annuum L. by endophytic fungi under different heat stress regimes. Sci Hortic (Amsterdam). 155:1–7.
  • Khan AL, Lee IJ. 2013. Endophytic Penicillium funiculosum LHL06 secretes gibberellin that reprograms Glycine max L. growth during copper stress. BMC Plant Biol. 13(1):86. http://bmcplantbiol.biomedcentral.com/articles/10.1186/1471-2229-13-86
  • Khan AL, Waqas M, Hamayun M, Al-Harrasi A, Al-Rawahi A, Lee IJ. 2013. Co-synergism of endophyte Penicillium resedanum LK6 with salicylic acid helped Capsicum annuum in biomass recovery and osmotic stress mitigation. BMC Microbiol. 13(1):51. http://bmcmicrobiol.biomedcentral.com/articles/10.1186/1471-2180-13-51
  • Khan AL, Waqas M, Hussain J, Al-Harrasi A, Al-Rawahi A, Al-Hosni K, Kim MJ, Adnan M, Lee IJ. 2014. Endophytes Aspergillus caespitosus LK12 and Phoma sp. LK13 of moringa peregrina produce gibberellins and improve rice plant growth. J Plant Interact. 9(1):731–737. https://www.tandfonline.com/doi/full/10.1080/17429145.2014.917384
  • Khan AL, Waqas M, Hussain J, Al-Harrasi A, Hamayun M, Lee IJ. 2015. Phytohormones enabled endophytic fungal symbiosis improve aluminum phytoextraction in tolerant Solanum lycopersicum: An examples of Penicillium janthinellum LK5 and comparison with exogenous GA3. J Hazard Mater. 295:70–78.
  • Khan AL, Waqas M, Hussain J, Al-Harrasi A, Lee IJ. 2014. Fungal endophyte Penicillium janthinellum LK5 can reduce cadmium toxicity in Solanum lycopersicum (Sitiens and Rhe). Biol Fertil Soils. 50(1):75–85.
  • Khan AL, Waqas M, Khan AR, Hussain J, Kang SM, Gilani SA, Hamayun M, Shin JH, Kamran M, Al-Harrasi A, et al. 2013. Fungal endophyte Penicillium janthinellum LK5 improves growth of ABA-deficient tomato under salinity. World J Microbiol Biotechnol. 29(11):2133–2144. https://link.springer.com/article/10.1007/s11274-013-1378-1
  • Khan AL, Waqas M, Lee IJ. 2015. Resilience of Penicillium resedanum LK6 and exogenous gibberellin in improving Capsicum annuum growth under abiotic stresses. J Plant Res. 128(2):259–268.
  • Khan AR, Ullah I, Waqas M, Park GS, Khan AL, Hong SJ, Ullah R, Jung BK, Park CE, Ur-Rehman S, et al. 2017. Host plant growth promotion and cadmium detoxification in Solanum nigrum, mediated by endophytic fungi. Ecotoxicol Environ Saf. 136:180–188.
  • Khan AR, Ullah I, Waqas M, Shahzad R, Hong SJ, Park GS, Jung BK, Lee IJ, Shin JH. 2015. Plant growth-promoting potential of endophytic fungi isolated from Solanum nigrum leaves. World J Microbiol Biotechnol. 31(9):1461–1466.
  • Khan AR, Waqas M, Ullah I, Khan AL, Khan MA, Lee IJ, Shin JH. 2017. Culturable endophytic fungal diversity in the cadmium hyperaccumulator Solanum nigrum L. and their role in enhancing phytoremediation. Environ Exp Bot. 135:126–135.
  • Khayamim F, Khademi H, Sabzalian MR. 2011. Effect of Neotyphodium endophyte-tall fescue symbiosis on mineralogical changes in clay-sized phlogopite and muscovite. Plant Soil. 341(1–2):473–484. https://link.springer.com/article/10.1007/s11104-010-0659-9
  • Khushdil F, Jan FG, Jan G, Hamayun M, Iqbal A, Hussain A, Bibi N. 2019. Salt stress alleviation in pennisetum glaucum through secondary metabolites modulation by Aspergillus terreus L. Plant Physiol Biochem. 144:127–134.
  • Kifle MH, Yobo KS, Laing MD. 2017. Biocontrol of Aspergillus flavus in groundnut using Trichoderma harzianum stain kd. J Plant Dis Prot. 124(1):51–56. https://link.springer.com/article/10.1007/s41348-016-0066-4
  • Kleczewski NM, Bauer JT, Bever JD, Clay K, Reynolds HL. 2012. A survey of endophytic fungi of switchgrass (Panicum virgatum) in the midwest, and their putative roles in plant growth. Fungal Ecol. 5(5):521–529.
  • Klypina N, Pinch M, Schutte BJ, Maruthavanan J, Sterling TM. 2017. Water-deficit stress tolerance differs between two locoweed genera (Astragalus and oxytropis) with fungal endophytes. Weed Sci. 65(5):626–638. doi:10.1017/wsc.2017.21.
  • Krell V, Unger S, Jakobs-Schoenwandt D, Patel AV. 2018. Endophytic Metarhizium brunneum mitigates nutrient deficits in potato and improves plant productivity and vitality. Fungal Ecol. 34:43–49.
  • Kumari V, Germida J, Vujanovic V. 2018. Legume endosymbionts: drought stress tolerance in second-generation chickpea (Cicer arietinum) seeds. J Agron Crop Sci. 204(6):529–540. http://doi.wiley.com/10.1111/jac.12283
  • Kumari V, Vujanovic V. 2020. Transgenerational benefits of endophytes on resilience and antioxidant genes expressions in pea (pisum sativum L.) under osmotic stress. Acta Physiol Plant. 42(4):49. doi:10.1007/s11738-020-03042-y.
  • Kuzhuppillymyal-Prabhakarankutty L, Tamez-Guerra P, Gomez-Flores R, Rodriguez-Padilla MC, Ek-Ramos MJ. 2020. Endophytic Beauveria bassiana promotes drought tolerance and early flowering in corn. World J Microbiol Biotechnol. 36(3):47. doi:10.1007/s11274-020-02823-4.
  • Laitinen RK, Hellström KO, Wäli PR. 2016. Context-dependent outcomes of subarctic grass-endophyte symbiosis. Fungal Ecol. 23:66–74.
  • Lalancette S, Lerat S, Roy S, Beaulieu C. 2019. Fungal endophytes of Alnus incana ssp. rugosa and Alnus alnobetula ssp. crispa and their potential to tolerate heavy metals and to promote plant growth. Mycobiology. 47(4):415–429. https://www.tandfonline.com/doi/full/10.1080/12298093.2019.1660297
  • Lang M, Zhou J, Chen T, Chen Z, Malik K, Li C. 2021. Influence of interactions between nitrogen, phosphorus supply and epichloë bromicola on growth of wild barley (Hordeum brevisubulatum). J Fungi. 7(8): Article ID 615.
  • Lanza M, Haro R, Conchillo LB, Benito B. 2019. The endophyte Serendipita indica reduces the sodium content of Arabidopsis plants exposed to salt stress: fungal ENA ATPases are expressed and regulated at high pH and during plant co-cultivation in salinity. Environ Microbiol. 21(9):3364–3378. https://onlinelibrary.wiley.com/doi/abs/10.1111/1462-2920.14619
  • Lewis GC. 1992. Effect of ryegrass endophyte in mixed swards of perennial ryegrass and white clover under two levels of irrigation and pesticide treatment. Grass Forage Sci. 47(3):302–305. http://doi.wiley.com/10.1111/j.1365-2494.1992.tb02274.x
  • Lewis GC. 2004. Effects of biotic and abiotic stress on the growth of three genotypes of Lolium perenne with and without infection by the fungal endophyte Neotyphodium lolii. Ann Appl Biol. 144(1):53–63.
  • Li D, Bodjrenou DM, Zhang S, Wang B, Pan H, Yeh KW, Lai Z, Cheng C. 2021. The endophytic fungus piriformospora indica reprograms banana to cold resistance. Int J Mol Sci. 22(9):4973. doi:10.1007/s13199-021-00813-0Growth-promoting.
  • Li K, Shi C, He FY, Li HY. 2020. Effects of endophyte infection on growth and physiological characteristics of melica transsilvanica under Pb stress. Acta Prataculturae Sin. 29(3):112–120. http://gb.oversea.cnki.net/KCMS/detail/detail.aspx?filename=CYXB202003012&dbcode=CJFD&dbname=CJFDTEMP
  • Li L, Li L, Wang X, Zhu P, Wu H, Qi S. 2017. Plant growth-promoting endophyte Piriformospora indica alleviates salinity stress in Medicago truncatula. Plant Physiol Biochem. 119:211–223.
