2,543
Views
2
CrossRef citations to date
0
Altmetric
Plant-Microorganism Interactions

Peace talks: symbiotic signaling molecules in arbuscular mycorrhizas and their potential application

&
Pages 824-839 | Received 19 May 2022, Accepted 27 Jul 2022, Published online: 06 Aug 2022

References

  • Abe S, et al. 2014. Carlactone is converted to carlactonoic acid by MAX1 in Arabidopsis and its methyl ester can directly interact with AtD14 in vitro. Proc Natl Acad Sci U S A 111:18084–18089. doi:10.1073/pnas.1410801111.
  • Ajavakom A, et al. 2012. Products from microwave and ultrasonic wave assisted acid hydrolysis of chitin. Carbohydr Polym. 90:73–77. doi:10.1016/j.carbpol.2012.04.064.
  • Akiyama K, et al. 2005. Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature. 435:824–827.
  • Akiyama K, et al. 2010. Structural requirements of strigolactones for hyphal branching in AM fungi. Plant Cell Physiol. 51:1104–1117. doi:10.1093/pcp/pcq058.
  • Al-Babili S, Bouwmeester H. 2015. Strigolactones, a novel carotenoid-derived plant hormone. Annu Rev Plant Biol 66:161–186. doi:10.1146/annurev-arplant-043014-114759.
  • Alder A, et al. 2012. The path from β-carotene to carlactone, a strigolactone-like plant hormone. Science. 335:1348–1351. doi:10.1126/science.1218094.
  • Al-Ghamdi AA. 2019. Marjoram physiological and molecular performance under water stress and chitosan treatment. Acta Physiol Plant 41:44.
  • Aliche EB, et al. 2020. Science and application of strigolactones. New Phytol 227:1001–1011. doi:10.1111/nph.16489.
  • Alvira P, et al. 2016. Steam explosion for wheat straw pretreatment for sugars production. Bioethanol. 2:66–75. doi:10.1515/bioeth-2016-0003.
  • Ané J-M, et al. 2002. Genetic and cytogenetic mapping of DMI1, DMI2, and DMI3 genes of Medicago truncatula involved in Nod factor transduction, nodulation, and mycorrhization. Mol Plant-Microbe Interact 15(11):1108–1118.
  • Ané J-M, et al. 2016. Chitin oligomers for use in promoting non-leguminous plant growth and development. US Patent 2016/0366883 A1.
  • Arshad M, Frankenberger WT.. 2002. Ethylene in agriculture: synthetic and natural sources and applications. In: Arshad M, Frankenberger WT, editors. Ethylene. Boston: Springer; p. 290–294.
  • Basa S, et al. 2020. The pattern of acetylation defines the priming activity of chitosan tetramers. J Am Chem Soc 142:1975–1986.
  • Belmondo S, et al. 2017. Identification of genes involved in fungal responses to strigolactones using mutants from fungal pathogens. Curr Genet. 63:201–213. doi:10.1007/s00294-016-0626-y.
  • Berlemont R. 2017. Distribution and diversity of enzymes for polysaccharide degradation in fungi. Sci Rep 7(1):222. doi:10.1038/s41598-017-00258-w.
  • Besserer A, et al. 2006. Strigolactones stimulate arbuscular mycorrhizal fungi by activating mitochondria. PLoS Biol 4:e226. doi:10.1371/journal.pbio.0040226.
  • Besserer A, et al. 2008. GR24, a synthetic analog of strigolactones, stimulates the mitosis and growth of the arbuscular mycorrhizal fungus Gigaspora rosea by boosting its energy metabolism. Plant Physiol. 148:402–413. doi:10.1104/pp.108.121400.
  • Bonfante & Requena. 2011. Dating in the dark: how roots respond to fungal signals to establish arbuscular mycorrhizal symbiosis. Curr Opin Plant Biol. 14:451–457. doi:10.1016/j.pbi.2011.03.014.
  • Bosso C, et al. 1986. The behavior of chitin towards anhydrous hydrogen fluoride. Preparation of b-(1-4)-linked 2- acetamido-2-deoxy-d-glucopyranosyl oligosaccharides. Carbohydr Res. 156:57–68.
  • Boyer FD, et al. 2012. Structure-activity relationship studies of strigolactone-related molecules for branching inhibition in garden pea: molecule design for shoot branching. Plant Physiol 159:1524–1544. doi:10.1104/pp.112.195826.
  • Boyer FD, et al. 2014. New strigolactone analogs as plant hormones with low activities in the rhizosphere. Mol. Plant. 7:675–690. doi:10.1093/mp/sst163.
  • Boyno G, Demir S. 2022. Plant-mycorrhiza communication and mycorrhizae in inter-plant communication. Symbiosis. 86:155–168. doi:10.1007/s13199-022-00837-0.
  • Brewer PB, et al. 2016. Lateral branching oxidoreductase acts in the final stages of strigolactone biosynthesis in Arabidopsis. Proc Natl Acad Sci U S A 113:6301–6306. doi:10.1073/pnas.1601729113.
