1,778
Views
2
CrossRef citations to date
0
Altmetric
Plant-Insect Interactions

Gall-inducing Psylloidea (Insecta: Hemiptera) – plant interactions

ORCID Icon & ORCID Icon
Pages 580-594 | Received 28 Jan 2022, Accepted 07 Apr 2022, Published online: 23 May 2022

References

  • Agudelo I, Cogoi L, Filip R, Kuzmanich N, Wagner ML, Ricco RA. 2018. Anatomy, histochemistry, and comparative analysis of hydroxycinnamic derivatives in healthy leaves and galls induced by Baccharopelma spp. (Hemiptera: Psyllidae) in Baccharis spicata (Lam) Baill. (Asteraceae). Biochem Syst Ecol. 77:22–30.
  • Albert S, Padhar A, Gandhi D, Nityanand P. 2011. Morphological, anatomical, and biochemical studies on the foliar galls of Alstonia scholaris (Apocynaceae). Rev Bras Bot. 34:343–358.
  • Bailey S, Percy DM, Hefer CA, Cronk QCB. 2015. The transcriptional landscape of insect galls: psyllid (Hemiptera) gall formation in Hawaiian Metrosideros polymorpha (Myrtaceae). BMC Genom. 16:943. doi:10.1186/s12864-015-2109-9.
  • Balakrishna P. Raman A. 1992. Cecidogenesis of leaf galls of Strychnos nux-vomica (Loganiaceae) induced by the jumping plant louse species Diaphorina truncata (Homoptera: Psylloidea: Psyllidae). Entomol Gener. 17:285–295.
  • Barnett MJ, Solow-Cordero DE, Long SR. 2019. A high-throughput system to identify inhibitors of Candidatus Liberibacter asiaticus transcription regulators. Proc Nat Acad Sci. USA. 116:18009–18014.
  • Batta Y, Burckhardt D. 2018. Taxonomy and biology of Pauropsylla buxtoni comb. nov. (Hemiptera: Psylloidea) on Ficus carica (Moraceae). J Entomol Res Soc. 20:39–52.
  • Behmer ST, Nes WD. 2003. Insect sterol nutrition and physiology: a global overview. Adv Insect Physiol. 31:1–72.
  • Beisler JM, Baker GT. 1992. Pachypsylla celtidismamma (Fletcher) (Homoptera: Psyllidae): morphology and histology of its gall and ultrastructure of its adult and nymphal sensilla. Missis Agric Forest Exp Sta (USA). Tech Bull. 179:1–27.
  • Bi G, Zhou Z, Wang W, Li L, Rao S, Wu Y, Zhang X, Menke FLH, Chen S, Zhou J-M. 2018. Receptor-like cytoplasmic kinases directly link diverse pattern recognition receptors to the activation of mitogen-activated protein kinase cascades in Arabidopsis. Plant Cell. 30:1543–1561.
  • Bouyjou B, Nguyen T-X. 1974. Observations sur la morphogenèse et la structure de la galle de Trioza alacris Flor (Homoptera—Psyllidae) sur Laurus nobilis L. Marcellia. 38:49–56.
  • Brennan EB, Gill RJ, Hrusa GF, Weinbaum SA. 1999. First record of Glycaspis brimblecombei (Moore) (Homoptera: Psyllidae) in North America: initial observations and predator associations of a potentially serious new pest of Eucalyptus in California. Pan-Pac Entomol. 75:55–57.
  • Brooker MIH. 2000. A new classification of the genus Eucalyptus L’Hér. (Myrtaceae). Aust Syst Bot. 13:79–148.
  • Brooks SE, Shorthouse JD. 1998. Developmental morphology of stem galls of Diplolepis nodulosa (Hymenoptera: Cynipidae) and those modified by the inquiline Periclistus pirata (Hymenoptera: Cynipidae) on Rosa blanda (Rosaceae). Can J Bot. 76:365–381.
  • Brożek J, Mróz E, Wylężek D, Depa L, Węgierek P. 2015. The structure of extremely long mouthparts in the aphid genus Stomaphis Walker (Hemiptera: Sternorrhyncha: Aphididae). Zoomorph. 134:431–445.
