1,421
Views
0
CrossRef citations to date
0
Altmetric
Plant-Microorganism Interactions

Insights into the infection dynamics and interactions between high-virulence and low-virulence isolates of Phytophthora palmivora and durian seedlings

, , , , , & show all
Article: 2236139 | Received 04 May 2023, Accepted 10 Jul 2023, Published online: 26 Jul 2023

References

  • Ahmed Y, D'Onghia AM, Ippolito A, Yaseen T. 2014. First report of citrus root rot caused by Phytophthora palmivora in Egypt. Plant Dis. 98(1):155. doi:10.1094/PDIS-02-13-0206-PDN.
  • Arora A, Sairam RK, Srivastava GC. 2002. Oxidative stress and antioxidative system in plants. Curr Sci. 82(10):1227–1238. https://www.jstor.org/stable/24107045.
  • Ávila-Méndez K, Avila-Diazgranados R, Pardo A, Herrera M, Sarria G, Romero HM. 2019. Response of in vitro obtained oil palm and interspecific OxG hybrids to inoculation with Phytophthora palmivora. For Path. 49(2):e12486. doi:10.1111/efp.12486.
  • Baştaş K. 2015. Importance of reactive oxygen species in plants-pathogens interactions. Selcuk J Agr Food Sci. 28(1):11–21. https://dergipark.org.tr/en/pub/selcukjafsci/issue/21054/226668.
  • Blackman LM, Cullerne DP, Hardham AR. 2014. Bioinformatic characterisation of genes encoding cell wall degrading enzymes in the Phytophthora parasitica genome. BMC Genom. 15:785. doi:10.1186/1471-2164-15-785.
  • Camejo D, Guzmán-Cedeño Á, Moreno A. 2016. Reactive oxygen species, essential molecules, during plant–pathogen interactions. Plant Physiol Biochem. 103:10–23. doi:10.1016/j.plaphy.2016.02.035.
  • Carella P, Gogleva A, Tomaselli M, Alfs C, Schornack S. 2018. Phytophthora palmivora establishes tissue-specific intracellular infection structures in the earliest divergent land plant lineage. Proc Natl Acad Sci. 115(16):E3846–E3855. doi:10.1073/pnas.1717900115.
  • Carril P, Da Silva AB, Tenreiro R, Cruz C. 2020. An optimized in situ quantification method of leaf H2O2 unveils interaction dynamics of pathogenic and beneficial bacteria in wheat. Front. Plant Sci. 11:889. doi:10.3389/fpls.2020.00889.
  • Currier HB. 1957. Callose substance in plant cells. Am J Bot. 44(6):478–488. doi:10.1002/j.1537-2197.1957.tb10567.x.
  • Drenth A, Guest DI. 2004. Diversity and management of Phytophthora in Southeast Asia. Australian Centre for International Agricultural Research Monograph, 114, Australia, 238p.
  • El Komy MH, Saleh AA, Ibrahim YE, Molan YY. 2020. Early production of reactive oxygen species coupled with an efficient antioxidant system play a role in potato resistance to late blight. Trop Plant Pathol. 45(1):44–55. doi:10.1007/s40858-019-00318-8.
  • Ellinger D, Voigt CA. 2014. Callose biosynthesis in Arabidopsis with a focus on pathogen response: what we have learned within the last decade. Ann Bot. 114(6):1349–1358. doi:10.1093/aob/mcu120.
  • Evangelisti E, Gogleva A, Hainaux T, Doumane M, Tulin F, Quan C, Yunusov T, Floch K, Schornack S. 2017. Time-resolved dual transcriptomics reveal early induced Nicotiana benthamiana root genes and conserved infection-promoting Phytophthora palmivora effectors. BMC Biol. 15:39. doi:10.1186/s12915-017-0379-1.
  • Fawke S, Doumane M, Schornack S. 2015. Oomycete interactions with plants: infection strategies and resistance principles. Microbiol Mol Biol Rev. 79(3):263–280. doi:10.1128/MMBR.00010-15.
  • Foyer CF, Noctor G. 2003. Redox sensing and signalling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. Physiol Plant. 119:355–364. doi:10.1034/j.1399-3054.2003.00223.x.