  • Chen ECH, et al. 2018. High intraspecific genome diversity in the model arbuscular mycorrhizal symbiont Rhizophagus irregularis. New Phytol. 220:1161–1171. doi:10.1111/nph.14989.
  • Chesterfield RJ, et al. 2020. Translation of strigolactones from plant hormone to agriculture: achievements, future perspectives, and challenges. Trends Plant Sci. 25(11):1087–1106. doi:10.1016/j.tplants.2020.06.005.
  • Chevalier F, et al. 2014. Strigolactone promotes degradation of DWARF14, an α/β hydrolase essential for strigolactone signaling in Arabidopsis. Plant Cell. 26:1134–1150. doi:10.1105/tpc.114.122903.
  • Chiu CH, Paszkowski U. 2021. How membrane receptors tread the fine balance between symbiosis and immunity signaling. PNAS. 118(24):e2106567118. doi:10.1073/pnas.2106567118.
  • Choi J, et al. 2018. Mechanisms underlying establishment of arbuscular mycorrhizal symbioses. Annu Rev Phytopathol. 56:135–160. doi:10.1146/annurev-phyto-080516-035521.
  • Choi J, et al. 2020. The negative regulator SMAX1 controls mycorrhizal symbiosis and strigolactone biosynthesis in rice. Nat Commun. 11:1114. doi:10.1038/s41467-020-16021-1.
  • Conn CE, Nelson DC. 2016. Evidence that KARRIKIN-INSENSITIVE 2 (KAI2) receptors may perceive an unknown signal that is not karrikin or strigolactone. Front Plant Sci 6:1219. doi:10.3389/fpls.2015.01219.
  • Cook CE, et al. 1966. Germination of witchweed (Striga lutea Lour.): isolation and properties of a potent stimulant. Science. 154:1189–1190.
  • Crosino A, et al. 2021. Extraction of short chain chitooligosaccharides from fungal biomass and their use as promoters of arbuscular mycorrhizal symbiosis. Sci Rep. 11:3798. doi:10.1038/s41598-021-83299-6.
  • Defaye J, et al. 1994. A convenient access to beta-(1- 4)-linked 2-amino-2-deoxy-D-glucopyranosyl fluoride oligosaccharides and beta-(1-4)-linked 2-amino-2-deoxy-D-glucopyranosyl oligosaccharides by fluorolysis and fluorohydrolysis of chitosan. Carbohydr Res. 261:267–277.
  • De Mesmaeker A, et al. 2019. Design, synthesis and biological evaluation of strigolactone and strigolactam derivatives for potential crop enhancement applications in modern agriculture. Chimia (Aarau). 73:549–560. doi:10.2533/chimia.2019.549.
  • Denarie J, Cullimore J. 1993. Lipo-oligosaccharide nodulation factors: a new class of signaling molecules mediating recognition and morphogenesis. Cell. 74:951–954. doi:10.1016/0092-8674(93)90717-5.
  • Dénarié J, Debellé F, Promé JC. 1996. Rhizobium lipo-chitooligosaccharide nodulation factors: signaling molecules mediating recognition and morphogenesis. Annu Rev Biochem 65:503–535.
  • Deng C, et al. 2019. Metabolic engineering of Corynebacterium glutamicum S9114 based on whole-genome sequencing for efficient N-acetylglucosamine synthesis. Synthetic and Systems Biotechnology. 4:120–129.
  • De Saint Germain A, et al. 2016. An histidine covalent receptor and butenolide complex mediates strigolactone perception. Nat Chem Biol 12:787–794. doi:10.1038/nchembio.2147.
  • Domard A, Carter C. 1989. Glucosamine oligomers: preparation and characterization. Int J Biol Macromol. 11:297–302.
  • El Hadrami A, et al. 2010. Chitosan in plant protection. Mar Drugs. 8:968–987.
  • Faoro F, et al. 2008. Chemical-induced resistance against powdery mildew in barley: the effects of chitosan and benzothiadiazole. BioControl. 53:387–401. doi:10.1007/s10526-007-9091-3.
  • Feng F, et al. 2019. A combination of chitooligosaccharide and lipochitooligosaccharide recognition promotes arbuscular mycorrhizal associations in Medicago truncatula. Nat Commun. 10:5047. doi:10.1038/s41467-019-12999-5.
  • Flematti GR, et al. 2015. What are karrikins and how were they ‘discovered’ by plants? BMC Biol. 13:108. doi:10.1186/s12915-015-0219-0.
  • Foo E. 2013. Auxin influences strigolactones in pea mycorrhizal symbiosis. J Plant Physiol. 170:523–528. doi:10.1016/j.jplph.2012.11.002.
  • Fridlender M, et al. 2015. Influx and efflux of strigolactones are actively regulated and involve the cell-trafficking system. Mol. Plant. 8:1809–1812. doi:10.1016/j.molp.2015.08.013.