  • Burckhardt D. 2005a. Biology, ecology, and evolution of gall-inducing psyllids (Hemiptera: Psylloidea). In: Raman A, Schaefer CW, Withers TM, editor. Biology, ecology, and evolution of gall-inducing arthropods. Enfield: Science Publishers, Inc.; p. 143–157.
  • Burckhardt D. 2005b. Ehrendorferiana, a new genus of Neotropical jumping plant lice (Insecta: Hemiptera: Psylloidea) associated with conifers (Cupressaceae). Org Divers Evol. 4:317–319.
  • Burckhardt D. 2009. Fauna Europaea: Psylloidea; [accessed 26 July 2020]. http://www.fauna-eu.org.
  • Burckhardt D, Bassett Y. 2000. The jumping plant-lice (Hemiptera, Psylloidea) associated with Schinus (Anacardiaceae): systematics, biogeography and host plant relationships. J Nat Hist. 34:57–155.
  • Burckhardt D, Drohojowska J, Giliomee JH. 2012. Trioza bullatae sp. n. (Hemiptera: Psylloidea), a new gall-inducing pest on black stinkwood (Ocotea bullata, Lauraceae) in South Africa. Afr Entomol. 20:144–149.
  • Burckhardt D, Espirito-Santo MM, Fernandes GW, Malénovsky I. 2004. Gall-inducing jumping plant-lice of the Neotropical genus Baccharopelma (Hemiptera, Psylloidea) associated with Baccharis (Asteraceae). J Nat Hist. 38:2051–2071.
  • Burckhardt D, Mifsud D. 2003. Jumping plant-lice of the Paurocephalinae (Insecta, Hemiptera, Psylloidea): systematics and phylogeny. Contrib Nat Hist, Bern. 2:3–34.
  • Burckhardt D, Ouvrard D, de Queiroz DL, Percy D. 2014. Psyllid host-plants (Hemiptera: Psylloidea): resolving a semantic problem. Fla Entomol. 97:242–246.
  • Burckhardt D, Ouvrard D, Percy DM. 2021. An updated classification of the jumping plant-lice (Hemiptera: Psylloidea) integrating molecular and morphological evidence. Eur J Taxon. 736:137–182.
  • Burckhardt D, Sharma A, Raman A. 2018. Checklist and comments on the jumping plant-lice (Hemiptera: Psylloidea) from the Indian subcontinent. Zootaxa. 4457:1–38.
  • Carango P. 1988. Induction of a 58,000 Dalton protein during goldenrod gall formation. Biochem Biophys Res Comm. 152:1348–1358.
  • Carneiro RGS, Isaias RMS. 2015a. Cytological cycles and fates in Psidium myrtoides are altered towards new cell metabolism and functionalities by the galling activity of Nothotrioza myrtoidis. Protoplasma. 252:637–646.
  • Carneiro RGS, Oliveira DC, Isaias RMS. 2014. Developmental anatomy and immunocytochemistry reveal the neo-ontogenesis of the leaf tissues of Psidium myrtoides (Myrtaceae) towards the globoid galls of Nothotrioza myrtoidis (Triozidae). Plant Cell Rep. 33:2093–2106.
  • Carneiro RGS, Pacheco P, Isaias RMS. 2015b. Could the extended phenotype extend to the cellular and subcellular levels in insect-induced galls? Plos ONE. 10. doi:10.1371/journal.pone.0129331.
  • Chauhan S, Singh N, Chauhan SVS. 2020. Morphological studies of insect-induced galls in flowers and fruits of Alstonia scholaris (L.) R. Br. Proc Natl Acad Sci, India, B. 90:705–712.
  • Collingel DB, Kragh KM, Mikkelsen JD, Nielsen KK, Rasmussen U, Vad K. 1993. Plant chitinases. Plant J. 3:31–40.
  • Cuevas-Reyes P, Quesada M, Hanson P, Oyama K. 2007. Interactions among three trophic levels and diversity of parasitoids: a case of top-down processes in Mexican tropical dry forest. Environ Entomol. 36:792–800.