  • Galletti R, Denoux C, Gambetta S, Dewdney J, Ausubel FM, De Lorenzo G, Ferrari S. 2008. The AtrbohD-mediated oxidative burst elicited by oligogalacturonides in Arabidopsis is dispensable for the activation of defense responses effective against Botrytis cinerea. Plant physiol. 148(3):1695–1706. doi:10.1104/pp.108.127845.
  • Global Trade Atlas. 2020. Average market share of global durian market 2017–2019; [accessed 2020 Apr 7]. https://www.gtis.com/gta/.
  • Jacobs AK, Lipka V, Burton RA, Panstruga R, Strizhov N, Schulze-Lefert P, Fincher GB. 2003. An Arabidopsis callose synthase, GSL5, is required for wound and papillary callose formation. Plant Cell. 15(11):2503–2513. doi:10.1105/tpc.016097.
  • Judelson HS, Blanco FA. 2005. The spores of Phytophthora: weapons of the plant destroyer. Nat Rev Microbiol. 3:47–58. doi:10.1038/nrmicro1064.
  • Kamoun S, Furzer O, Jones JD, Judelson HS, Ali GS, Dalio RJ, Roy SG, Schena L, Zambounis A, Panabières F, et al. 2015. The Top 10 oomycete pathogens in molecular plant pathology. Mol Plant Pathol. 16(4):413–434. doi:10.1111/mpp.12190.
  • Karyath Palliyath G, Kilingar Subrahmanya M, Antony G, Binod Bihari S, Hegde V, Muliyar Krishna R. 2021. A rapid in vitro leaf inoculation assay to investigate Phytophthora palmivora–coconut interactions. J Phytopathol. 169(5):316–328. doi:10.1111/jph.12988.
  • Keogh RC, Deverall BJ, McLeod S. 1980. Comparison of histological and physiological responses to Phakopsora pachyrhizi in resistant and susceptible soybean. Trans Br Mycol Soc. 74(2):329–333. doi:10.1016/S0007-1536(80)80163-X.
  • Krishnan A, Joseph L, Roy CB. 2019. An insight into Hevea – Phytophthora interaction: the story of Hevea defense and Phytophthora counter defense mediated through molecular signalling. Curr Plant Biol. 17:33–41. doi:10.1016/j.cpb.2018.11.009.
  • Latifah M, Kamaruzaman S, Abidin MZ, Nusaibah SA. 2018. Identification of Phytophthora spp. from perennial crops in Malaysia, its pathogenicity and cross-pathogenicity. Sains Malays. 47(5):909–921. doi:10.17576/jsm-2018-4705-06.
  • Lee JY, Wang X, Cui W, Sager R, Modla S, Czymmek K, Zybaliov B, van Wijk K, Zhang C, Lu H, Lakshmanan V. 2011. A plasmodesmata-localized protein mediates crosstalk between cell-to-cell communication and innate immunity in Arabidopsis. Plant Cell. 23(9):3353–3373. doi:10.1105/tpc.111.087742.
  • Le Fevre R, O'Boyle B, Moscou MJ, Schornack S. 2016. Colonization of barley by the broad-host hemibiotrophic pathogen Phytophthora palmivora uncovers a leaf development-dependent involvement of Mlo. Mol Plant-Microbe Interact. 29(5):385–395. doi:10.1094/MPMI-12-15-0276-R.
  • Luna E, Pastor V, Robert J, Flors V, Mauch-Mani B, Ton J. 2011. Callose deposition: a multifaceted plant defense response. Mol Plant Microbe Interact. 24(2):183–193. doi:10.1094/MPMI-07-10-0149.
  • Mohamed-Azni INA, Sundram S, Ramachandran V, Abu Seman I. 2017. An in vitro investigation of Malaysian Phytophthora palmivora isolates and pathogenicity study on oil palm. J Phytopathol. 165(11-12):800–812. doi:10.1111/jph.12620.
  • Moreno-Chacón AL, Camperos-Reyes JE, Ávila Diazgranados RA, Romero HM. 2013. Biochemical and physiological responses of oil palm to bud rot caused by Phytophthora palmivora. Plant Physiol Biochem. 70:246–251. doi:10.1016/j.plaphy.2013.05.026.
  • Nakashima J, Laosinchai W, Cui X, Malcolm Brown R. 2003. New insight into the mechanism of cellulose and callose biosynthesis: proteases may regulate callose biosynthesis upon wounding. Cellulose. 10:369–389. doi:10.1023/A:1027336605479.