  • Fukui K, et al. 2013. Selective mimics of strigolactone actions and their potential use for controlling damage caused by root parasitic weeds. Mol. Plant. 6:88–99. doi:10.1093/mp/sss138.
  • Genre A, et al. 2013. Short chain chitin oligomers from arbuscular mycorrhizal fungi trigger nuclear Ca2+ spiking in Medicago truncatula roots and their production is enhanced by strigolactone. New Phytol 198:190–202. doi:10.1111/nph.12146.
  • Gobena D, et al. 2017. Mutation in sorghum LOW GERMINATION STIMULANT 1 alters strigolactones and causes striga resistance. Proc Natl Acad Sci USA 114:4471–4476. doi:10.1073/pnas.1618965114.
  • Gomez-Roldan V, et al. 2008. Strigolactone inhibition of shoot branching. Nature. 455:189–194.
  • Grifoll-Romero L, et al. 2018. Chitin deacetylases: structures, specificities, and biotech applications. Polymers (Basel). 10(4):352. doi:10.3390/polym10040352.
  • Groth M, et al. 2010. NENA, a Lotus japonicus homolog of Sec13, is required for rhizodermal infection by arbuscular mycorrhiza fungi and rhizobia but dispensable for cortical endosymbiotic development. Plant Cell. 22:2509–2526. doi:10.1105/tpc.109.069807.
  • Guan F, et al. 2020. Highly efficient production of chitooligosaccharides by enzymes mined directly from the marine metagenome. Carbohydr Polym. 234:115909. doi:10.1016/j.carbpol.2020.115909.
  • Gutjahr C, et al. 2008. Arbuscular mycorrhiza-specific signaling in rice transcends the common symbiosis signaling pathway. Plant Cell. 20(11):2989–3005. doi:10.1105/tpc.108.062414.
  • Gutjahr C, et al. 2015. Rice perception of symbiotic arbuscular mycorrhizal fungi requires the karrikin receptor complex. Science. 350:1521–1524. doi:10.1126/science.aac9715.
  • Gutjahr C, Parniske M. 2013. Cell and developmental biology of arbuscular mycorrhiza symbiosis. Annu Rev Cell Dev Biol 29:593–617. doi:10.1146/annurev-cellbio-101512-122413.
  • Hamiaux C, et al. 2012. DAD2 is an α/β hydrolase likely to be involved in the perception of the plant branching hormone, strigolactone. Curr Biol 22:2032–2036. doi:10.1016/j.cub.2012.08.007.
  • Hao W. 2021. Review: advances in preparation of chitooligosaccharides with heterogeneous sequences and their bioactivity. Carb. Pol. 252:117206. doi:10.1016/j.carbpol.2020.117206.
  • Hattori T, et al. 2012. Enzymatic synthesis of an a-chitin-like substance via lysozyme-mediated transglycosylation. Carbohydr Res 347:16–22. doi:10.1016/j.carres.2011.09.025.
  • Hauck C, et al. 1992. A germination stimulant for parasitic flowering plants from Sorghum bicolor, a genuine host plant. J Plant Physiol 139:474–478.
  • He J, et al. 2019. A LysM receptor heteromer mediates perception of arbuscular mycorrhizal symbiotic signal in rice. Mol Plant. 12:1561–1576. doi:10.1016/j.molp.2019.10.015.
  • Imaizumi-Anraku H, et al. 2005. Plastid proteins crucial for symbiotic fungal and bacterial entry into plant roots. Nature. 433(7025):527–531. doi:10.1038/nature03237.
  • Iriti M, et al. 2006. Cell death-mediated antiviral effect of chitosan in tobacco. Plant Physiol Biochem. 44:893–900.
  • Jia Y, et al. 2019. Effects of different oligochitosans on isoflavone metabolites, antioxidant activity, and isoflavone biosynthetic genes in soybean (Glycine max) seeds during germination. J Agric Food Chem 67:4652–4661.
  • Jin Y, et al. 2016. DELLA proteins are common components of symbiotic rhizobial and mycorrhizal signalling pathways. Nat Commun. 7:12433. doi:10.1038/ncomms12433.
  • Kanamori N, et al. 2006. A nucleoporin is required for induction of Ca2+ spiking in legume nodule development and essential for rhizobial and fungal symbiosis. Proceedings of the National Academy of Sciences, USA. 103:359–364. doi:10.1073/pnas.0508883103.
  • Kang B, et al. 2007. Synergetic degradation of chitosan with gamma radiation and hydrogen peroxide. Polym Degrad Stab. 92:359–362.
  • Kapulnik, Y. et al. Strigolactones affect lateral root formation and root-hair elongation in Arabidopsis. Planta 233, 209–216 (2011). doi:10.1007/s00425-010-1310-y
  • Kasprzewska A. 2003. Plant chitinases—regulation and function. Cell Mol Biol Lett 8(3):809–824.