  • Li M, Hou L, Liu J, Yang J, Zuo Y, Zhao L, He X. 2021. Growth-promoting effects of dark septate endophytes on the non-mycorrhizal plant isatis indigotica under different water conditions. Symbiosis.
  • Li Q, Kuo YW, Lin KH, Huang W, Deng C, Yeh KW, Chen SP. 2021. Piriformospora indica colonization increases the growth, development, and herbivory resistance of sweet potato (ipomoea batatas L.). Plant Cell Rep. 40(2):339–350.
  • Li T, Liu MJ, Zhang XT, Zhang HB, Sha T, Zhao ZW. 2011. Improved tolerance of maize (Zea mays L.) to heavy metals by colonization of a dark septate endophyte (DSE) Exophiala pisciphila. Sci Total Environ. 409(6):1069–1074.
  • Li X, Bu N, Li Y, Ma L, Xin S, Zhang L. 2012. Growth, photosynthesis and antioxidant responses of endophyte infected and non-infected rice under lead stress conditions. J Hazard Mater. 213–214:55–61.
  • Li X, He C, He X, Su F, Hou L, Ren Y, Hou Y. 2019. Dark septate endophytes improve the growth of host and non-host plants under drought stress through altered root development. Plant Soil. 439(1–2):259–272. doi:10.1007/s11104-019-04057-2.
  • Li X, He X, Hou L, Ren Y, Wang S, Su F. 2018. Dark septate endophytes isolated from a xerophyte plant promote the growth of Ammopiptanthus mongolicus under drought condition. Sci Rep. 8(1):7896. www.nature.com/scientificreports/
  • Li X, He X-L, Zhou Y, Hou Y-T, Zuo Y-L. 2019. Effects of Dark septate endophytes on the performance of hedysarum scoparium Under Water Deficit stress. Front Plant Sci. 10:903. https://www.frontiersin.org/article/10.3389/fpls.2019.00903/full
  • Li X, Ma L, Li Y, Wang L, Zhang L. 2019. Endophyte infection enhances accumulation of organic acids and minerals in rice under Pb 2+ stress conditions. Ecotoxicol Environ Saf. 174:255–262.
  • Li X-Z, Song M-L, Yao X, Chai Q, Simpson WR, Li C-J, Nan Z-B. 2017. The Effect of Seed-Borne Fungi and Epichloë Endophyte on Seed Germination and Biomass of Elymus sibiricus. Front Microbiol. 8(DEC):2488. http://journal.frontiersin.org/article/10.3389/fmicb.2017.02488/full
  • Liarzi O, Bucki P, Braun Miyara S, Ezra D. 2016. Bioactive Volatiles from an Endophytic Daldinia cf. concentrica Isolate Affect the Viability of the Plant Parasitic Nematode Meloidogyne javanica.Jones J, editor. PLoS One. 11(12):e0168437. https://dx.plos.org/10.1371/journal.pone.0168437
  • Likar M, Regvar M. 2013. Isolates of dark septate endophytes reduce metal uptake and improve physiology of salix caprea L. Plant Soil. 370(1–2):593–604. https://link.springer.com/article/10.1007/s11104-013-1656-6
  • Lin HF, Xiong J, Zhou HM, Chen CM, Lin FZ, Xu XM, Oelmüller R, Xu WF, Yeh KW. 2019. Growth promotion and disease resistance induced in Anthurium colonized by the beneficial root endophyte Piriformospora indica. BMC Plant Biol. 19(1):40. https://bmcplantbiol.biomedcentral.com/articles/10.1186/s12870-019-1649-6
  • Lindblom SD, Valdez-Barillas JR, Fakra SC, Marcus MA, Wangeline AL, Pilon-Smits EAH. 2013. Influence of microbial associations on selenium localization and speciation in roots of Astragalus and stanleya hyperaccumulators. Environ Exp Bot. 88:33–42.
  • Lindblom SD, Wangeline AL, Valdez Barillas JR, Devilbiss B, Fakra SC, Pilon-Smits EAH. 2018. Fungal endophyte Alternaria tenuissima Can affect growth and selenium accumulation in Its hyperaccumulator host Astragalus bisulcatus. Front Plant Sci. 9:1213. https://www.frontiersin.org/article/10.3389/fpls.2018.01213/full
  • Liu D, Zhu L, Li T, Zhao Z. 2021. Mutualism between Dark septate endophytes (DSEs) and their host plants under metal stress: a case study. All Life. 14(1):667–677.
  • López AC, Alvarenga AE, Vereschuk ML, Barua RC, Zapata PD, Luna MF, Villaba LL. 2020. Trichoderma strains isolated from ilex paraguariensis ST. HIL: promising biocontrol agents with chitinolytic activity and plant growth promoter on lycopersicum esculentum. Arab J Basic Appl Sci. 27(1):105–113. https://www.tandfonline.com/doi/full/10.1080/25765299.2020.1732033
  • Lubna AS, Hamayun M, Gul H, Lee IJ, Hussain A. 2018. Aspergillus Niger CSR3 regulates plant endogenous hormones and secondary metabolites by producing gibberellins and indoleacetic acid. J Plant Interact. 13(1):100–111. https://www.tandfonline.com/doi/full/10.1080/17429145.2018.1436199
  • Lubna AS, Hamayun M, Khan AL, Waqas M, Khan MA, Jan R, Lee IJ, Hussain A. 2018. Salt tolerance of Glycine max.L induced by endophytic fungus Aspergillus flavus CSH1, via regulating its endogenous hormones and antioxidative system. Plant Physiol Biochem. 128:13–23.
  • Ma BH, Lin WH, Gao M, Di WX, Tian P. 2020. Effects of salicylic acid and epichloё on perennial ryegrass (Lolium perenne) under drought stress. Acta Prataculturae Sin. 29(1):135–144.
  • Ma L, Li X, Wang L, Li Y, Bu N, Yu C. 2019. Endophytic infection modulates ROS-scavenging systems and modifies cadmium distribution in rice seedlings exposed to cadmium stress. Theor Exp Plant Physiol. 31(4):463–474. doi:10.1007/s40626-019-00159-5.
  • Ma M, Christensen MJ, Nan Z. 2015. Effects of the endophyte Epichloë festucae var. lolii of perennial ryegrass (Lolium perenne) on indicators of oxidative stress from pathogenic fungi during seed germination and seedling growth. Eur J Plant Pathol. 141(3):571–583.
  • MacIá-Vicente JG, Rosso LC, Ciancio A, Jansson HB, Lopez-Llorca LV. 2009. Colonisation of barley roots by endophytic Fusarium equiseti and Pochonia chlamydosporia: effects on plant growth and disease. Ann Appl Biol. 155(3):391–401.
  • Malinowski DP, Belesky DP. 1999. Tall fescue aluminum tolerance is affected by Neotyphodium coenophialum endophyte. J Plant Nutr. 22(8):1335–1349.
  • Malinowski DP, Butler TJ, Belesky DP. 2011. Competitive ability of tall fescue against alfalfa as a function of summer dormancy, endophyte infection, and Soil moisture availability. Crop Sci. 51(3):1282–1290. http://doi.wiley.com/10.2135/cropsci2010.08.0456
  • Marks S, Clay K. 2007. Low resource availability differentially affects the growth of host grasses infected by fungal endophytes. Int J Plant Sci. 168(9):1269–1277. https://www.journals.uchicago.edu/doi/abs/10.1086/521834
  • Martínez-Arias C, Macaya-Sanz D, Witzell J, Martín JA. 2019. Enhancement of populus alba tolerance to venturia tremulae upon inoculation with endophytes showing in vitro biocontrol potential. Eur J Plant Pathol. 153(4):1031–1042. doi:10.1007/s10658-018-01618-6.
  • Martínez-arias C, Sobrino-plata J, Gil L, Rodríguez-calcerrada J, Martín JA. 2021. Priming of plant defenses against ophiostoma novo-ulmi by elm (ulmus minor mill.) fungal endophytes. J Fungi 7(9):687. doi:10.3390/jof7090687.
  • Mastan A, Bharadwaj R, Kushwaha RK, Vivek Babu CS. 2019. Functional fungal endophytes in coleus forskohlii regulate labdane diterpene biosynthesis for elevated forskolin accumulation in roots. Microb Ecol. 78(4):914–926. doi:10.1007/s00248-019-01376-w.
