1,523
Views
4
CrossRef citations to date
0
Altmetric
Plant-Environment Interactions

Transcriptome and biochemical analyses of glutathione-dependent regulation of tomato fruit ripening

, , , , , , & show all
Pages 537-547 | Received 06 Jan 2022, Accepted 19 Apr 2022, Published online: 30 Apr 2022

References

  • Aebi H. 1984. [13] catalase in vitro. Methods Enzymol. 105:121–126.
  • Anjum NA, Ahmad I, Mohmood I, Pacheco M, Duarte AC, Pereira E, Umar S, Ahmad A, Khan NA, Iqbal M, Prasad MNV. 2012. Modulation of glutathione and its related enzymes in plants’ responses to toxic metals and metalloids—A review. Environ Exp Bot. 75:307–334.
  • Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT. 2000. Gene Ontology: tool for the unification of biology. Nat Genet. 25(1):25–29.
  • Bahin E, Bailly C, Sotta B, Kranner I, Corbineau F, Leymarie J. 2011. Crosstalk between reactive oxygen species and hormonal signalling pathways regulates grain dormancy in barley: ROS and hormonal signalling in barley dormancy. plant. Cell Environ. 34(6):980–993.
  • Bates LS, Waldren RP, Teare ID. 1973. Rapid determination of free proline for water-stress studies. Plant Soil. 39(1):205–207.
  • Buege JA, Aust SD. 1978. [30] microsomal lipid peroxidation. Methods Enzymol. 52:302–310.
  • Camejo D, Martí MC, Román P, Ortiz A, Jiménez A. 2010. Antioxidant system and protein pattern in peach fruits at two maturation stages. J Agric Food Chem. 58:11140–11147.
  • Changwal C, Shukla T, Hussain Z, Singh N, Kar A, Singh VP, Abdin MZ, Arora A. 2021. Regulation of postharvest tomato fruit ripening by endogenous salicylic acid. Front Plant Sci. 12:663943.
  • Chen S, Zhou Y, Chen Y, Gu J. 2018. . fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 34(17):884–890.
  • Chen Z, Zheng Z, Huang J, Lai Z, Fan B. 2009. Biosynthesis of salicylic acid in plants. Plant Signal Behav. 4(6):493–496.
  • Chou TS, Chao YY, Kao CH. 2012. Involvement of hydrogen peroxide in heat shock- and cadmium-induced expression of ascorbate peroxidase and glutathione reductase in leaves of rice seedlings. J Plant Physiol. 169(5):478–486.
  • Claussen W, Brückner B, Krumbein A, Lenz F. 2006. Long-term response of tomato plants to changing nutrient concentration in the root environment—the role of proline as an indicator of sensory fruit quality. Plant Sci. 171(3):323–331.
  • Costa H, Gallego SM, Tomaro ML. 2002. Effect of UV-B radiation on antioxidant defense system in sunflower cotyledons. Plant Sci. 162(6):939–945.
  • Datta R, Kumar D, Sultana A, Hazra S, Bhattacharyya D, Chattopadhyay S. 2015. Glutathione regulates ACC synthase transcription via WRKY33 and ACC oxidase by modulating mRNA stability to induce ethylene synthesis during stress. Plant Physiol. 169(4):01543.
  • Gao J, Zhang Y, Li Z, Liu M. 2020. Role of ethylene response factors (ERFs) in fruit ripening. Food Qual Saf. 4(1):15–20.
  • Ge C, Luo Y, Mo F, Xiao YH, Li NY, Tang HR. 2019. Effects of glutathione on the ripening quality of strawberry fruits. AIP Conf Proc. 2079:020013.
  • Gill SS, Anjum NA, Hasanuzzaman M, Gill R, Trivedi DK, Ahmad I, Pereira E, Tuteja N. 2013. Glutathione and glutathione reductase: A boon in disguise for plant abiotic stress defense operations. Plant Physiol Biochem. 70:204–212.