  • Kazami N, et al. 2015. A simple procedure for preparing chitin oligomers through acetone precipitation after hydrolysis in concentrated hydrochloric acid. Carbohyd. Polym. 132:304–310. doi:10.1016/j.carbpol.2015.05.082.
  • Kevei Z, et al. 2007. 3-Hydroxy-3- methylglutaryl coenzyme A reductase1 interacts with NORK and is crucial for nodulation in Medicago truncatula. Plant Cell. 19:3974–3989. doi:10.1105/tpc.107.053975.
  • Khokhani D, et al. 2021. Deciphering the chitin code in plant symbiosis, defense, and microbial networks. Annu Rev Microbiol. 75:583–607. doi:10.1146/annurev-micro-051921-114809.
  • Kidibule PE, et al. 2018. Use of chitin and chitosan to produce new chitooligosaccharides by chitinase Chit42: enzymatic activity and structural basis of protein specificity. Microb. Cell. Fact. 17:47. doi:10.1186/s12934-018-0895-x.
  • Kobae Y. 2018. Strigolactone biosynthesis genes of rice are required for the punctual entry of arbuscular mycorrhizal fungi into the roots. Plant Cell Physiol. 59:544–553. doi:10.1093/pcp/pcy001.
  • Kohlen W, et al. 2011. Strigolactones are transported through the xylem and play a key role in shoot architectural response to phosphate deficiency in nonarbuscular mycorrhizal host Arabidopsis. Plant Physiol 155:974–987. doi:10.1104/pp.110.164640.
  • Kountche BA, et al. 2019. Suicidal germination as a control strategy for Striga hermonthica (Benth.) in smallholder farms of sub-saharan Africa. Plants People Planet. 1:107–118. doi:10.1002/ppp3.32.
  • Lanfranco L, et al. 2018. Strigolactones cross the kingdoms: plants, fungi, and bacteria in the arbuscular mycorrhizal symbiosis. J Exp Bot. 69:2175–2188. doi:10.1093/jxb/erx432.
  • Lanfranco L, Bonfante P, Genre A. 2016. The mutualistic interaction between plants and arbuscular mycorrhizal fungi. Microbiol. Spect. 4:727–747. doi:10.1128/microbiolspec.funk-0012-2016.
  • Langner T, Göhre V. 2016. Fungal chitinases: function, regulation, and potential roles in plant/pathogen interactions. Curr Genet 62(2):243–254. doi:10.1007/s00294-015-0530-x.
  • Lee CG, et al. 2008. Chitin regulation of immune responses: an old molecule with new roles. Curr Opin Immunol 20(6):684–689. doi:10.1016/j.coi.2008.10.002.
  • Lee HW, et al. 2020. Flexibility of the petunia strigolactone receptor DAD2 promotes its interaction with signaling partners. J Biol Chem 295:4181–4193. doi:10.1074/jbc.RA119.011509.
  • Liao D, et al. 2018. Tomato LysM receptor-like kinase SlLYK12 is involved in arbuscular mycorrhizal symbiosis. Front Plant Sci. 9:1004. doi:10.3389/fpls.2018.01004.
  • Limpanavech P, et al. 2008. Chitosan effects on floral production, gene expression, and anatomical changes in the Dendrobium orchid. Sci Hortic 116:65–72.
  • Ling M, et al. 2018. Metabolic engineering for the production of chitooligosaccharides: advances and perspectives. Emerg. Top. Life Sci. 2:377–388. doi:10.1042/ETLS20180009.
  • Lodhi, G., et al. 2014. Chitooligosaccharide and Its derivatives: preparation and biological applications. BioMed Res Int, ID 654913. doi:10.1155/2014/654913
  • Machová E, et al. 1999. Effect of ultrasonic treatment on the molecular weight of carboxymethylated chitin–glucan complex from Aspergillus niger. Ultrason Sonochem. 5:169–172.
  • Maillet F, et al. 2011. Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza. Nature. 469:58–63.
  • Mallakuntla MK, et al. 2017. Transglycosylation by a chitinase from Enterobacter cloacae subsp. cloacae generates longer chitin oligosaccharides. Sci Rep 7:1–12. doi:10.1038/s41598-017-05140-3.
  • Mergaert P, et al. 1995. Biosynthesis of Azorhizobium caulinodans nod factors. J Biol Chem. 270:29217–29223.
  • Merzendorfer H. 2011. The cellular basis of chitin synthesis in fungi and insects: common principles and differences. Eur J Cell Biol 90(9):759–769. doi:10.1016/j.ejcb.2011.04.014.
  • Miyakawa T, et al. 2019. Molecular basis of strigolactone perception in root-parasitic plants: aiming to control its germination with strigolactone agonists/antagonists. Cell Mol Life Sci. 77:1103–1113. doi:10.1007/s00018-019-03318-8.
  • Mori N, et al. 2020. Identification of two oxygenase genes involved in the respective biosynthetic pathways of canonical and non-canonical strigolactones in Lotus japonicus. Planta. 251:40. doi:10.1007/s00425-019-03332-x.