  • de Queiroz DL, Majer J, Burckhardt D, Zanetti R, Fernandez JIR, de Queiroz EC, Garrastazu M, Fernandes BV, dos Anjos N. 2013. Predicting the geographical distribution of Glycaspis brimblecombei (Hemiptera: Psylloidea) in Brazil. Aust J Entomol. 52:20–30.
  • De Vos M, Van Oosten VR, Van Poecke RMP, Van Pelt JA, Pozo MJ, Mueller MJ, Buchala AJ, Métraux J-P, Van Loon LC, Dicke M, Pieterse CMJ. 2005. Signal signature and transcriptome changes of Arabidopsis during pathogen and insect attack. Mol Plant-Microbe Interact. 18:923–937.
  • den Bieman K, Malenovský I, Burckhardt D, Heijerman T. 2019. First checklist of the Dutch jumping plant lice since 93 years (Hemiptera: Psylloidea. Nederl Faunist Mededel. 53:55–118.
  • Dhileepan K, Neser S, Rumiz D, Raman A, Sharma A. 2017. Host associations of gall-inducing Prodiplosis longifila (Diptera: Cecidomyiidae) from Bolivia: implications for Its use as a biological control agent for Jatropha gossypiifolia (Euphorbiaceae). Fla Entomol. 100:777–786.
  • Diaz R, Manrique V, Munyaneza JE, Sengoda VG, Adkins S, Hendricks K, Roberts PD, Overholt WA. 2015. Host specificity testing and examination for plant pathogens reveals that the gall-inducing psyllid Calophya latiforceps is safe to release for biological control of Brazilian peppertree. Entomol Exp Appl. 154:1–14.
  • Docters van Leeuwen WM, Docters van Leeuwen-Reijnvann J. 1914. Einige Gallen aus Java (Siebenter Beitrag). Bull Jard Bot Buitenz. 16:1–68.
  • Dorchin N, Joy JB, Hilke LK, Wise MJ, Abrahamson WG. 2015. Taxonomy and phylogeny of the Asphondylia species (Diptera: Cecidomyiidae) of North American goldenrods: challenging morphology, complex host associations, and cryptic speciation. Zool J Linn Soc. 174:265–304.
  • Dsouza MR, Ravishankar BE. 2014. Nutritional sink formation in galls of Ficus glomerata Roxb. (Moraceae) by the insect Pauropsylla depressa (Psyllidae, Hemiptera). Trop Ecol. 55:129–136.
  • Dubey NK, Goel R, Ranjan A, Idris A, Singh SK, Bag SK, Chandrashekar K, Pandey KD, Singh PK, Sawant SV. 2013. Comparative transcriptome analysis of Gossypium hirsutum L. in response to sap sucking insects: aphid and whitefly. BMC Genom. DOI: 10.1186/1471-2164-14-241.
  • Epstein Y. 2014. The habitats directive and Bern Convention: synergy and dysfunction in public international and EU law. Georgetown International Environmental Law Review (G. I. E. L. R). 26:139–173.
  • Favery B, Dubreuil G, Chen M-S, Giron D, Abad P. 2020. Gall-Inducing parasites: convergent and conserved strategies of plant manipulation by insects and nematodes. Annu Rev Phytopath. 58:1–22.
  • Festucci-Buselli RA, Contim LAS, Barbosa LCA, Stuart J, Otoni WC. 2008. Biosynthesis and potential functions of the ecdysteroid 20-hydroxyecdysone — a review. Botany (Can Sci Publ.). 978–987. doi:10.1139/B08-049.
  • Fitzpatrick SM, Gries R, Khaskin G, Peach DA, Iwanski J, Gries G. 2013. Populations of the gall midge Dasineura oxycoccana on cranberry and blueberry produce and respond to different sex pheromones. Jour Chem Ecol. 39:37–49.
  • Halbert SE, Burckhardt D. 2020. The psyllids (Hemiptera: Psylloidea) of Florida: newly established and rarely collected taxa and checklist. Insecta Mundi. 0788:1–88.