  • Giovinazzo G, D’Amico L, Paradiso A, Bollini R, Sparvoli F, DeGara L. 2004. Antioxidant metabolite profiles in tomato fruit constitutively expressing the grapevine stilbene synthase gene: antioxidant levels in tomato synthesizing resveratrol. Plant Biotechnol J. 3(1):57–69.
  • Guo J, Wang S, Yu X, Dong R, Li Y, Mei X, Shen Y. 2018. Polyamines regulate strawberry fruit ripening by abscisic acid, auxin, and ethylene. Plant Physiololy. 177:339–351.
  • Hacham Y, Koussevitzky S, Kirma M, Amir R. 2014. Glutathione application affects the transcript profile of genes in Arabidopsis seedling. J Plant Physiol. 171(15):1444–1451.
  • Huan C, Jiang L, An X, Kang R, Yu M, Ma R, Yu Z. 2016. Potential role of glutathione peroxidase gene family in peach fruit ripening under combined postharvest treatment with heat and 1-MCP. Postharvest Biol Technol. 111:175–184.
  • Iqbal N, Khan NA, Ferrante A, Trivellini A, Francini A, Khan MIR. 2017. Ethylene role in plant growth, development and senescence: interaction with other phytohormones. Front Plant Sci. 8:475.
  • Jimenez A, Creissen G, Kular B, Firmin J, Robinson S, Verhoeyen M, Mullineaux P. 2002. Changes in oxidative processes and components of the antioxidant system during tomato fruit ripening. Planta. 214(5):751–758.
  • Kanehisa M. 2000. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28(1):27–30.
  • Keegstra K, Raikhel N. 2001. Plant glycosyltransferases. Curr Opin Plant Biol. 4(3):219–224.
  • Khatri P, Sirota M, Butte AJ. 2012. Ten years of pathway analysis: current approaches and outstanding challenges. PLoS Comput Biol. 8:e1002375.
  • Kim D, Langmead B, Salzberg SL. 2015. HISAT: a fast spliced aligner with low memory requirements. Nat Methods. 12(4):357–360.
  • Kou X, Feng Y, Yuan S, Zhao X, Wu C, Wang C, Xue Z. 2021. Different regulatory mechanisms of plant hormones in the ripening of climacteric and non-climacteric fruits: a review. Plant Mol Biol. 107(6):477–497.
  • Kuhn N, Ponce C, Arellano M, Time A, Sagredo B, Donoso JM, Meisel LA. 2020. Gibberellic acid modifies the transcript abundance of ABA pathway orthologs and modulates sweet cherry (prunus avium) fruit ripening in early- and mid-season varieties. Plants. 9:1796.
  • Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15(12):550.
  • Lovisetto A, Guzzo F, Tadiello A, Confortin E, Pavanello A, Botton A, Casadoro G. 2013. Characterization of a bZIP gene highly expressed during ripening of the peach fruit. Plant Physiol Biochem. 70:462–470.
  • López-Huertas E, Palma JM. 2020. Changes in glutathione, ascorbate, and antioxidant enzymes during olive fruit ripening. J Agric Food Chem. 68:12221–12228.
  • López-Vidal O, Camejo D, Rivera-Cabrera F, Konigsberg M, Villa-Hernández JM, Mendoza-Espinoza JA, Pérez-Flores LJ, Sevilla F, Jiménez A, de León-Sánchez F. D. 2016. Mitochondrial ascorbate–glutathione cycle and proteomic analysis of carbonylated proteins during tomato (Solanum lycopersicum) fruit ripening. Food Chem. 194:1064–1072.
  • Luo Y, Ge C, Ling Y, Mo F, Yang M, Jiang L, Chen Q, Lin Y, Sun B, Zhang Y. 2020. ABA and sucrose co-regulate strawberry fruit ripening and show inhibition of glycolysis. Mol Genet Genomics. 295(2):421–438.