  • Moscatiello R, et al. 2014. The intracellular delivery of TAT-aequorin reveals calcium mediated sensing of environmental and symbiotic signals by the arbuscular mycorrhizal fungus Gigaspora margarita. New Phytol. 203:1012–1020. doi:10.1111/nph.12849.
  • Mourya VK, et al. 2011. Chitooligosaccharides: synthesis, characterization and applications. Polym. Sci. Ser. A. 53:583–612. doi:10.1134/S0965545X11070066.
  • Mukherjee A, Ané J-M. 2011. Germinating spore exudates from arbuscular mycorrhizal fungi: molecular and developmental responses in plants and their regulation by ethylene. Mol Plant-Microbe Interact 24(2):260–270. doi:10.1094/MPMI-06-10-0146.
  • Muley AB, et al. 2019. Gamma radiation degradation of chitosan for application in growth promotion and induction of stress tolerance in potato (Solanum tuberosum L. Carbohydr Polym 210:289–301.
  • Müller S, et al. 1992. Germination stimulants produced by Vigna unguiculata Walp cv Saunders upright. J Plant Growth Regul 11:77–84.
  • Nakamura H, et al. 2013. Molecular mechanismof strigolactone perception by DWARF14. Nat Commun 4:2613. doi:10.1038/ncomms3613.
  • Naqvi S, Moerschbacher BM. 2015. The cell factory approach toward biotechnological production of high-value chitosan oligomers and their derivatives: an update. Crit Rev Biotechnol. doi:10.3109/07388551.2015.1104289.
  • Nasir F, et al. 2018. Current understanding of pattern-triggered immunity and hormone-mediated defense in rice (Oryza sativa) in response to Magnaporthe oryzae infection. Semin Cell Dev Biol. 83:95–105. doi:10.1016/j.semcdb2017.10.020.
  • Nefkens GHL, et al. 1997. Synthesis of a phthaloylglycine-derived strigol analogue and its germination stimulatory activity toward seeds of the parasitic weeds Striga hermonthica and Orobanche crenata. Journal of Agriculture and Food Chemistry. 45:2273–2277.
  • Nguyen VT, et al. 2018. Effect of oligochitosan-coated silver nanoparticles (OCAgNPs) on the growth and reproduction of three species Phytophthora in vitro. Arch. Phytopathol. Plant Prot. 51:227–240.
  • Niu YF, et al. 2013. Responses of root architecture development to low phosphorus availability: a review. Ann Bot 112:391–408. doi:10.1093/aob/mcs285.
  • Oldroyd GED. 2013. Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants. Nat. Rev. Microbiol. 11:252–263. doi:10.1038/nrmicro2990.
  • Orlean P, Funai D. 2019. Priming and elongation of chitin chains: implications for chitin synthase mechanism. The Cell Surface. 5:100017. doi:10.1016/j.tcsw.2018.100017.
  • Osada M, et al. 2013. Effects of supercritical water and mechanochemical grinding treatments on physicochemical properties of chitin. Carbohydr Polym. 92:1573–1578. doi:10.1016/j.carbpol.2012.10.068.
  • Parker C. 2009. Observations on the current status of Orobanche and Striga problems worldwide. Pest Manag Sci 65:453–459. doi:10.1002/ps.1713.
  • Passos H, et al. 2014. Ionic liquid solutions as extractive solvents for value-added compounds from biomass. Green Chem 16:4786–4815. doi:10.1039/C4GC00236A.
  • Peiter E, et al. 2007. The Medicago truncatula DMI1 protein modulates cytosolic calcium signaling. Plant Physiol 145(1):192–203. doi:10.1104/pp.107.097261.
  • Pimprikar P, et al. 2016. A CCaMK-CYCLOPS-DELLA complex activates transcription of RAM1 to regulate arbuscule branching. Curr Biol. 26:987–998. doi:10.1016/j.cub.2016.01.069.
  • Poinsot V, et al. 2016. New insights into Nod factor biosynthesis: analyses of chitooligomers and lipo-chitooligomers of Rhizobium sp. IRBG74 mutants. Carbohydr Res 434:83–93. doi:10.1016/j.carres.2016.08.001.
  • Prandi C, et al. 2014. Tailoring fluorescent strigolactones for in vivo investigations: a computational and experimental study. Org Biomol Chem 12:2960–2968. doi:10.1039/C3OB42592D.
  • Rasmussen A, et al. 2013. A fluorescent alternative to the synthetic strigolactone GR24. Mol. Plant. 6:100–112. doi:10.1093/mp/sss110.
  • Rich MK, Nouri E, Courty PE, Reinhardt D. 2017. Diet of arbuscular mycorrhizal fungi: bread and butter? Trends Plant Sc. 22:652–660.
  • Rodenburg J. 2016. Parasitic weed incidence and related economic losses in rice in Africa. Agric Ecosyst Environ. 235:306–317. doi:10.1016/j.agee.2016.10.020.