  • Hall DG, Richardson ML, Ammar ED, Halbert SE. 2013. Asian citrus psyllid, Diaphorina citri (Hemiptera: Psyllidae), vector of citrus huanglongbing disease. Entomol Exp Appl. 146:207–223.
  • Havill NP, Foottit RC. 2007. The biology and evolution of the Adelgidae. Annu Rev Entomol. 52:325–349.
  • Hayat M, Longjam R, Kumar R. 2013. A new species of encyrtid (Hymenoptera) on gall-inducing psyllids (Hemiptera) from India. Orient Ins. 47:150–154.
  • Hirano T, Kimura S, Sakamoto T, Okamoto A, Nakayama T, Matsuura T, Ikeda Y, Takeda S, Suzuki Y, Ohshima I, Sato MH. 2020. Reprogramming of the developmental program of Rhus javanica during initial stage of gall induction by Schlechtendalia chinensis. Front Plant Sci. 1–13. doi:10.3389/fpls.2020.00471.
  • Hodkinson ID. 1984. The biology and ecology of the gall-forming psylloidea. In: Ananthakrishnan TN, editor. The biology of gall forming insects. London: Edward Arnold. p. 59–77.
  • Hodkinson ID. 1986. The psyllids (Homoptera: Psylloidea) of the Oriental zoogeographical region: an annotated checklist. J Nat Hist. 20:299–357.
  • Hodkinson ID. 1989. The biogeography of the Neotropical jumping plant-lice (Insecta: Homoptera: Psylloidea). J Biogeogr. 16:203–217.
  • Hodkinson ID. 2009. Life cycle variation and adaptation in jumping plant lice (Insecta: Hemiptera: Psylloidea): a global synthesis. J Nat Hist. 43:65–179.
  • Hodkinson ID, Bird J. 2000. Sedge and rush-feeding psyllids of the subfamily Liviinae (Insecta: Hemiptera: Psylloidea): a review. Zool. J. Linn. Soc. 128:1–49.
  • Hodkinson ID, White IM. 1981. The Neotropical Psylloidea (Homoptera, Insecta) — an annotated check list. J Nat Hist. 15:491–523.
  • Hollis D. 2004. Australian Psylloidea: jumping plant lice and lerp insects. Australian Biological Resources Study, CSIRO, Canberra, Australia. p. 216.
  • Holman J. 2009. Host plant catalog of aphids, Palaearctic region. Dordrecht: Springer Netherlands: Springer Science + Business Media B.V. p. 1216.
  • Houard C. 1923. Les zoocécidies des plantes d'Afrique, d'Asie et d'Océanie: description des galles, illustration, bibliographie détaillée, répartition géographique, index bibliographique, Tome 2: Dicotylédones (2e partie), Index bibliographique, Nos. 1807 à 3293. (Paris: J. Hermann, 1922–1923). 2 vols. pp. 497–1056.
  • Jarzembowski P, Faltyn A, Jakubska-Busse A, Proćków J. 2013. First report of the occurrence of Livia junci (Schrank, 1789) (Hemiptera: Psyllidae) on Juncus fontanesii J. Gay ex Laharpe (Juncaceae) from Portugal. Arch Biol Sci. Belgrade. 65:1521–1524.
  • Kirst GO, Rapp H. 1974. Zur Physiologie der Galle von Mikiola fagi Htg. auf Blättern von Fagus silvatica L. 2. Transport 14C markitiert Assimilate aus dem befallenen Blatt und aus Nachbarblättern in die Galle. Biochem Physiol Pflanzen. 165:445–455.
  • Korgaonkar A, Han C, Lemire AL, Siwanowicz I, Bennouna D, Kopec RE, Andolfatto P, Shigenobu S, Stern DL. 2021. A novel family of secreted insect proteins linked to plant gall development. Curr Biol. 31:1836–1849.
  • Küster E. 1911. Die Gallen der Pflanzen: ein Lehrbuch für Botaniker und Entomologen. Leipzig: S. Hirzel. p. 437.