  • Mano J, Ohno C, Domae Y, Asada K. 2001. Chloroplastic ascorbate peroxidase is the primary target of methylviologen-induced photooxidative stress in spinach leaves: its relevance to monodehydroascorbate radical detected with in vivo ESR. Biochimica et Biophysica Acta (BBA) - Bioenergetics. 1504(2–3):275–287.
  • Morscher F, Kranner I, Arc E, Bailly C, Roach T. 2015. Glutathione redox state, tocochromanols, fatty acids, antioxidant enzymes and protein carbonylation in sunflower seed embryos associated with after-ripening and ageing. Ann Bot. 116(4):669–678.
  • Muñoz-Vargas MA, González-Gordo S, Cañas A, López-Jaramillo J, Palma JM, Corpas FJ. 2018. Endogenous hydrogen sulfide (H2S) is up-regulated during sweet pepper (Capsicum annuum L.) fruit ripening. In vitro analysis shows that NADP-dependent isocitrate dehydrogenase (ICDH) activity is inhibited by H2S and NO. Nitric Oxide. 81:36–45.
  • Nahar K, Hasanuzzaman M, Alam MM, Fujita M. 2015. Exogenous glutathione confers high temperature stress tolerance in mung bean (vigna radiata L.) by modulating antioxidant defense and methylglyoxal detoxification system. Environ Exp Bot. 112:44–54.
  • Nemat Alla MM, Hassan NM. 2014. Alleviation of isoproturon toxicity to wheat by exogenous application of glutathione. Pestic Biochem Physiol. 112:56–62.
  • Olivares-Yañez C, Sánchez E, Pérez-Lara G, Seguel A, Camejo PY, Larrondo LF, Vidal EA, Canessa P. 2021. A comprehensive transcription factor and DNA-binding motif resource for the construction of gene regulatory networks in botrytis cinerea and trichoderma atroviride. Comput Struct Biotechnol J. 19:6212–6228.
  • Onik J, Hu X, Lin Q, Wang Z. 2018. Comparative transcriptomic profiling to understand pre- and post-ripening hormonal regulations and anthocyanin biosynthesis in early ripening apple fruit. Molecules. 23:1908.
  • Palma JM, Terán F, Contreras-Ruiz A, Rodríguez-Ruiz M, Corpas FJ. 2020. Antioxidant profile of pepper (Capsicum annuum L.) fruits containing diverse levels of capsaicinoids. Antioxidants. 9:878.
  • Pech JC, Purgatto E, Bouzayen M, Latché A. 2012. Ethylene and fruit ripening. Annual Plant Reviews. 44:275–304.
  • Pertea M, Kim D, Pertea GM, Leek JT, Salzberg SL. 2016. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and ballgown. Nat Protoc. 11(9):1650–1667.
  • Pertea M, Pertea GM, Antonescu CM, Chang TC, Mendell JT, Salzberg SL. 2015. Stringtie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnology. 33(3):290–295.
  • Qiu B, Zeng F, Cai S, Wu X, Haider SI, Wu F, Zhang G. 2013. Alleviation of chromium toxicity in rice seedlings by applying exogenous glutathione. J Plant Physiol. 170(8):772–779.
  • Ranieri A, Petacco F, Castagna A, Soldatini GF. 2000. Redox state and peroxidase system in sunflower plants exposed to ozone. Plant Sci. 159(1):159–167.
  • Shi HY, Zhang YX, Chen L. 2019. Expression and regulation of PpEIN3b during fruit ripening and senescence via integrating SA, glucose, and ACC signaling in pear (pyrus pyrifolia nakai. whangkeumbae). Genes (Basel). 10(6):476.
  • Srivastava A, Gupta AK, Datsenka T, Mattoo AK, Handa AK. 2010. Maturity and ripening-stage specific modulation of tomato (Solanum lycopersicum) fruit transcriptome. Gm Crops. 1(4):237–249.