  • Márquez LM, Redman RS, Rodriguez RJ, Roossinck MJ. 2007. A virus in a fungus in a plant: three-way symbiosis required for thermal tolerance. Science (80-). 315(5811):513–515. https://pubmed.ncbi.nlm.nih.gov/17255511/
  • Mehmood A, Hussain A, Irshad M, Hamayun M, Iqbal A, Khan N. 2019. In vitro production of IAA by endophytic fungus Aspergillus awamori and its growth promoting activities in Zea mays. Symbiosis. 77(3):225–235. doi:10.1007/s13199-018-0583-y.
  • Mendarte-Alquisira C, Gutiérrez-Rojas M, González-Márquez H, Volke-Sepúlveda T. 2017. Improved growth and control of oxidative stress in plants of Festuca arundinacea exposed to hydrocarbons by the endophytic fungus lewia sp. Plant Soil. 411(1–2):347–358. http://www.ncbi.nlm.nih.gov/blast
  • Mendarte-Alquisira C, Gutiérrez-Rojasy M, Volke-Sepúlveda T. 2020. The fungus lewia sp. alleviates the oxidative stress in f. arundinacea during the endophyte-assisted phytoremediation of hydrocarbons. Rev Mex Ing Quim. 19:69–80. http://rmiq.org/ojs311/index.php/rmiq/article/view/1547/933
  • Ming Q, Su C, Zheng C, Jia M, Zhang Q, Zhang H, Rahman K, Han T, Qin L. 2013. Elicitors from the endophytic fungus Trichoderma atroviride promote Salvia miltiorrhiza hairy root growth and tanshinone biosynthesis. J Exp Bot. 64(18):5687–5694. https://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/ert342
  • Mirzahosseini Z, Shabani L, Sabzalian MR, Sharifi-Tehrani M. 2014. Neotyphodium endophytes may increase tolerance to Ni in tall fescue. Eur J Soil Biol. 63:33–40.
  • Molina-Montenegro MA, Acuña-Rodríguez IS, Torres-Díaz C, Gundel PE, Dreyer I. 2020. Antarctic root endophytes improve physiological performance and yield in crops under salt stress by enhanced energy production and Na+ sequestration. Sci Rep. 10(1):1–10. doi:10.1038/s41598-020-62544-4.
  • Molina-Montenegro MA, Oses R, Torres-Díaz C, Atala C, Zurita-Silva A, Ruiz-Lara S. 2016. Root-endophytes improve the ecophysiological performance and production of an agricultural species under drought condition. AoB Plants. 8:plw062. https://academic.oup.com/aobpla/article-lookup/doi/10.1093/aobpla/plw062
  • Monnet F, Vaillant N, Hitmi A, Coudret A, Sallanon H. 2001. Endophytic Neotyphodium lolii induced tolerance to Zn stress in Lolium perenne. Physiol Plant. 113(4):557–563. http://doi.wiley.com/10.1034/j.1399-3054.2001.1130415.x
  • Monnet F, Vaillant N, Hitmi A, Sallanon H. 2005. Photosynthetic activity of Lolium perenne as a function of endophyte status and zinc nutrition. Funct Plant Biol. 32(2):131–139.
  • Morse LJ, Day TA, Faeth SH. 2002. Effect of Neotyphodium endophyte infection on growth and leaf gas exchange of arizona fescue under contrasting water availability regimes. Environ Exp Bot. 48(3):257–268.
  • Murphy BR, Doohan FM, Hodkinson TR. 2014. Yield increase induced by the fungal root endophyte Piriformospora indica in barley grown at low temperature is nutrient limited. Symbiosis. 62(1):29–39.
  • Murphy BR, Doohan FM, Hodkinson TR. 2015. Fungal root endophytes of a wild barley species increase yield in a nutrient-stressed barley cultivar. Symbiosis. 65:1–7. doi:10.1007/s13199-015-0314-6.
  • Murphy BR, Martin Nieto L, Doohan FM, Hodkinson TR. 2015. Fungal Endophytes Enhance agronomically important traits in severely drought-stressed barley. J Agron Crop Sci. 201(6):419–427.
  • Muvea AM, Meyhöfer R, Maniania NK, Poehling HM, Ekesi S, Subramanian S. 2015. Behavioral responses of thrips tabaci lindeman to endophyte-inoculated onion plants. J Pest Sci (2004). 88(3):555–562.
  • Mwamburi LA. 2021. Endophytic fungi, Beauveria bassiana and Metarhizium anisopliae, confer control of the fall armyworm, spodoptera frugiperda (J. E. Smith) (lepidoptera: noctuidae), in two tomato varieties. Egypt J Biol Pest Control. 31: Article number 7.
  • Nagabhyru P, Dinkins RD, Wood CL, Bacon CW, Schardl CL. 2013. Tall fescue endophyte effects on tolerance to water-deficit stress. BMC Plant Biol. 13(1):127. http://bmcplantbiol.biomedcentral.com/articles/10.1186/1471-2229-13-127
  • Nandhini M, Rajini SB, Udayashankar AC, Niranjana SR, Lund OS, Shetty HS, Prakash HS. 2018. Diversity, plant growth promoting and downy mildew disease suppression potential of cultivable endophytic fungal communities associated with pearl millet. Biol Control. 127:127–138.
  • Neelipally RTKR, Anoruo AO, Nelson S. 2020. Effect of co-inoculation of bradyrhizobium and trichoderma on growth, development, and yield of arachis hypogaea L. (peanut). Agronomy. 10(9):1415. doi:10.3390/agronomy10091415.
  • Nefzi A, Abdallah RB, Jabnoun-Khiareddine H, Ammar N, Daami-Remadi M. 2019. Ability of endophytic fungi associated with Withania somnifera L. to control Fusarium Crown and Root Rot and to promote growth in tomato. Brazilian J Microbiol. 50(2):481–494. doi:10.1007/s42770-019-00062-w.
  • Nieva AS, Romero FM, Erban A, Carrasco P, Ruiz OA, Kopka J. 2021. Metabolic profiling and metabolite correlation network analysis reveal that fusarium solani induces differential metabolic responses in lotus japonicus and lotus tenuis against severe phosphate starvation. J Fungi. 7(9):765. doi:10.3390/jof7090765.
  • Noora H, Shahabivand S, Karimi F, Aghaee A, Aliloo AAAA. 2017. Piriformospora indica affects growth, tropane alkaloids production and gene expression in Atropa belladonna L. plantlets. Med Plants. 9(1):55–62.
  • Nuangmek W, Aiduang W, Kumla J, Lumyong S, Suwannarach N. 2021. Evaluation of a newly identified endophytic fungus, Trichoderma phayaoense for plant growth promotion and biological control of gummy stem blight and wilt of muskmelon. Front Microbiol. 12. doi:10.3389/fmicb.2021.634772.
  • Oberhofer M, Güsewell S, Leuchtmann A. 2014. Effects of natural hybrid and non-hybrid Epichloë endophytes on the response of hordelymus europaeus to drought stress. New Phytol. 201(1):242–253.
  • Odokonyero K, Acuña TB, Cardoso JA, de la Cruz Jimenez J, Rao IM. 2016. Fungal endophyte association with brachiaria grasses and its influence on plant water status, total non-structural carbohydrates and biomass production under drought stress. Plant Soil. 409(1–2):273–282. https://link.springer.com/article/10.1007/s11104-016-2947-5
  • Ortiz J, Soto J, Fuentes A, Herrera H, Meneses C, Arriagada C. 2019. The endophytic fungus Chaetomium cupreum regulates expression of genes involved in the tolerance to metals and plant growth promotion in eucalyptus globulus roots. Microorganisms. 7(11):490. https://www.mdpi.com/2076-2607/7/11/490
  • Pan X, Qin Y, Yuan Z. 2018. Potential of a halophyte-associated endophytic fungus for sustaining Chinese white poplar growth under salinity. Symbiosis. 76(2):109–116. doi:10.1007/s13199-018-0541-8.
  • Pandey R, Mishra AK, Tiwari S, Singh HN, Kalra A. 2011. Enhanced tolerance of mentha arvensis against Meloidogyne incognita (kofoid and White) chitwood through mutualistic endophytes and PGPRs. J Plant Interact. 6(4):247–253. http://www.tandfonline.com/doi/abs/10.1080/17429145.2011.554892
  • Paparu P, Dubois T, Coyne D, Viljoen A. 2010. Effect of Fusarium oxysporum endophyte inoculation on the activities of phenylpropanoid pathway enzymes and radopholus similis numbers in susceptible and tolerant east African highland bananas. Nematology. 12(3):469–480.