  • Lizer Trelles CA, Molle CC. 1945. Estructura anatómica de filocecidias neotrópicas. Lilloa. 11:153–207.
  • Malenovský I, Burckhardt D, Queiroz DL, Isaias RMS, Oliveira DC. 2015. Descriptions of two new Pseudophacopteron species (Hemiptera: Psylloidea: Phacopteronidae) inducing galls on Aspidosperma (Apocynaceae). Acta Entomol Mus Natl Pragae. 55:513–538.
  • Mani MS. 2000. Plant Galls of India. New Hampshire: Science Publishers.
  • Mani T, Raman A. 1994. Biochemical changes in relation to growth in two leaf gall systems induced by Trioza jambolanae and Microceropsylla longispiculata (Homoptera: Psylloidea). Phytophaga. 6:59–64.
  • Maresquelle H-J, Meyer J. 1965. Physiologie et morphogenèse des galls d’origine animale (Zoocécidies). Handb. Pflanzenphysiol. 15:280–329.
  • Mathur RN. 1975. Psyllidae of the Indian subcontinent. New Delhi: Indian Council of Agricultural Research. p. 429.
  • McLean IFG. 1994. Interactions between Trichochermes walkeri (Homoptera: Psylloidea) and other Homoptera on Rhamnus catharticus. In: Williams MAJ, editor. Plant galls. Systematics association special volume, 49. Oxford: Clarendon Press; p. 151–160.
  • Meyer J. 1987. Plant galls and gall inducers. Stuttgart: Gebrüder Bornträger. p. 291.
  • Miller DG, Raman A. 2019. Host–plant relations of gall-inducing insects. Ann Entomol Soc Am. 112:1–19.
  • Nakabachi A, Yamashita A, Toh H, Ishikawa H, Dunbar HE, Moran NA, Hattori M. 2006. The 160-kilobase genome of the bacterial endosymbiont Carsonella. Science. 314:267. doi:10.1126/science.1134196.
  • Ouvrard D, Chalise P, Percy DM. 2015. Host-plant leaps versus host-plant shuffle: a global survey reveals contrasting patterns in an oligophagous insect group (Hemiptera, Psylloidea). Syst Biodivers. 13:434–454.
  • Partomihardjo T, Yukawa J, Uechi N, Abe J. 2011. Arthropod galls found on the Krakatau Islands and in adjacent areas of Indonesia, with reference to faunistic disharmony between the Islands and the whole of Indonesia. Esakia. 50:9–21.
  • Percy DM, Butterill PT, Malenovský I. 2015. Three new species of gall-forming psyllids (Hemiptera: Psylloidea) from Papua New Guinea, with new records and notes on related species. J Nat Hist. 50:1073–1101.
  • Pusztahelyi T. 2018. Chitin and chitin-related compounds in plant–fungal interactions. Mycology. 9:189–201.
  • Rajadurai S, Mani T, Balakrishna P, Raman A. 1990. On the digestive enzymes and soluble proteins of the nymphal salivary glands of Trioza jambolanae Crawford (Triozinae: Psyllidae: Homoptera), the gall maker of the leaves of Syzygium cumini (L.) Skeels (Myrtaceae). Phytophaga. 3:47–53.
  • Raman A. 1987. On the cecidogenesis and nutritive tissues of the leaf galls of Garuga pinnata Roxburgh (Burseraceae) induced by Phacopteron lentiginosum Buckton (Pauropsyllinae: Psyllidae: Homoptera). Phytophaga. 1:121–140.
  • Raman A. 1991. Cecidogenesis of leaf galls on Syzygium cumini (L.) Skeels (Myrtaceae) induced by Trioza jambolanae Crawford (Homoptera: Psylloidea). Jour Nat Hist. 25:653–663.
  • Raman A. 1996. Nutritional diversity in gall-inducing insects and their evolutionary relationships with flowering plants. Internat Jour Ecol Environ Sci. 22:133–143.