  • Roy I, et al. 2003. Accelerating enzymatic hydrolysis of chitin by microwave pretreatment. Biotechnol Prog. 19:1648–1653.
  • Rush TA, et al. 2020. Lipo-chitooligosaccharides as regulatory signals of fungal growth and development. Nat Commun 11(1):3897. doi:10.1038/s41467-020-17615-5.
  • Saito K, et al. 2007. NUCLEOPORIN85 is required for calcium spiking, fungal and bacterial symbioses, and seed production in Lotus japonicus. Plant Cell. 19:610–624. doi:10.1105/tpc.106.046938.
  • Samain E, et al. 1997. Gram-scale synthesis of recombinant chitooligosaccharides in Escherichia coli. Carbohydr Res. 302:35–42.
  • Samejima H, et al. 2016. Practicality of the suicidal germination approach for controlling Striga hermonthica. Pest Manag Sci 72:2035–2042. doi:10.1002/ps.4215.
  • Sarathchandra RG, et al. 2004. A chitosan formulation ElexaTM induces downy mildew disease resistance and growth promotion in pearl millet. Crop Prot. 23:881–888.
  • Savage PE. 1999. Organic chemical reactions in supercritical water. Chem Rev. 99:603–622.
  • Scaffidi A, et al. 2014. Strigolactone hormones and their stereoisomers signal through two related receptor proteins to induce different physiological responses in Arabidopsis. Plant Physiol 165:1221–1232. doi:10.1104/pp.114.240036.
  • Seto Y, et al. 2019. Strigolactone perception and deactivation by a hydrolase receptor DWARF14. Nat Commun 10:191. doi:10.1038/s41467-018-08124-7.
  • Shabek N, et al. 2018. Structural plasticity of D3–D14 ubiquitin ligase in strigolactone signalling. Nature. 563:652–656. doi:10.1038/s41586-018-0743-5.
  • Shahul Hameed U, et al. 2018. Structural basis for specific inhibition of the highly sensitive ShHTL7 receptor. EMBO Rep 19:e45619. doi:10.15252/embr.201745619.
  • Shimizu T, et al. 2010. Two LysM receptor molecules, CEBiP and OsCERK1, cooperatively regulate chitin elicitor signaling in rice. Plant J. 64:204–214. doi:10.1111/j.1365-313X.2010.04324.x.
  • Siame BA, et al. 1993. Isolation of strigol, a germination stimulant for Striga asiatica, from host plants. J Agric Food Chem 41:1486–1491.
  • Singh S, et al. 1995. Glycosidase-catalysed oligosaccharide synthesis: preparation of N-acetylchitooligosaccharides using the b-N-acetylhexosaminidase of Aspergillus oryzae. Carbohydr Res Res. 279:293–305.
  • Stanga JP, et al. 2016. Functional redundancy in the control of seedling growth by the karrikin signaling pathway. Planta. 243:1397–1406. doi:10.1007/s00425-015-2458-2.
  • Sun G, et al. 2018. Synergistic effect of the combined bio-fungicides “-poly-L-lysine and chitooligosaccharide in controlling grey mould (Botrytis cinerea) in tomatoes. Int. J. Food Microbiol. 276:46–53.
  • Sun J, et al. 2015. Activation of symbiosis signaling by arbuscular mycorrhizal fungi in legumes and rice. Plant Cell. 27:823–838. doi:10.1105/tpc.114.131326.
  • Takahashi Y, et al. 1995. Effect of sonolysis on acid degradation of chitin to form oligosaccharides. Bull Chem Soc Jpn. 68:851–857.
  • Tanaka K, et al. 2015. Effect of lipo-chitooligosaccharide on early growth of C4 grass seedlings. J Exp Bot 66(19):5727–5738.
  • Tian F, et al. 2003. The depolymerization mechanism of chitosan by hydrogen peroxide. J Mater Sci. 38:4709–4712.
  • Tømmeraas K, et al. 2001. Preparation and characterisation of oligosaccharides produced by nitrous acid depolymerisation of chitosans. Carbohydr Res. 333:137–144.
  • Tsuchiya Y, et al. 2015. Probing strigolactone receptors in Striga hermonthica with fluorescence. Science. 349:864–868. doi:10.1126/science.aab3831.
  • Tsuzuki S, et al. 2016. Strigolactone-induced putative secreted protein 1 is required for the establishment of symbiosis by the arbuscular mycorrhizal fungus Rhizophagus irregularis. Mol Plant-Microbe Interact 29:277–286. doi:10.1094/MPMI-10-15-0234-R.
  • Turk H, et al. 2019. Chitosan-induced enhanced expression and activation of alternative oxidase confer tolerance to salt stress in maize seedlings. Plant Physiol Biochem 141:415–422.
  • Ueno K, et al. 2014. Heliolactone, a nonsesquiterpene lactone germination stimulant for root parasitic weeds from sunflower. Phytochemistry. 108:122–128. doi:10.1016/j.phytochem.2014.09.018.