  • Pecetti L, Romani M, Carroni AM, Annicchiarico P, Piano E. 2007. The effect of endophyte infection on persistence of tall fescue (Festuca arundinacea schreb.) populations in two climatically contrasting Italian locations. Aust J Agric Res. 58(9):893–899.
  • Pedrero-Méndez A, Insuasti HC, Neagu T, Illescas M, Rubio MB, Monte E, Hermosa R. 2021. Why Is the correct selection of Trichoderma strains important? The case of wheat endophytic strains of T. harzianum and T. simmonsii. J Fungi. 7(12):1087. https://www.mdpi.com/2309-608X/7/12/1087
  • Pereira EC, Vazquez de Aldana BR, Arellano JB, Zabalgogeazcoa I. 2021. The role of fungal microbiome components on the Adaptation to salinity of Festuca rubra subsp. pruinosa. Front Plant Sci. 12. doi:10.3389/fpls.2021.695717.
  • Pérez LI, Gundel PE, Ghersa CM, Omacini M. 2013. Family issues: fungal endophyte protects host grass from the closely related pathogen claviceps purpurea. Fungal Ecol. 6(5):379–386.
  • Pinto C, Custódio V, Nunes M, Songy A, Rabenoelina F, Courteaux B, Clément C, Gomes AC, Fontaine F. 2018. Understand the potential role of aureobasidium pullulans, a resident microorganism from grapevine, to prevent the infection caused by diplodia seriata. Front Microbiol. 9(DEC):3047. https://www.frontiersin.org/article/10.3389/fmicb.2018.03047/full
  • Poveda J, Zabalgogeazcoa I, Soengas P, Rodríguez VM, Cartea ME, Abilleira R, Velasco P. 2020. Brassica oleracea var. acephala (kale) improvement by biological activity of root endophytic fungi. Sci Rep. 10(1):20224. doi:10.1038/s41598-020-77215-7.
  • Priyadharsini P, Muthukumar T. 2017. The root endophytic fungus Curvularia geniculata from parthenium hysterophorus roots improves plant growth through phosphate solubilization and phytohormone production. Fungal Ecol. 27:69–77.
  • Qiang X, Ding J, Lin W, Li Q, Xu C, Zheng Q, Li Y. 2019. Alleviation of the detrimental effect of water deficit on wheat (Triticum aestivum L.) growth by an indole acetic acid-producing endophytic fungus. Plant Soil. 439(1–2):373–391. doi:10.1007/s11104-019-04028-7.
  • Qin J, Wu M, Liu H, Gao Y, Ren A. 2019. Endophyte infection and methyl jasmonate treatment increased the resistance of achnatherum sibiricum to insect herbivores independently. Toxins (Basel). 11(1):7. www.mdpi.com/journal/toxins
  • Qin J, Yuan G, Liu H, Zhou Y, Ren A, Yubao G. 2016. Effect of endophyte infection and clipping treatment on resistance and tolerance of Achnatherum sibiricum. Front Microbiol. 7(DEC):1988. http://journal.frontiersin.org/article/10.3389/fmicb.2016.01988/full
  • Qin W, Liu C, Jiang W, Xue Y, Wang G, Liu S. 2019. A coumarin analogue NFA from endophytic Aspergillus fumigatus improves drought resistance in rice as an antioxidant. BMC Microbiol. 19(1):50. https://bmcmicrobiol.biomedcentral.com/articles/10.1186/s12866-019-1419-5
  • Qin X, Zhao X, Huang S, Deng J, Li X, Luo Z, Zhang Y. 2021. Pest management via endophytic colonization of tobacco seedlings by the insect fungal pathogen Beauveria bassiana. Pest Manag Sci. 77(4):2007–2018.
  • Qin Y, Pan X, Kubicek C, Druzhinina I, Chenthamara K, Labbé J, Yuan Z. 2017. Diverse plant-associated pleosporalean fungi from saline areas: ecological tolerance and nitrogen-status dependent effects on plant growth. Front Microbiol. 8(FEB):158. https://blast.ncbi.nlm.nih.gov/Blast.cgi
  • Qu Z, Zhao H, Zhang H, Wang Q, Yao Y, Cheng J, Lin Y, Xie J, Fu Y, Jiang D. 2020. Bio-priming with a hypovirulent phytopathogenic fungus enhances the connection and strength of microbial interaction network in rapeseed. npj Biofilms Microbiomes. 6(1):45. doi:10.1038/s41522-020-00157-5.
  • Quiring D, Adams G, Flaherty L, McCartney A, Miller JD, Edwards S. 2019. Influence of a Foliar endophyte and budburst phenology on survival of wild and laboratory-reared eastern Spruce budworm, choristoneura fumiferana on White Spruce (picea glauca). Forests. 10(6):503. https://www.mdpi.com/1999-4907/10/6/503
  • Radhakrishnan R, Khan AL, Kang SM, Lee IJ. 2015. A comparative study of phosphate solubilization and the host plant growth promotion ability of Fusarium verticillioides RK01 and Humicola sp. KNU01 under salt stress. Ann Microbiol. 65(1):585–593.
  • Radhakrishnan R, Khan AL, Lee IJ. 2013. Endophytic fungal pre-treatments of seeds alleviates salinity stress effects in soybean plants. J Microbiol. 51(6):850–857. https://link.springer.com/article/10.1007/s12275-013-3168-8
  • Rahman MH, Simpson WR, Matthew C, Sabreen S, Okubo A, Islam KR. 2015. Response of diploid perennial ryegrass to fungal endophyte AR29 infections under water stress. Commun Soil Sci Plant Anal. 46(7):845–860.
  • Rai M, Acharya D, Singh A, Varma A. 2001. Positive growth responses of the medicinal plants Spilanthes calva and Withania somnifera to inoculation by Piriformospora indica in a field trial. Mycorrhiza. 11(3):123–128. http://link.springer.com/10.1007/s005720100115
  • Rajak J, Bawaskar M, Rathod D, Agarkar G, Nagaonkar D, Gade A, Rai M. 2017. Interaction of copper nanoparticles and an endophytic growth promoter Piriformospora indica with cajanus cajan. J Sci Food Agric. 97(13):4562–4570.
  • Rajani P, Aiswarya H, Vasanthakumari MM, Jain SK, Bharate SB, Rajasekaran C, Ravikanth G, Uma Shaanker R. 2019. Inhibition of the collar rot fungus, sclerotium rolfsii sacc. by an endophytic fungus Alternaria sp.: implications for biocontrol. Plant Physiol Reports. 24(4):521–532. doi:10.1007/s40502-019-00484-6.
  • Rajini SB, Nandhini M, Udayashankar AC, Niranjana SR, Lund OS, Prakash HS. 2020. Diversity, plant growth-promoting traits, and biocontrol potential of fungal endophytes of sorghum bicolor. Plant Pathol. 69(4):642–654. https://onlinelibrary.wiley.com/doi/abs/10.1111/ppa.13151
  • Rauf M, Awais M, Ud-Din A, Ali K, Gul H, Rahman MM, Hamayun M, Arif M. 2021. Molecular mechanisms of the 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase producing Trichoderma asperellum MAP1 in enhancing wheat tolerance to waterlogging stress. Front Plant Sci. 11. doi:10.3389/fpls.2020.614971.
  • Ravel C, Courty C, Coudret A, Charmet G. 1997. Beneficial effects of Neotyphodium lolii on the growth and the water status in perennial ryegrass cultivated under nitrogen deficiency or drought stress. Agronomie. 17(3):173–181. http://www.agronomy-journal.org/10.1051/agro:19970304
  • Razinger J, Praprotnik E, Schroers HJ. 2020. Bioaugmentation of Entomopathogenic fungi for sustainable agriotes larvae (wireworms) management in maize. Front Plant Sci. 11. doi:10.3389/fpls.2020.535005.
  • Redman RS, Kim YO, Woodward CJDA, Greer C, Espino L, Doty SL, Rodriguez RJ. 2011. Increased fitness of rice plants to abiotic stress Via habitat adapted symbiosis: A strategy for mitigating Impacts of climate change.El-shemy HA, editor. PLoS One. 6(7):e14823. https://dx.plos.org/10.1371/journal.pone.0014823
  • Ren A, Li C, Gao Y. 2011. Endophytic fungus improves growth and metal uptake of Lolium arundinaceum darbyshire ex. schreb. Int J Phytoremediation. 13(3):233–243. https://www.tandfonline.com/doi/abs/10.1080/15226511003671387
  • Ren A, Wei M, Yin L, Wu L, Zhou Y, Li X, Gao Y. 2014. Benefits of a fungal endophyte in Leymus chinensis depend more on water than on nutrient availability. Environ Exp Bot. 108:71–78.