  • Raman A. 2009. Insect—plant interactions: the gall dimension. In: Seckbach J, Dubinsky Z, editor. All flesh is grass: plant-animal interactions, a love—hate affair. springer, Berlin, Germany. p. 119–146.
  • Raman A. 2011. Morphogenesis of insect-induced plant galls: facts and questions. Flora. 206:517–533.
  • Raman A. 2012. Gall induction by hemipteroid insects. J Plant Interact. 7:29–44.
  • Raman A. 2021. Gall-inducing insects and plants: the induction conundrum. Curr Sci. 120:66–78.
  • Raman A, Burckhardt D, Harris KM. 2009. Biology and adaptive radiation in the gall inducing Cecidomyiidae (Insecta: Diptera) and Calophyidae (Insecta: Hemiptera) on Mangifera indica (Anacardiaceae) in the Indian subcontinent. Trop Zool. 22:27–56.
  • Raman A, Madhavan S, Florentine SK, Dhileepan K. 2006. Metabolite mobilization in the stem galls of Parthenium hysterophorus induced by Epiblema strenuana inferred from the signatures of isotopic carbon and nitrogen and concentrations of total non-structural carbohydrates. Entomol Experimental Applic. 119:101–107.
  • Raman A, Schaefer CW, Withers TM. 2005. Biology, ecology and evolution of gall-inducing arthropods. New Hampshire: Enfield: Science Publishers. p. 817.
  • Raman A, Singh RN, Maryanska-Nadachowska A. 1996. Biology and karyology of a cecidogenous psylloid, Trioza fletcheri minor (Homoptera: Psylloidea) and morphogenesis of galls on the leaves of Terminalia tomentosa and T. arjuna (Combretaceae). Ins Matsum (New Series). 53:117–134.
  • Rehill BJ, Schultz JC. 2003. Enhanced invertase activities in the galls of Hormaphis hamamelidis. J Chem Ecol. 29:2703–2720.
  • Riley CV. 1881. Gall insects. Johns New Univers Cyclop. 2:412–416.
  • Rohfritsch O. 1971. Développement cécidien et rôle du parasite dans quelques galles d'arthropodes. Marcellia. 37:233–339.
  • Rohfritsch O. 1988. A resistance response of Picea excelsa to the aphid, Adelges abietes (Homoptera: Aphidoidea). In: Mattson WJ, Lévieux J, Bernard-Dagan C, editor. Mechanisms of woody plant defenses against insects: Search for Pattern. New York: Springer Verlag; p. 253–266.
  • Rohfritsch O. 1992. Patterns in gall development. In: Shorthouse JD, Rohfritsch O, editor. Biology of insect-induced galls. New York: Oxford University Press; p. 60–86.
  • Rübsaamen EH. 1899. Mitteilungen über neue und bekannte Gallen aus Europa, Asien, Afrika und Amerika. Entomol Nachricht. 25:225–282.
  • Sattelmacher B. 2001. The apoplast and its significance for plant mineral nutrition. New Phytol. 149:167–192.
  • Schindler U, Ehrhardt W. 1964. Beobachtungen über Psyllopsis fraxini L. (Psyllidae, Blattflöhe), einen Schädling an Jungeschen. Zeit Angew Entomol. 63:313–319.
  • Schmidt E. 1966. Cycle biologique et phases cécidogènes de Livia juncorum sur Juncus articulatus. Marcellia. 33:223–235.
  • Schmidt E, Meyer J. 1966. Observations sur la structure des galles de Livia juncorum sur Juncus articulatus. Marcellia. 33:237–253.
  • Schweitzer F, Bodenhausen N, Lassueur S, Masclaux FG, Reymond P. 2013. Differential contribution of transcription factors to Arabidopsis thaliana defense against Spodoptera littoralis. Front Plant Sci. 4(13). doi:10.3389/fpls.2013.00013. [accessed on 14 October 2021].
  • Shamshina JL, Oldham T, Rogers RD. 2019. Applications of chitin in agriculture. In: Crini G, Lichtfouse E, editor. Sustainable Agriculture reviews, chitin and chitosan in food, Agriculture, pharmacy, medicine, and waste Water treatment. Cham: Springer Nature; p. 125–146.