  • Noorbakhsh Z, Taheri P. 2016. Nitric oxide: a signaling molecule which activates cell wall-associated defense of tomato against Rhizoctonia solani. Eur J Plant Pathol. 144:551–568. doi:10.1007/s10658-015-0794-5.
  • O’Gara E, Sangchote S, Fitzgerald L, Wood D, Seng A, Guest DI. 2004. Infection biology of Phytophthora palmivora Butl. in Durio zibethinus L. (Durian) and responses induced by phosphonate. In: Drenth A, Guest DI, editors. Diversity and management of Phytophthora in Southeast Asia. 114:42–52.
  • Perrine-Walker F. 2020. Phytophthora palmivora-cocoa interaction. J Fungi. 6(3):167. doi:10.3390/jof6030167.
  • Pfaffl MW. 2001. A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res. 29(9):45e–e45. doi:10.1093/nar/29.9.e45.
  • Phavakul K, Changsri V. 1969. Root rot of durian tree. Proceedings of a seminar on plant protection. Thai J Agric Sci. 60–61.
  • Polkowska-Kowalczyk L, Wielgat B, Maciejewska U. 2007. Changes in the antioxidant status in leaves of Solanum species in response to elicitor from Phytophthora infestans. J Plant Physiol. 164(10):1268–1277. doi:10.1016/j.jplph.2006.08.012.
  • Sarria GA, Martinez G, Varon F. 2016. Histopathological studies of the process of Phytophthora palmivora infection in oil palm. Eur J Plant Pathol. 145:39–51. doi:10.1007/s10658-015-0810-9.
  • Somsri S, Vichitrananda S, Kengkat P, Koonjanthuk P, Chunchim S, Sesuma S, Salakphet S. 2008. Three decades of durian breeding program in Thailand and its three newly recommended F1 hybrids. Acta Hortic. 787:77–88. doi:10.17660/ActaHortic.2008.787.6.
  • Sunpapao A, Pornsuriya C. 2016. Overexpression of β-1, 3-glucanase gene in response to Phytophthora palmivora infection in leaves of Hevea brasiliensis clones. Walailak J Sci Tech. 13(1):35–43. doi:10.14456/WJST.2016.4.
  • Taylor CR, Grünwald NJ. 2021. Growth, infection and aggressiveness of Phytophthora pathogens on Rhododendron leaves. CABI Agric Biosci. 2(1):1–15. doi:10.1186/s43170-021-00048-5.
  • Thordal-Christensen H, Zhang Z, Wei Y, Collinge DB. 1997. Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley—powdery mildew interaction. Plant J. 11(6):1187–1194. doi:10.1046/j.1365-313X.1997.11061187.x.
  • Tomczynska I, Stumpe M, Doan TG, Mauch F. 2020. A Phytophthora effector protein promotes symplastic cell-to-cell trafficking by physical interaction with plasmodesmata-localised callose synthases. New Phytol. 227(5):1467–1478. doi:10.1111/nph.16653.
  • Torres GA, Sarria GA, Varon F, Coffey MD, Elliott ML, Martinez G. 2010. First report of bud rot caused by Phytophthora palmivora on African oil palm in Colombia. Plant Dis. 94(9):1163. doi:10.1094/PDIS-94-9-1163A.
  • Torres MA, Jones JDG, Dangl JL. 2006. Reactive oxygen species signaling in response to pathogens. Plant Physiol. 141(2):373–378. doi:10.1104/pp.106.079467.
  • Vawdrey L, Langdon P, Martin T. 2005a. Incidence and pathogenicity of Phytophthora palmivora and Pythium vexans associated with durian decline in far northern Queensland. Australas Plant Pathol. 34(1):127–128. doi:10.1071/AP04093.
  • Vawdrey LL, Martin TM, De Faveri J. 2005b. A detached leaf bioassay to screen Durian cultivars for susceptibility to Phytophthora palmivora. Australas Plant Pathol. 34(2):251–253. doi:10.1071/AP05005.
  • Whisson SC, Boevink PC, Moleleki L, Avrova AO, Morales JG, Gilroy EM, Armstrong MR, Grouffaud S, van West P, Chapman S, et al. 2007. A translocation signal for delivery of oomycete effector proteins into host plant cells. Nature. 450(7166):115–118. doi:10.1038/nature06203.