  • Ren AZ, Gao YB, Wang W, Wang JL. 2005. Photosynthetic pigments and photosynthetic products of endophyte-infection and endophyte-free Lolium perenne L. under drought stress conditions. Acta Ecol Sin. 25(2):225–231.
  • Ren AZ, Li X, Han R, Yin LJ, Wei MY, Gao YB. 2011. Benefits of a symbiotic association with endophytic fungi are subject to water and nutrient availability in Achnatherum sibiricum. Plant Soil. 346(1):363–373. https://link.springer.com/article/10.1007/s11104-011-0824-9
  • Ren XN, Shan Y, Li X, Wang LL, Li YY, Ma LJ, Li XM. 2021. Endophytic infection programs the ascorbateglutathione cycle in rice (Oryza sativa l.) under na2co3 stress. Appl Ecol Environ Res. 19(3):1895–1907.
  • Repas TS, Gillis DM, Boubakir Z, Bao X, Samuels GJ, Kaminskyj SGW. 2017. Growing plants on oily, nutrient-poor soil using a native symbiotic fungus.bradley R, editor. PLoS One. 12(10):e0186704. https://dx.plos.org/10.1371/journal.pone.0186704
  • Reza Sabzalian M, Mirlohi A. 2010. Neotyphodium endophytes trigger salt resistance in tall and meadow fescues. J Plant Nutr Soil Sci. 173(6):952–957.
  • Rho H, Van Epps V, Kim S-H, Doty SL. 2020. Endophytes Increased Fruit Quality with Higher Soluble Sugar Production in Honeycrisp Apple (Malus pumila). Microorganisms. 8(5):699. https://www.mdpi.com/2076-2607/8/5/699
  • Rinu K, Sati P, Pandey A. 2014. Trichoderma gamsii (NFCCI 2177): A newly isolated endophytic, psychrotolerant, plant growth promoting, and antagonistic fungal strain. J Basic Microbiol. 54(5):408–417.
  • Rodriguez RJ, Henson J, Van Volkenburgh E, Hoy M, Wright L, Beckwith F, Kim YO, Redman RS. 2008. Stress tolerance in plants via habitat-adapted symbiosis. ISME J. 2(4):404–416. www.nature.com/ismej
  • Rudgers JA, Swafford AL. 2009. Benefits of a fungal endophyte in Elymus virginicus decline under drought stress. Basic Appl Ecol. 10(1):43–51.
  • Ryszka P, Lichtscheidl I, Tylko G, Turnau K. 2019. Symbiotic microbes of saxifraga stellaris ssp. alpigena from the copper creek of schwarzwand (Austrian Alps) enhance plant tolerance to copper. Chemosphere. 228:183–194.
  • Saari S, Faeth SH. 2012. Hybridization of Neotyphodium endophytes enhances competitive ability of the host grass. New Phytol. 195(1):231–236.
  • Sabzalian MR, Mirlohi A, Sharifnabi B. 2012. Reaction to powdery mildew fungus, Blumeria graminis in endophyte-infected and endophyte-free tall and meadow fescues. Australas Plant Pathol. 41(5):565–572.
  • Saddique MAB, Ali Z, Khan AS, Rana IA, Shamsi IH. 2018. Inoculation with the endophyte Piriformospora indica significantly affects mechanisms involved in osmotic stress in rice. Rice. 11(1):34. https://thericejournal.springeropen.com/articles/10.1186/s12284-018-0226-1
  • Sadeghi F, Samsampour D, Askari Seyahooei M, Bagheri A, Soltani J. 2020. Fungal endophytes alleviate drought-induced oxidative stress in mandarin (citrus reticulata L.): toward regulating the ascorbate–glutathione cycle. Sci Hortic (Amsterdam). 261:108991.
  • Saedi T, Mosaddeghi MR, Sabzalian MR, Zarebanadkouki M. 2021. Effect of Epichloë fungal endophyte symbiosis on tall fescue to cope with flooding-derived oxygen-limited conditions depends on the host genotype. Plant Soil. 468(1–2):353–373.
  • Sahay N, Varma A. 1999. Piriformospora indica: a new biological hardening tool for micropropagated plants. FEMS Microbiol Lett. 181(2):297–302. https://academic.oup.com/femsle/article-lookup/doi/10.1111/j.1574-6968.1999.tb08858.x
  • Saleem K, Iqbal A, Mirza CR, Butt TA, Toqeer M, Yousaf S, Zafar MI, Iqbal M. 2021. Role of trametes hirsuta on petunia hybrida vilm. in the presence of cadmium and lead. Russ J Plant Physiol. 68:S116–S130.
  • Sampangi-Ramaiah MH, Jagadheesh S, Dey P, Jambagi S, Vasantha Kumari MM, Oelmüller R, Nataraja KN, Venkataramana Ravishankar K, Ravikanth G, Uma Shaanker R. 2020. An endophyte from salt-adapted pokkali rice confers salt-tolerance to a salt-sensitive rice variety and targets a unique pattern of genes in its new host. Sci Rep. 10(1):1–14. https://www.nature.com/articles/s41598-020-59998-x
  • Sangamesh MB, Jambagi S, Vasanthakumari MM, Shetty NJ, Kolte H, Ravikanth G, Nataraja KN, Uma Shaanker R. 2018. Thermotolerance of fungal endophytes isolated from plants adapted to the thar desert, India. Symbiosis. 75(2):135–147. doi:10.1007/s13199-017-0527-y.
  • Santangelo JS, Kotanen PM. 2016. Nonsystemic fungal endophytes increase survival but reduce tolerance to simulated herbivory in subarctic Festuca rubra.peters DPC, editor. Ecosphere. 7(5):e01260. https://onlinelibrary.wiley.com/doi/10.1002/ecs2.1260
  • Santos S, Silva P, Garcia AC, Zilli JÉ, Berbara RLL. 2017. Dark septate endophyte decreases stress on rice plants. Brazilian J Microbiol. 48(2):333–341.
  • Sarkar D, Rovenich H, Jeena G, Nizam S, Tissier A, Balcke GU, Mahdi LK, Bonkowski M, Langen G, Zuccaro A. 2019. The inconspicuous gatekeeper: endophytic Serendipita vermifera acts as extended plant protection barrier in the rhizosphere. New Phytol. 224(2):886–901. https://onlinelibrary.wiley.com/doi/abs/10.1111/nph.15904
  • Satheesan J, Narayanan AK, Sakunthala M. 2012. Induction of root colonization by Piriformospora indica leads to enhanced asiaticoside production in Centella asiatica. Mycorrhiza. 22(3):195–202. https://link.springer.com/article/10.1007/s00572-011-0394-y
  • Sánchez-Rodríguez AR, Del Campillo MC, Quesada-Moraga E. 2015. Beauveria bassiana: An entomopathogenic fungus alleviates Fe chlorosis symptoms in plants grown on calcareous substrates. Sci Hortic (Amsterdam). 197:193–202.
  • Schmidt CS, Mrnka L, Frantík T, Lovecká P, Vosátka M. 2018. Plant growth promotion of miscanthus × giganteus by endophytic bacteria and fungi on non-polluted and polluted soils. World J Microbiol Biotechnol. 34(3):48. doi:10.1007/s11274-018-2426-7.
  • Sepehri M, Ghaffari MR, Khayam Nekoui M, Sarhadi E, Moghadam A, Khatabi B, Hosseini Salekdeh G. 2021. Root endophytic fungus Serendipita indica modulates barley leaf blade proteome by increasing the abundance of photosynthetic proteins in response to salinity. J Appl Microbiol. 131(4):1870–1889.
  • Shadmani L, Jamali S, Fatemi A. 2021. Effects of root endophytic fungus, microdochium bolleyi on cadmium uptake, translocation and tolerance by Hordeum vulgare L. Biologia (Bratisl). 76(2):711–719.
  • Shah S, Shrestha R, Maharjan S, Selosse M-A, Pant B. 2018. Isolation and Characterization of plant growth-promoting endophytic fungi from the roots of Dendrobium moniliforme. Plants. 8(1):5. http://www.mdpi.com/2223-7747/8/1/5
  • Sharma P, Kharkwal AC, Abdin MZ, Varma A. 2017. Piriformospora indica-mediated salinity tolerance in Aloe vera plantlets. Symbiosis. 72(2):103–115. https://link.springer.com/article/10.1007/s13199-016-0449-0
  • Sharma VK, Li X, Wu G, Bai W, Parmar S, White JF, Li H. 2019. Endophytic community of Pb-Zn hyperaccumulator arabis alpina and its role in host plants metal tolerance. Plant Soil. 437(1–2):397–411. doi:10.1007/s11104-019-03988-0.