  • Sharma A, Allen J, Madhavan S, Raman A, Taylor G, Fletcher M. 2015c. How do free-living, lerp-forming, and gall-inducing Aphalaridae (Hemiptera: Psylloidea) affect the nutritional quality of Eucalyptus leaves? Ann Entomol Soc Am. 109:127–135.
  • Sharma A, Allen J, Madhavan S, Raman A, Taylor G, Fletcher M. 2016. Complex lipids and sterols in the leaves of three species of Eucalyptus (Myrtaceae) hosting three species of Aphalaridae (Hemiptera: Psylloidea): do they have a role in regulating host fidelity? Ann Entomol Soc Am. 109:890–898.
  • Sharma A, Khan AN, Subrahmanyam S, Raman A, Taylor GS, Fletcher MJ. 2014b. Salivary proteins of plant-feeding hemipteroids—implication in phytophagy. Bull Entomol Res. 104:117–136.
  • Sharma A, Madhavan S, Raman A, Taylor G, Fletcher M. 2015b. Salivary gland structure of Ctenarytaina eucalypti (Hemiptera: Aphalaridae) and interaction of salivary proteins with Eucalyptus globulus. Pol J Entomol. 84:21–32.
  • Sharma A, Raman A. 2017. Feeding biology and nutritional physiology of Psylloidea (Insecta: Hemiptera): implications in host-plant relations. Curr Sci. 113:1543–1552.
  • Sharma A, Raman A, Taylor G, Fletcher M. 2013. Nymphal development and lerp construction of Glycaspis sp. (Hemiptera: Psylloidea) on Eucalyptus sideroxylon (Myrtaceae) in central-west New South Wales, Australia. Arthropod Struct Dev. 42:551–564.
  • Sharma A, Raman A, Taylor GS, Fletcher MJ, Nicol H. 2014a. Bionomics and feeding impact of Ctenarytaina eucalypti (Hemiptera: Psylloidea: Aphalaridae) on Eucalyptus globulus (Myrtaceae) in the central tablelands of New South Wales. Aust Entomol. 54:117–136.
  • Sharma A, Raman A, Taylor GS, Fletcher MJ, Nicol H. 2015a. Feeding and oviposition behaviour of a gall-inducing species of Glycaspis (Synglycaspis) (Hemiptera: Psylloidea: Aphalaridae) and development of galls on the leaves of Eucalyptus macrorhyncha (Myrtaceae) in central western New South Wales. Australia. Eur J Entomol. 112:75–90.
  • Shih TH, Lin SH, Huang MY, Sun CW, Yang CM. 2018. Transcriptome profile of cup-shaped galls in Litsea acuminata leaves. PloS One. 13(10):e0205265. DOI: 10.1371/journal.pone.0205265.
  • Singh G. 2000. Physiology of shoot gall formation and its relationship with juvenility and flowering in mango. Acta Hortic. (ISHS. 509:803–810.
  • Singh G. 2003. Mango shoot gall: its causal organism and control measures. In: Ramamurthy V. V., Singh V.S., Gupta G. P., Paul A. V. N., editor. Gleanings in entomology. New Delhi: Indian Agricultural Research Institute; p. 56–77.
  • Singh G, Kumar A, Everett TR. 1975. Biological observations and control of Apsylla cistellata Buckton (Psyllidae: Homoptera). Indian J Entomol. 37:46–50.
  • Singh S, Singh KP. 2011. Description of two new species of Psyllaephagus Ashmead (Hymenoptera: Encyrtidae) parasitizing Phacopteron lentiginosum Buckton (Hemiptera: Psyllidae), a leaf gall-former of Garuga pinnata Roxburgh (Burseraceae). Zootaxa. 2885:33–43.
  • Sokhi J, Kapil RN. 1984. Morphogenetic changes induced by Trioza in flowers of Terminalia arjuna – I. Androecium. Phytomorph. 34:117–128.
  • Sokhi J, Kapil RN. 1985. Morphogenetic changes induced by Trioza in flowers of Terminalia arjuna – II. Gynoecium. Phytomorph. 35:69–82.