  • Umehara M, et al. 2008. Inhibition of shoot branching by new terpenoid plant hormones. Nature. 455:195–200.
  • Umehara M, et al. 2010. Contribution of strigolactones to the inhibition of tiller bud outgrowth under phosphate deficiency in rice. Plant Cell Physiol 51:1118–1126. doi:10.1093/pcp/pcq084.
  • Uraguchi D, et al. 2018. A femtomolar-range suicide germination stimulant for the parasitic plant Striga hermonthica. Science. 362:1301–1305. doi:10.1126/science.aau5445.
  • Vassilev N, et al. 2015. Unexploited potential of some biotechnological techniques for biofertilizer production and formulation. Appl Microbiol Biotechnol. 99(12):4983–4996. doi:10.1007/s00253-015-6656-4.
  • Vekariya RL. 2017. A review of ionic liquids: applications towards catalytic organic transformations. J Mol Liq 227:44–60. doi:10.1016/j.molliq.2016.11.123.
  • Venkateshwaran M, et al. 2012. The recent evolution of a symbiotic ion channel in the legume family altered ion conductance and improved functionality in calcium signaling. Plant Cell. 24(6):2528–2545. doi:10.1105/tpc.112.098475.
  • Venkateshwaran M, et al. 2015. A role for the mevalonate pathway in early plant symbiotic signaling. Proceedings of the National Academy of Sciences, USA. 112:9781–9786. doi:10.1073/pnas.1413762112.
  • Vickers CE, et al. 2015. Production of industrially relevant isoprenoid compounds. In: Kamm B, editor. Engineered microbes. Springer; p. 303–334.
  • Volk H, et al. 2019. Chitin-binding protein of Verticillium nonalfalfae disguises fungus from plant chitinases and suppresses chitin-triggered host immunity. Mol Plant-Microbe Interact 32(10):1378–1390. doi:10.1094/MPMI-03-19-0079-R.
  • Volpe V, et al. 2020. Short chain chito-oligosaccharides promote arbuscular mycorrhizal colonization in Medicago truncatula. Carbohydr Polym 229:115505. doi:10.1016/j.carbpol.2019.115505.
  • Wakabayashi T, et al. 2019. Direct conversion of carlactonoic acid to orobanchol by cytochrome P450 CYP722C in strigolactone biosynthesis. Sci Adv 5:eaax9067. doi:10.1126/sciadv.aax9067.
  • Wakabayashi T, et al. 2020. CYP722C from Gossypium arboreum catalyzes the conversion of carlactonoic acid to 5-deoxystrigol. Planta. 251(5):97. doi:10.1007/s00425-020-03390-6.
  • Wakabayashi T, et al. 2021. Identification and characterization of sorgomol synthase in sorghum strigolactone biosynthesis. Plant. Phys. 185(3):902–913. doi:10.1093/plphys/kiaa113.
  • Walker CH, et al. 2019. Strigolactone synthesis is ancestral in land plants, but canonical strigolactone signalling is a flowering plant innovation. BMC Biol 17:70. doi:10.1186/s12915-019-0689-6.
  • Wan J, et al. 2008. A LysM receptor-like kinase plays a critical role in chitin signaling and fungal resistance in Arabidopsis. Plant Cell. 20(2):471–481. doi:10.1105/tpc.107.056754.
  • Wilkes JS. 2004. Properties of ionic liquid solvents for catalysis. J.Mol. Catal. A. 214:11–17. doi:10.1016/j.molcata.2003.11.029.
  • Wu HS, et al. 2011. Process for producing glucosamine and acetyl glucosamine by microwave technique. US Patent 20110114472 A1.
  • Wu S. 2021. Establishment of strigolactone-producing bacterium-yeast consortium. Sci. Adv. 7:eabh4048. doi:10.1126/sciadv.abh4048.
  • Xie X, et al. 2013. Confirming stereochemical structures of strigolactones produced by rice and tobacco. Mol. Plant. 6:153–163.
  • Xu J, et al. 2007. Antifungal activity of oligochitosan against Phytophthora capsici and other plant pathogenic fungi in vitro. Pestic Biochem Physiol 87:220–228.
  • Yamago S, et al. 2004. Iterative glycosylation of 2-deoxy-2-aminothioglycosides and its application to the combinatorial synthesis of linear oligoglucosamines. Angew Chem. 116(16):2197–2200.
  • Yang C, Wang E, Liu J. 2022. CERK1, more than a co-receptor in plant–microbe interactions. New Phytol 234:1606–1613. doi:10.1111/nph.18074.
  • Yao R, et al. 2016. DWARF14 is a non-canonical hormone receptor for strigolactone. Nature. 536:469–473. doi:10.1038/nature19073.
  • Yokota T, et al. 1998. Alectrol and orobanchol, germination stimulants for Orobanche minor, from its host red clover. Phytochemistry. 49:1967–1973.