  • Shen M, Liu L, Li DW, Zhou WN, Zhou ZP, Zhang CF, Luo YY, Wang HB, Li HY. 2013. The effect of endophytic peyronellaea from heavy metal-contaminated and uncontaminated sites on maize growth, heavy metal absorption and accumulation. Fungal Ecol. 6(6):539–545.
  • Sherameti I, Tripathi S, Varma A, Oelmüller R. 2008. The Root-Colonizing Endophyte Pirifomospora indica Confers Drought Tolerance in Arabidopsis by Stimulating the Expression of Drought Stress-Related Genes in leaves. / 799 MPMI. 21(6):799–807. https://pubmed.ncbi.nlm.nih.gov/18624643/
  • Shiba T, Sugawara K. 2005. Resistance to the rice leaf bug, Trigonotylus caelestialium, is conferred by Neotyphodium endophyte infection of perennial ryegrass, Lolium perenne. Entomol Exp Appl. 115(3):387–392.
  • Shittu HO, Shakir AS, Nazar RN, Robb J. 2009. Endophyte-induced verticillium protection in tomato is range-restricted. Plant Signal Behav. 4(2):160–161.
  • Shukla N, Awasthi RP, Rawat L, Kumar J. 2012. Biochemical and physiological responses of rice (Oryza sativa L.) as influenced by Trichoderma harzianum under drought stress. Plant Physiol Biochem. 54:78–88.
  • Sinclair G, Charest C, Dalpé Y, Khanizadeh S. 2013. Influence of arbuscular mycorrhizal fungi and a root endophyte on the biomass and root morphology of selected strawberry cultivars under salt conditions. Can J Plant Sci. 93(6):997–999.
  • Singh G, Sharma P, Sharma S. 2016. Role of growth media on the phytopromotional potential of symbiotic fungus Piriformospora indica. J Environ Biol. 37(July):565–571.
  • Singh UB, Sahu A, Sahu N, Singh BP, Singh RK, Renu Singh DP, Jaiswal RK, Sarma BK, Singh HB, et al. 2013. Can endophytic arthrobotrys oligospora modulate accumulation of defence related biomolecules and induced systemic resistance in tomato (lycopersicon esculentum mill.) against root knot disease caused by Meloidogyne incognita. Appl Soil Ecol. 63:45–56.
  • Soleimani M, Hajabbasi MA, Afyuni M, Mirlohi A, Borggaard OK, Holm PE. 2010. Effect of endophytic fungi on cadmium tolerance and bioaccumulation by Festuca arundinacea and Festuca pratensis. Int J Phytoremediation. 12(6):535–549. https://www.tandfonline.com/doi/abs/10.1080/15226510903353187
  • Su CL, Zhang FM, Sun K, Zhang W, Dai CC. 2019. Fungal endophyte Phomopsis liquidambari improves iron and molybdenum nutrition uptake of Peanut in consecutive monoculture soil. J Soil Sci Plant Nutr. 19(1):71–80.
  • Su ZZ, Dai MD, Zhu JN, Liu XH, Li L, Zhu XM, Wang JY, Yuan ZL, Lin FC. 2021. Dark septate endophyte falciphora oryzae-assisted alleviation of cadmium in rice. J Hazard Mater. 419. doi:10.1016/j.jhazmat.2021.126435.
  • Sun BT, Akutse KS, Xia XF, Chen JH, Ai X, Tang Y, Wang Q, Feng BW, Goettel MS, You MS. 2018. Endophytic effects of Aspergillus oryzae on radish (raphanus sativus) and its herbivore, plutella xylostella. Planta. 248(3):705–714.
  • Sutton JC, Liu W, Ma J, Brown WG, Stewart JF, Walker GD. 2008. Evaluation of the fungal endophyte clonostachys rosea as an inoculant to enhance growth, fitness and productivity of crop plants. In: Acta Hortic. Vol. 782. [place unknown]: International Society for Horticultural Science; p. 279–286. doi:10.17660/ActaHortic.2008.782.34.
  • Suwannarach N, Kumla J, Matsui K, Lumyong S. 2015. Characterization and efficacy of muscodor cinnamomi in promoting plant growth and controlling Rhizoctonia root rot in tomatoes. Biol Control. 90:25–33.
  • Swarthout D, Harper E, Judd S, Gonthier D, Shyne R, Stowe T, Bultman T. 2009. Measures of leaf-level water-use efficiency in drought stressed endophyte infected and non-infected tall fescue grasses. Environ Exp Bot. 66(1):88–93.
  • Tabande L, Sepehri M, Yasrebi J, Zarei M, Ghasemi-Fasaei R, Khatabi B. 2021. A comparison between the function of Serendipita indica and sinorhizobium meliloti in modulating the toxicity of zinc oxide nanoparticles in alfalfa (Medicago sativa L.). Environ Sci Pollut Res. 29(6):8790–8803.
  • Thangavelu R, Gopi M. 2015. Combined application of native Trichoderma isolates possessing multiple functions for the control of Fusarium wilt disease in banana cv. grand naine. Biocontrol Sci Technol. 25(10):1147–1164.
  • Tian B, Xie J, Fu Y, Cheng J, Li B, Chen T, Zhao Y, Gao Z, Yang P, Barbetti MJ, et al. 2020. A cosmopolitan fungal pathogen of dicots adopts an endophytic lifestyle on cereal crops and protects them from major fungal diseases. ISME J. 14(12):3120–3135.
  • Tian Z, Huang B, Belanger FC. 2015. Effects of Epichloë festucae fungal endophyte infection on drought and heat stress responses of strong creeping red fescue. J Am Soc Hortic Sci. 140(3):257–264. https://journals.ashs.org/jashs/view/journals/jashs/140/3/article-p257.xml
  • Ting ASY, Meon S, Kadir J, Radu S, Singh G. 2008. Endophytic microorganisms as potential growth promoters of banana. BioControl. 53(3):541–553. https://link.springer.com/article/10.1007/s10526-007-9093-1
  • Tolba SRT, Moustafa MMA, Elshawaf IIS, Rosso LC, Pentimone I, Colagiero M, Bubici G, Prigigallo MI, Ciancio A. 2021. Root endophytism by pochonia chlamydosporia affects defense-gene expression in leaves of monocot and dicot hosts under multiple biotic interactions. Plants. 10(4):718. doi:10.3390/plants10040718.
  • Torres-Díaz C, Valladares MA, Acuña-Rodríguez IS, Ballesteros GI, Barrera A, Atala C, Molina-Montenegro MA. 2021. Symbiotic interaction enhances the recovery of endangered Tree species in the fragmented maulino forest. Front Plant Sci. 12:663017.
  • Turbat A, Rakk D, Vigneshwari A, Kocsubé S, Thu H, Szepesi Á, Bakacsy L, Škrbić B D, Jigjiddorj E-A, Vágvölgyi C, Szekeres A. 2020. Characterization of the plant growth-promoting activities of endophytic fungi isolated from sophora flavescens. Microorganisms. 8(5):683. https://www.mdpi.com/2076-2607/8/5/683
  • Ueno AC, Gundel PE, Ghersa CM, Agathokleous E, Martínez-Ghersa MA. 2021. Seed-borne fungal endophytes constrain reproductive success of host plants under ozone pollution. Environ Res. 202:111773.
  • Ueno AC, Gundel PE, Omacini M, Ghersa CM, Bush LP, Martínez-Ghersa MA. 2016. Mutualism effectiveness of a fungal endophyte in an annual grass is impaired by ozone.bennett A, editor. Funct Ecol. 30(2):226–234. https://onlinelibrary.wiley.com/doi/abs/10.1111/1365-2435.12519
  • Varkey S, Anith KN, Narayana R, Aswini S. 2018. A consortium of rhizobacteria and fungal endophyte suppress the root-knot nematode parasite in tomato. Rhizosphere. 5:38–42.
  • Vázquez de Aldana BR, Gundel PE, García Criado B, García Ciudad A, García Sánchez A, Zabalgogeazcoa I. 2014. Germination response of endophytic Festuca rubra seeds in the presence of arsenic. Grass Forage Sci. 69(3):462–469.