  • Sopow SL, Shorthouse JD, Strong W, Quiring DT. 2003. Evidence for long-distance, chemical gall induction by an insect. Ecol Lett. 6:102–105.
  • Taylor GT. 1990. Revision of the genus Schedotrioza Tuthill & Taylor (Homoptera: Psylloidea: Triozidae). Invert Taxon. 4:721–751.
  • Uichanco HR. 1919. A biological and systematic study of Philippine plant galls. Philipp J Sci. 14:527–554.
  • Veenakumari K, Buhl PN, Mohanraj P. 2018. A new species of Synopeas (Hymenoptera: Platygastridae) parasitizing Pauropsylla cf. depressa (Psylloidea: Triozidae) in India. Acta Entomol Mus Natl Pragae. 58:137–141.
  • Waliwitiya R, Belton P, Nicholson RA, Lowenberger CA. 2012. Plant terpenoids: acute toxicities and effects on flight motor activity and wing beat frequency in the blow fly Phaenicia sericata. J Econ Entomol. 105:72–84.
  • Westphal E. 1982. Modification du pH vacuolaire des cellules épidermiques foliares de Solanum dulcamara soumises à l’action d’un acarian cécidogène. Can J Bot. 60:2882–2888.
  • Westphal E, Dreger F, Bronner R. 1990. The gall mite Aceria cladophthirus (Nalepa). I. Life cycle, survival outside the galls and symptoms expression on susceptible and resistant Solanum dulcamara L. plants. Exp. Appl. Acarol. 9:183–200.
  • White IM, Hodkinson ID. 1985. Nymphal taxonomy and systematics of the Psylloidea. Bull Br Nat Hist Mus (Ent. 50:153–301.
  • White TCR. 1970. The nymphal stage of Cardiaspina densitexta (Homoptera, Psyllidae) on leaves of Eucalyptus fasciculosa. Aust J Zool. 18:273–293.
  • Yang CK, Li F. 1982. Description of the new genus Celtisaspsis and five new species of China (Homoptera: Psyllidae). Entomotaxon. 4:183–198.
  • Yang M-M. 1995. Biosystematics and the evolution of gall formation in hackberry psyllids Pachypsylla (Insecta: Homoptera: Psylloidea: Psyllidae), PhD Thesis, University of Maryland. p. 221.
  • Yang M-M, Burckhardt D, Fang S. 2013. Psylloidea of Taiwan. Volume II. family triozidae. Taichung: National Chung Hsing University. p. 160.
  • Yang M-M, Burckhardt D, Fang SJ. 2009. Psylloidea of Taiwan (Vol. I). Families Calophyidae, Carsidaridae, Homotomidae and Phacopteronidae, with overview and keys to families and genera of Taiwanese Psylloidea (Insecta: Hemiptera). Taichung: National Chung Hsing University. p. 96.
  • Yang M-M, Mitter C, Miller DR. 2001. First incidence of inquilinism in gall-forming psyllids, with a description of the new inquiline species (Insecta, Hemiptera, Psylloidea, Psyllidae, Spondyliaspidinae). Zool Scr. 30:97–113.
  • Yang M-M, Raman A. 2007. Diversity, richness, and patterns of radiation among gall-inducing psyllids (Hemiptera: Psylloidea) in the Orient and Eastern Palearctic. Orient Ins. 41:55–65.
  • Zhao C, Escalante LN, Chan H, Benatti TR, Qu J, Chellapilla S, Waterhouse RM, Wheeler D, Andersson MN, Bao R, et al. 2015. A massive expansion of effector genes underlies gall formation in the wheat pest Mayetiola destructor. Curr Biol. 25:613–620.
  • Zhao Q, Ling-Ling J, Jie G, Dong-Kang Z, Hong-Ying H. 2021. Differences in gall induction of flower-like galls on haloxylon by psyllids (hemiptera: aphalaridae), and the emergence of corresponding parasitoids. Insects. 12:861. doi:10.3390/insects12100861.