  • Tadiello A, Longhi S, Moretto M, Ferrarini A, Tononi P, Farneti B, Busatto N, Vrhovsek U, Molin AD, Avanzato C, Biasioli F. 2016. Interference with ethylene perception at receptor level sheds light on auxin and transcriptional circuits associated with the climacteric ripening of apple fruit (malus x domestica borkh. Plant J. 88(6):963–975.
  • The Tomato Genome Consortium. 2012. The tomato genome sequence provides insights into fleshy fruit evolution. Nature. 485:635–641.
  • Uluisik S, Seymour GB. 2020. Pectate lyases: their role in plants and importance in fruit ripening. Food Chem. 309:125559.
  • Uys JD, Mulholland PJ, Townsend DM. 2014. Glutathione and redox signaling in substance abuse. Biomed Pharmacother. 68(6):799–807.
  • Verma D, Upadhyay SK, Singh K. 2021. Characterization of APX and APX-R gene family in brassica juncea and B. rapa for tolerance against abiotic stresses. Plant Cell Rep. 41:571–592.
  • Wang Y, Luo Z, Du R, Liu Y, Ying T, Mao L. 2013. Effect of nitric oxide on antioxidative response and proline metabolism in banana during cold storage. J Agric Food Chem. 61:8880–8887.
  • Xie YG, Ma YY, Bi PP, Wei W, Liu J, Hu Y, Gou YJ, Zhu D, Wen YQ, Feng JY. 2020. Transcription factor FvTCP9 promotes strawberry fruit ripening by regulating the biosynthesis of abscisic acid and anthocyanins. Plant Physiol Biochem. 146:374–383.
  • Yao M, Ge W, Zhou Q, Zhou X, Luo M, Zhao Y, Wei B, Ji S. 2021. Exogenous glutathione alleviates chilling injury in postharvest bell pepper by modulating the ascorbate-glutathione (AsA-GSH) cycle. Food Chem. 352:129458.
  • Yim MB, Kang JH, Yim HS, Kwak HS, Chock PB, Stadtman ER. 1996. A gain-of-function of an amyotrophic lateral sclerosis-associated Cu, Zn-superoxide dismutase mutant: An enhancement of free radical formation due to a decrease in Km for hydrogen peroxide. Proc Natl Acad Sci USA. 93(12):5709–5714.
  • Yu CW, Murphy TM, Sung WW, Lin CH. 2002. H2o2 treatment induces glutathione accumulation and chilling tolerance in mung bean. Funct Plant Biol. 29(9):1081.
  • Zentgraf U, Laun T, Miao Y. 2010. The complex regulation of WRKY53 during leaf senescence of Arabidopsis thaliana. Eur J Cell Biol. 89:133–137.
  • Zhang L, Kang J, Xie Q, Gong J, Shen H, Chen Y, Chen G, Hu Z. 2020. The basic helix-loop-helix transcription factor bHLH95 affects fruit ripening and multiple metabolisms in tomato. J Exp Bot. 71:6311–6327.
  • Zhou Y, Diao M, Chen X, Cui J, Pang S, Li Y, Hou C, Liu H. 2019. Application of exogenous glutathione confers salinity stress tolerance in tomato seedlings by modulating ions homeostasis and polyamine metabolism. Sci Hortic. 250:45–58.
  • Zhou Y, Wen Z, Zhang J, Chen X, Cui J, Xu W, Liu H. 2017. Exogenous glutathione alleviates salt-induced oxidative stress in tomato seedlings by regulating glutathione metabolism, redox status, and the antioxidant system. Sci Hortic. 220:90–101.
  • Zhu Y, Zheng P, Varanasi V, Shin S, Main D, Curry E, Mattheis JP. 2012. Multiple plant hormones and cell wall metabolism regulate apple fruit maturation patterns and texture attributes. Tree Genet Genomes. 8(6):1389–1406.
  • Zhu Z, Chen Y, Shi G, Zhang X. 2017. Selenium delays tomato fruit ripening by inhibiting ethylene biosynthesis and enhancing the antioxidant defense system. Food Chem. 219:179–184.