  • Yoneyama K, et al. 2007. Nitrogen deficiency as well as phosphorus deficiency in sorghum promotes the production and exudation of 5-deoxystrigol, the host recognition signal for arbuscular mycorrhizal fungi and root parasites. Planta. 227:125–132.
  • Yoneyama K, et al. 2010. Strigolactones as germination stimulants for root parasitic plants. Plant Cell Physiol 51:1095–1103. doi:10.1093/pcp/pcq055.
  • Yoneyama K, et al. 2013. Nitrogen and phosphorus fertilization negatively affects strigolactone production and exudation in sorghum. Planta. 238:885–894. doi:10.1007/s00425-013-1943-8.
  • Yoneyama K, et al. 2015. Difference in striga-susceptibility is reflected in strigolactone secretion profile, but not in compatibility and host preference in arbuscular mycorrhizal symbiosis in two maize cultivars. New Phytol 206:983–989. doi:10.1111/nph.13375.
  • Yoneyama K, et al. 2018. Which are the major players, canonical or non-canonical strigolactones? J Exp Bot 69:2231–2239. doi:10.1093/jxb/ery090.
  • Yoneyama K, et al. 2020. Hydroxyl carlactone derivatives are predominant strigolactones in Arabidopsis. Plant Direct. 4:5. doi:10.1002/pld3.219.
  • Yoneyama K, Brewer PB. 2021. Strigolactones, how are they synthesized to regulate plant growth and development? Curr Opin Plant Biol. 63:102072. doi:10.1016/j.pbi.2021.102072.
  • Yoshida S, et al. 2012. The D3 F-box protein is a key component in host strigolactone responses essential for arbuscular mycorrhizal symbiosis. New Phytol 196:1208–1216. doi:10.1111/j.1469-8137.2012.04339.x.
  • Yu N, et al. 2014. A DELLA protein complex controls the arbuscular mycorrhizal symbiosis in plants. Cell Res. 24:130–133. doi:10.1038/cr.2013.167.
  • Zhang A, et al. 2018. Molecular characterization of a novel chitinase CmChi1 from Chitinolyticbacter meiyuanensis SYBC-H1 and its use in N-acetyl-d-glucosamine production. Biotechnol Biofuels. 11:179. doi:10.1186/s13068-018-1169-x.
  • Zhang D, et al. 2007. A two-step fermentation process for efficient production of penta-N-acetyl-chitopentaose in recombinant Escherichia coli. Biotechnol Lett. 29:1729–1733. doi:10.1007/s10529-007-9462-y.
  • Zhang X, et al. 2016. Size effects of chitooligomers on the growth and photosynthetic characteristics of wheat seedlings. Carbohydr Polym 138:27–33.
  • Zhang X, et al. 2017. Relationship between the degree of polymerization of chitooligomers and their activity affecting the growth of wheat seedlings under salt stress. J. Agric. Food Chem. 65:501–509.
  • Zhang X, et al. 2021. Efficient production of oligomeric chitin with narrow distributions of degree of polymerization using sonication-assisted phosphoric acid hydrolysis. Carbohydr Polym. 276:118736. doi:10.1016/j.carbpol.2021.118736.
  • Zhang Y, et al. 2014. Rice cytochrome P450 MAX1 homologs catalyze distinct steps in strigolactone biosynthesis. Nat Chem Biol 10:1028–1033. doi:10.1016/j.jpowsour.2013.09.135.
  • Zhang Y, et al. 2019. Chitooligosaccharide plays essential roles in regulating proline metabolism and cold stress tolerance in rice seedlings. Acta Physiol Plant 41:77.
  • Zhao LH, et al. 2013. Crystal structures of two phytohormone signal-transducing α/β hydrolases: karrikin-signaling KAI2 and strigolactone-signaling DWARF14. Cell Res. 23:436–439. doi:10.1038/cr.2013.19.
  • Zhou F, et al. 2013. D14-SCFD3-dependent degradation of D53 regulates strigolactone signalling. Nature. 504:406–410. doi:10.1038/nature12878.
  • Zhou J, et al. 2018. Chitooligosaccharides enhance cold tolerance by repairing photodamaged PS II in rice. J Agric Sci 156:888–899.
  • Zipfel C, Oldroyd GE. 2017. Plant signalling in symbiosis and immunity. Nature. 543:328–336. doi:10.1038/nature22009.
  • Zong H, et al. 2017. Improvement in cadmium tolerance of edible rape (Brassica rapa L.) with exogenous application of chitooligosaccharide. Chemosphere. 181:92–100.
  • Zwanenburg B, et al. 2016. Suicidal germination for parasitic weed control. Pest Manag Sci 72:2016–2025. doi:10.1002/ps.4222.
  • Zwanenburg B, Pospíšil T. 2013. Structure and activity of strigolactones: new plant hormones with a rich future. Mol Plant. 6:38–62. doi:10.1093/mp/sss141.