  • Vázquez-de-Aldana BR, García-Ciudad A, García-Criado B, Vicente-Tavera S, Zabalgogeazcoa I. 2013. Fungal endophyte (Epichloë festucae) alters the nutrient content of Festuca rubra regardless of water availability. PLoS One. 8(12):e84539. doi:10.1371/journal.pone.0084539.
  • Vergara C, Araujo KEC, Sperandio MVL, Santos LA, Urquiaga S, Zilli JÉ. 2019. Dark septate endophytic fungi increase the activity of proton pumps, efficiency of 15N recovery from ammonium sulphate, N content, and micronutrient levels in rice plants. Brazilian J Microbiol. 50(3):825–838. doi:10.1007/s42770-019-00092-4.
  • Vila Aiub MM, Ghersa CM. 2001. The role of fungal endophyte infection in the evolution of Lolium multiflorum resistance to diclofop-methyl. Weed Res. 41(3):265–274. http://doi.wiley.com/10.1046/j.1365-3180.2001.00236.x
  • Vila-Aiub MM, Ghersa CM, Carceller M. 2003. Effect of herbicide diclofop-methyl on proton extrusion from Lolium multiflorum seedlings differing in resistance and in fungal endophyte (Neotyphodium sp.) infection. Physiol Plant. 119(3):429–439. http://doi.wiley.com/10.1034/j.1399-3054.2003.00188.x
  • Vinayarani G, Prakash HS. 2018. Fungal endophytes of turmeric (curcuma longa L.) and their biocontrol potential against pathogens pythium aphanidermatum and Rhizoctonia solani. World J Microbiol Biotechnol. 34(3):49. doi:10.1007/s11274-018-2431-x.
  • Vujanovic V, Islam MN, Daida P. 2019. Transgenerational role of seed mycobiome – an endosymbiotic fungal composition as a prerequisite to stress resilience and adaptive phenotypes in triticum. Sci Rep. 9(1):1–13. doi:10.1038/s41598-019-54328-2.
  • Vujanovic V, Yuan X, Daida P, Milunovic B, Germida J. 2016. Manipulation of cold stratification and endophytic effects on expression patterns of RSG and KAO genes in coleorhiza of wheat seeds. Plant Growth Regul. 79(2):219–227. https://link.springer.com/article/10.1007/s10725-015-0127-x
  • Waller F, Achatz B, Baltruschat H, Fodor J, Becker K, Fischer M, Heier T, Hückelhoven R, Neumann C, Von Wettstein D, et al. 2005. The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proc Natl Acad Sci U S A. 102(38):13386–13391. www.pnas.orgcgi doi:10.1073/pnas.0504423102
  • Wang D, Wang H, Li J, Zhang W, Pan Y, Liu X. 2018. Investigating the role of endophytic fungi in gentiana scabra bge. by cross-growth period inoculation. Indian J Microbiol. 58(3):319–325. doi:10.1007/s12088-018-0725-1.
  • Wang F, Zhang R, Yuan Z, Chen P. 2021. Biological prevention and control of pitaya fruit canker disease using endophytic fungi isolated from papaya. Arch Microbiol. 203(7):4033–4040.
  • Wang J, Hou W, Christensen MJ, Xia C, Chen T, Zhang Z, Nan Z. 2020. The fungal endophyte Epichloë gansuensis increases NaCl-tolerance in Achnatherum inebrians through enhancing the activity of plasma membrane H+-ATPase and glucose-6-phosphate dehydrogenase. Sci China Life Sci. 64(3):452–465.
  • Wang J, Nan Z, Christensen MJ, Li C. 2018. Glucose-6-phosphate dehydrogenase plays a vital role in Achnatherum inebrians plants host to Epichloë gansuensis by improving growth under nitrogen deficiency. Plant Soil. 430(1–2):37–48. doi:10.1007/s11104-018-3710-x.
  • Wang J, Nan Z, Christensen MJ, Zhang X, Tian P, Zhang Z, Niu X, Gao P, Chen T, Ma L. 2018. Effect of Epichloë gansuensis endophyte on the nitrogen metabolism, nitrogen Use efficiency, and stoichiometry of Achnatherum inebrians under nitrogen limitation. J Agric Food Chem. 66(16):4022–4031. https://pubs.acs.org/sharingguidelines
  • Wang JL, Li T, Liu GY, Smith JM, Zhao ZW. 2016. Unraveling the role of dark septate endophyte (DSE) colonizing maize (Zea mays) under cadmium stress: physiological, cytological and genic aspects. Sci Rep. 6(1):1–12. www.nature.com/scientificreports
  • Wang X, Qin J, Chen W, Zhou Y, Ren A, Gao Y. 2016. Pathogen resistant advantage of endophyte-infected over endophyte-free Leymus chinensis is strengthened by pre-drought treatment. Eur J Plant Pathol. 144(3):477–486.
  • Wang XY, Zhou Y, Ren AZ, Gao YB. 2014. Effect of endophyte infection on fungal disease resistance of Leymus chinensis. Shengtai Xuebao/ Acta Ecol Sin. 34(23):6789–6796.
  • Wang Z, Li C, White J. 2020. Effects of Epichloë endophyte infection on growth, physiological properties and seed germination of wild barley under saline conditions. J Agron Crop Sci. 206(1):43–51. https://onlinelibrary.wiley.com/doi/abs/10.1111/jac.12366
  • Wani ZA, Kumar A, Sultan P, Bindu K, Riyaz-Ul-Hassan S, Ashraf N. 2017. Mortierella alpina CS10E4, an oleaginous fungal endophyte of Crocus sativus L. enhances apocarotenoid biosynthesis and stress tolerance in the host plant. Sci Rep. 7(1):1–11. www.nature.com/scientificreports
  • Wani ZA, Mirza DN, Arora P, Riyaz-Ul-Hassan S. 2016. Molecular phylogeny, diversity, community structure, and plant growth promoting properties of fungal endophytes associated with the corms of saffron plant: An insight into the microbiome of Crocus sativus linn. Fungal Biol. 120(12):1509–1524.
  • Waqas M, Khan AL, Hamayun M, Shahzad R, Kim YH, Choi KS, Lee IJ. 2015. Endophytic infection alleviates biotic stress in sunflower through regulation of defence hormones, antioxidants and functional amino acids. Eur J Plant Pathol. 141(4):803–824.
  • Waqas M, Khan AL, Kamran M, Hamayun M, Kang S-M, Kim Y-H, Lee I-J. 2012. Endophytic fungi produce gibberellins and indoleacetic acid and promotes host-plant growth during stress. Molecules. 17(9):10754–10773. http://www.mdpi.com/1420-3049/17/9/10754
  • Waqas M, Khan AL, Kang SM, Kim YH, Lee IJ. 2014. Phytohormone-producing fungal endophytes and hardwood-derived biochar interact to ameliorate heavy metal stress in soybeans. Biol Fertil Soils. 50(7):1155–1167.
  • Waqas M, Khan AL, Lee IJ. 2014. Bioactive chemical constituents produced by endophytes and effects on rice plant growth. J Plant Interact. 9(1):478–487.
  • Waqas M, Khan AL, Shahzad R, Ullah I, Khan AR, Lee IJ. 2015. Mutualistic fungal endophytes produce phytohormones and organic acids that promote japonica rice plant growth under prolonged heat stress. J Zhejiang Univ Sci B. 16(12):1011–1018. http://orcid.org/0000-0001-7154-4820
  • Ważny R, Rozpądek P, Domka A, Jędrzejczyk RJ, Nosek M, Hubalewska-Mazgaj M, Lichtscheidl I, Kidd P, Turnau K. 2021. The effect of endophytic fungi on growth and nickel accumulation in noccaea hyperaccumulators. Sci Total Environ. 768:144666.
  • Wäli PR, Helander M, Nissinen O, Lehtonen P, Saikkonen K. 2008. Endophyte infection, nutrient status of the soil and duration of snow cover influence the performance of meadow fescue in sub-artic conditions. Grass Forage Sci. 63(3):324–330. http://doi.wiley.com/10.1111/j.1365-2494.2008.00639.x
  • Wäli PR, Helander M, Saloniemi I, Ahlholm J, Saikkonen K. 2009. Variable effects of endophytic fungus on seedling establishment of fine fescues. Oecologia. 159(1):49–57. https://link.springer.com/article/10.1007/s00442-008-1202-z
  • West CP, Izekor E, Oosterhuis DM, Robbins RT. 1988. The effect of Acremonium coenophialum on the growth and nematode infestation of tall fescue. Plant Soil. 112(1):3–6.
