2,190
Views
1
CrossRef citations to date
0
Altmetric
Plant-Microorganism Interactions

Photosynthetic microorganisms, an overview of their biostimulant effects on plants and perspectives for space agriculture

, ORCID Icon & ORCID Icon
Article: 2242697 | Received 27 Apr 2023, Accepted 26 Jul 2023, Published online: 07 Aug 2023

References

  • Adessi A, Cruz de Carvalho R, De Philippis R, Branquinho C, Marques da Silva J. 2018. Microbial extracellular polymeric substances improve water retention in dryland biological soil crusts. Soil Biol Biochem. 116:67–69. doi:10.1016/j.soilbio.2017.10.002.
  • Aguiló-Nicolau P, Galmés J, Fais G, Capó-Bauçà S, Cao G, Iñiguez C. 2023. Singular adaptations in the carbon assimilation mechanism of the polyextremophile cyanobacterium Chroococcidiopsis thermalis. Photosynth Res. 156:231–245. doi:10.1007/s11120-023-01008-y.
  • Akomolafe G, Omojola J, Joshua E, Adediwura SC, Adesuji ET, Odey M, Dedeke OA, Labulo AH. 2017. Growth and anatomical responses of lycopersicon esculentum (tomatoes) under microgravity and normal gravity conditions. World Acad Sci, Eng Technol, Int J Biol Biomol Agric Food Biotechnol Eng. 11(5): 335–338.
  • Alsharif W, Saad MM, Hirt H. 2020. Desert microbes for boosting sustainable agriculture in extreme environments. Front Microbiol. 11. doi:10.3389/fmicb.2020.01666.
  • Altman A, Lugtenberg B, Bloemberg G, Okon Y. 1997. Biotechnology of biofertilization and phytostimulation. In: Books in soils, plants, and the environment. CRC Press; p. 327–349. doi:10.1201/9781420049275.pt2a.
  • Altomare C, Tringovska I. 2011. Beneficial soil microorganisms, an ecological alternative for soil fertility management. In: Lichtfouse E., editor. Genetics, biofuels and local farming systems, sustainable agriculture reviews. Dordrecht: Springer Netherlands; p. 161–214. doi:10.1007/978-94-007-1521-9_6.
  • Arena C, De Micco V, Macaeva E, Quintens R. 2014. Space radiation effects on plant and mammalian cells. Acta Astronaut. 104:419–431. doi:10.1016/j.actaastro.2014.05.005.
  • Azizoglu U, Yilmaz N, Simsek O, Ibal JC, Tagele SB, Shin J-H. 2021. The fate of plant growth-promoting rhizobacteria in soilless agriculture: future perspectives. 3 Biotech. 11:382. doi:10.1007/s13205-021-02941-2.
  • Barth CA. 1974. The atmosphere of Mars. Annu Rev Earth Planet Sci. 2:333–367. doi:10.1146/annurev.ea.02.050174.002001.
  • Barton AD, Pershing AJ, Litchman E, Record NR, Edwards KF, Finkel ZV, Kiørboe T, Ward BA. 2013. The biogeography of marine plankton traits. Ecol Lett. 16:522–534. doi:10.1111/ele.12063.
  • Berrios DC, Galazka J, Grigorev K, Gebre S, Costes SV. 2021. NASA genelab: interfaces for the exploration of space omics data. Nucleic Acids Res. 49:D1515–D1522. doi:10.1093/nar/gkaa887.
  • Bilalis DJ, Katsenios N, Efthimiadou A, Karkanis A. 2012. Pulsed electromagnetic field: an organic compatible method to promote plant growth and yield in two corn types. Electromagn Biol Med. 31:333–343. doi:10.3109/15368378.2012.661699.
  • Bonfante P, Anca I-A. 2009. Plants, mycorrhizal fungi, and bacteria: a network of interactions. Annu Rev Microbiol. 63:363–383. doi:10.1146/annurev.micro.091208.073504.
  • Bonini P, Rouphael Y, Miras-Moreno B, Lee B, Cardarelli M, Erice G, Cirino V, Lucini L, Colla G. 2020. A microbial-based biostimulant enhances sweet pepper performance by metabolic reprogramming of phytohormone profile and secondary metabolism. Front Plant Sci. 11. doi:10.3389/fpls.2020.567388.
  • Bonjouklian R, Smitka TA, Doolin LE, Molloy RM, Debono M, Shaffer SA, Moore RE, Stewart JB, Patterson GML. 1991. Tjipanazoles, new antifungal agents from the blue-green alga tolypothrix tjipanasensis. Tetrahedron. 47:7739–7750. doi:10.1016/S0040-4020(01)81932-3.
  • Brian Yager. n.d. Gravity [WWW document]. National space society; [accessed 5 Jul 2023]. https://space.nss.org/settlement/nasa/teacher/lessons/bryan/microgravity/gravback.html.
  • Campobenedetto C, Grange E, Mannino G, van Arkel J, Beekwilder J, Karlova R, Garabello C, Contartese V, Bertea CM. 2020. A biostimulant seed treatment improved heat stress tolerance during cucumber seed germination by acting on the antioxidant system and glyoxylate cycle. Front Plant Sci. 11. doi:10.3389/fpls.2020.00836.
  • Carey EM, Castillo-Rogez J, Scully JEC, Russell CT. 2014. Rate of evaporation of water under low-pressure conditions 2060.
  • CEN/TC 455 – Plant Biostimulants and Agricultural Micro-Organisms [WWW Document]. 2022. iTeh standards store; [accessed 12 Dec 2022]. https://standards.iteh.ai/catalog/tc/cen/249041e0-ca8b-4039-a65c-ad232d6e57f0/cen-tc-455.