  • Wu C, Li B, Wei Q, Pan R, Zhang W. 2019. Endophytic fungus Serendipita indica increased nutrition absorption and biomass accumulation in cunninghamia lanceolata seedlings under low phosphate. Shengtai Xuebao/ Acta Ecol Sin. 39(1):21–29.
  • Wu FL, Li Y, Tian W, Sun Y, Chen F, Zhang Y, Zhai Y, Zhang J, Su H, Wang L. 2020. A novel dark septate fungal endophyte positively affected blueberry growth and changed the expression of plant genes involved in phytohormone and flavonoid biosynthesis. Tree Physiol. 40(8):1080–1094.
  • Wu LQ, Lv YL, Meng ZX, Chen J, Guo SX. 2010. The promoting role of an isolate of dark-septate fungus on its host plant saussurea involucrata Kar. et Kir. Mycorrhiza. 20(2):127–135. https://link.springer.com/article/10.1007/s00572-009-0268-8
  • Wu M, Wei Q, Xu L, Li H, Oelmüller R, Zhang W. 2018. Piriformospora indica enhances phosphorus absorption by stimulating acid phosphatase activities and organic acid accumulation in Brassica napus. Plant Soil. 432(1–2):333–344. doi:10.1007/s11104-018-3795-2.
  • Xia C, Zhang X, Christensen MJ, Nan Z, Li C. 2015. Epichloë endophyte affects the ability of powdery mildew (Blumeria graminis) to colonise drunken horse grass (Achnatherum inebrians). Fungal Ecol. 16:26–33.
  • Xu L, Li X, Han L, Li D, Song G. 2017. Epichloe endophyte infection improved drought and heat tolerance of tall fescue through altered antioxidant enzyme activity. Eur J Hortic Sci. 82(2):90–97. doi:10.17660/eJHS.2017/82.2.4.
  • Xu R, Li T, Shen M, Yang ZL, Zhao ZW. 2020. Evidence for a Dark septate endophyte (Exophiala pisciphila, H93) enhancing phosphorus absorption by maize seedlings. Plant Soil. 452(1–2):249–266. doi:10.1007/s11104-020-04538-9.
  • Yamaji K, Watanabe Y, Masuya H, Shigeto A, Yui H, Haruma T. 2016. Root Fungal Endophytes Enhance Heavy-Metal stress tolerance of clethra barbinervis growing naturally at mining sites via growth enhancement, promotion of nutrient uptake and decrease of Heavy-Metal concentration.aroca R, editor. PLoS One . 11(12):e0169089. https://dx.plos.org/10.1371/journal.pone.0169089
  • Yan N, Wang X, Wang Z, Zhang Y, Xue H, Guo D. 2013. Antioxidative system and chlorophyll fluorescence of zizania latifolia turcz. plants are affected by ustilago esculenta infection. Shengtai Xuebao/ Acta Ecol Sin. 33(5):1584–1593.
  • Yang M-Z, Ma M-D, Yuan M-Q, Huang Z-Y, Yang W-X, Zhang H-B, Huang L-H, Ren A-Y, Shan H. 2016. Fungal endophytes as a Metabolic fine-tuning regulator for wine Grape.scali M, editor. PLoS One. 11(9):e0163186. https://dx.plos.org/10.1371/journal.pone.0163186
  • Yang T, Ma S, Dai CC. 2014. Drought degree constrains the beneficial effects of a fungal endophyte on atractylodes lancea. J Appl Microbiol. 117(5):1435–1449.
  • Yokoya K, Postel S, Fang R, Sarasan V. 2017. Endophytic fungal diversity of Fragaria vesca, a crop wild relative of strawberry,along environmental gradients within a small geographical area. PeerJ. 2017(1):e2860. https://peerj.com/articles/2860
  • You YH, Yoon H, Kang SM, Shin JH, Choo YS, Lee IJ, Lee JM, Kim JG. 2012. Fungal diversity and plant growth promotion of endophytic fungi from six halophytes in suncheon Bay. J Microbiol Biotechnol. 22(11):1549–1556. http://www.jmb.or.kr/journal/view.html?doi=10.4014/jmb.1205.05010
  • Zahn G, Amend AS. 2019. Foliar fungi alter reproductive timing and allocation in Arabidopsis under normal and water-stressed conditions. Fungal Ecol. 41:101–106.
  • Zaurov DE, Bonos S, Murphy JA, Richardson M, Belanger FC. 2001. Endophyte infection can contribute to aluminum tolerance in fine fescues. Crop Sci. 41(6):1981–1984. https://onlinelibrary.wiley.com/doi/abs/10.2135/cropsci2001.1981
  • Zavala-Gonzalez EA, Escudero N, Lopez-Moya F, Aranda-Martinez A, Exposito A, Ricaño-Rodríguez J, Naranjo-Ortiz MA, Ramírez-Lepe M, Lopez-Llorca LV. 2015. Some isolates of the nematophagous fungus Pochonia chlamydosporia promote root growth and reduce flowering time of tomato. Ann Appl Biol. 166(3):472–483.
  • Zhang FS, Lv YL, Zhao Y, Guo SX. 2013. Promoting role of an endophyte on the growth and contents of kinsenosides and flavonoids of anoectochilus formosanus hayata, a rare and threatened medicinal orchidaceae plant. J Zhejiang Univ Sci B. 14(9):785–792. https://link.springer.com/article/10.1631/jzus.B1300056
  • Zhang H, Xie J, Fu Y, Cheng J, Qu Z, Zhao Z, Cheng S, Chen T, Li B, Wang Q, et al. 2020. A 2-kb mycovirus converts a pathogenic fungus into a beneficial endophyte for Brassica protection and yield enhancement. Mol Plant. 13(10):1420–1433.
  • Zhang Q, Zhang J, Yang L, Zhang L, Jiang D, Chen W, Li G. 2014. Diversity and biocontrol potential of endophytic fungi in Brassica napus. Biol Control. 72:98–108.
  • Zhang X, Li C, Nan Z. 2010. Effects of cadmium stress on growth and anti-oxidative systems in Achnatherum inebrians symbiotic with Neotyphodium gansuense. J Hazard Mater. 175(1–3):703–709.
  • Zhang Y, Zhou Y, Zhang X, Duan T, Nan Z. 2018. Effects of Epichloë endophyte on antioxidant enzymes activities, photosynthesis and growth of three ecotypes of Elymus dahuricus. Front Agric Sci Eng. 5(1):148–158. doi:10.15302/J-FASE-2017195.
  • Zhang YP, Nan ZB. 2007. Growth and anti-oxidative systems changes in Elymus dahuricus is affected by Neotyphodium endophyte under contrasting water availability. J Agron Crop Sci. 193(6):377–386. http://doi.wiley.com/10.1111/j.1439-037X.2007.00279.x
  • Zhao J, Xiang D, Peng L, Zou L, Wang Y, Zhao G. 2014. Enhancement of rutin production in fagopyrum tataricum hairy root cultures with its endophytic fungal elicitors. Prep Biochem Biotechnol. 44(8):782–794.
  • Zhou L, Li C, White JF, Johnson RD. 2021. Synergism between calcium nitrate applications and fungal endophytes to increase sugar concentration in Festuca sinensis under cold stress. PeerJ. 9:e10568. doi:10.7717/peerj.10568.
  • Zhou L, Tang K, Guo S. 2018. The Plant Growth-Promoting Fungus (PGPF) Alternaria sp. A13 Markedly Enhances Salvia miltiorrhiza Root Growth and Active Ingredient Accumulation under Greenhouse and Field conditions. Int J Mol Sci. 19(1):270. http://www.mdpi.com/1422-0067/19/1/270
  • Zhou Z, Zhang C, Zhou W, Li W, Chu L, Yan J, Li H. 2014. Diversity and plant growth-promoting ability of endophytic fungi from the five flower plant species collected from yunnan, southwest China. J Plant Interact. 9(1):585–591. https://www.tandfonline.com/doi/full/10.1080/17429145.2013.873959
  • Zhu A, Tan H, Cao L. 2019. Isolation of phytase-producing yeasts from rice seedlings for prospective probiotic applications. 3 Biotech. 9(6):216. doi:10.1007/s13205-019-1746-0.
  • Zhu L, Li T, Wang C, Zhang X, Xu L, Xu R, Zhao Z. 2018. The effects of dark septate endophyte (DSE) inoculation on tomato seedlings under Zn and Cd stress. Environ Sci Pollut Res. 25(35):35232–35241. doi:10.1007/s11356-018-3456-2.