  • Chaiklahan R, Chirasuwan N, Triratana P, Loha V, Tia S, Bunnag B. 2013. Polysaccharide extraction from spirulina sp. and its antioxidant capacity. Int J Biol Macromol. 58:73–78. doi:10.1016/j.ijbiomac.2013.03.046.
  • Chiaranunt P, White JF. 2023. Plant beneficial bacteria and their potential applications in vertical farming systems. Plants. 12:400. doi:10.3390/plants12020400.
  • Chin S, Blancaflor EB. 2022. Plant gravitropism: from mechanistic insights into plant function on earth to plants colonizing other worlds. In: Blancaflor E.B., editor. Plant gravitropism: methods and protocols, methods in molecular biology. New York, NY: Springer US; p. 1–41. doi:10.1007/978-1-0716-1677-2_1.
  • Crang R, Lyons-Sobaski S, Wise R. 2018. Plant anatomy: a concept-based approach to the structure of seed plants. SpringerLink.
  • Creech S, Guidi J, Elburn D. 2022. Artemis: an overview of NASA’s activities to return humans to the moon. In: 2022 IEEE aerospace conference (AERO). presented at the 2022 IEEE aerospace conference (AERO). p. 1–7. doi:10.1109/AERO53065.2022.9843277.
  • Darwin C, Darwin F. 1880. The power of movement in plants. London, UK: William Clowes and Sons.
  • David P, Carney S. n.d. Basics of space flight – Solar system exploration: NASA science [WWW Document]. NASA Solar System Exploration; [accessed 5 Jul 2023]. https://solarsystem.nasa.gov/basics/chapter4-1/.
  • Davis F. 2017. The biology of growing plants under low pressure (hypobaric) systems for NASA – Challenges in Lunar and Martian agriculture.
  • De Pascale S, Arena C, Aronne G, De Micco V, Pannico A, Paradiso R, Rouphael Y. 2021. Biology and crop production in space environments: challenges and opportunities. Life Sci Space Res (Amst). 29:30–37. doi:10.1016/j.lssr.2021.02.005.
  • Despommier D. 2019. Vertical farms, building a viable indoor farming model for cities. Field Actions Sci Rep. J Field Actions. 68–73.
  • Dobbelaere S, Croonenborghs A, Thys A, Vande Broek A, Vanderleyden J. 1999. Phytostimulatory effect of azospirillum brasilense wild type and mutant strains altered in IAA production on wheat. Plant Soil. 212:153–162. doi:10.1023/A:1004658000815.
  • Drobac-Čik AV, Dulic TI, Stojanović D, Svircev ZB. 2007. The importance of extremophile cyanobacteria in the production of biologically active compounds. Zbornik Matice Srpske za Prirodne Nauke. 2007:57–66. doi:10.2298/ZMSPN0712057D.
  • Dubey P, Kumar V, Ponnusamy K, Sonwani R, Singh AK, Suyal DC, Soni R. 2020. Microbe assisted plant stress management. Elsevier, pp. 351–378. doi:10.1016/B978-0-12-821265-3.00015-3.
  • du Jardin P. 2015. Plant biostimulants: definition, concept, main categories and regulation. Sci Hortic, Biostimulants in Horticulture. 196:3–14. doi:10.1016/j.scienta.2015.09.021.
  • EL Arroussi H. 2016. Microalgae polysaccharides a promising plant growth biostimulant. Journal of Algal Biomass Utilization eISSN: 2229–6905. 7(4):55–63.
  • Fahrion J, Mastroleo F, Dussap C-G, Leys N. 2021. Use of photobioreactors in regenerative life support systems for human space exploration. Front Microbiol. 12. doi:10.3389/fmicb.2021.699525.
  • Fecht S. 2023. Would Earth laws apply to Mars colonists? Popular Science; [accessed 28 Mar 2023]. https://www.popsci.com/who-would-rule-colony-on-mars/.
  • Fincheira P, Quiroz A. 2018. Microbial volatiles as plant growth inducers. Microbiol Res. 208:63–75. doi:10.1016/j.micres.2018.01.002.
  • Francis F, Jacquemyn H, Delvigne F, Lievens B. 2020. From diverse origins to specific targets: role of microorganisms in indirect pest biological control. Insects. 11:533. doi:10.3390/insects11080533.
  • Fuentes-Tristan S, Parra-Saldivar R, Iqbal HMN, Carrillo-Nieves D. 2019. Bioinspired biomolecules: Mycosporine-like amino acids and scytonemin from Lyngbya sp. with UV-protection potentialities. J Photochem Photobiol B. 201:111684. doi:10.1016/j.jphotobiol.2019.111684.
  • Furukawa S, Nagamatsu A, Nenoi M, Fujimori A, Kakinuma S, Katsube T, Wang B, Tsuruoka C, Shirai T, Nakamura AJ, et al. 2020. Space radiation biology for “living in space”. BioMed Res Int. 2020:e4703286. doi:10.1155/2020/4703286.
  • Gademann K, Portmann C. 2008. Secondary metabolites from cyanobacteria: complex structures and powerful bioactivities. Curr Org Chem. 12:326–341. doi:10.2174/138527208783743750.
  • Gámez-Arcas S, Baroja-Fernández E, García-Gómez P, Muñoz FJ, Almagro G, Bahaji A, Sánchez-López ÁM, Pozueta-Romero J. 2022. Action mechanisms of small microbial volatile compounds in plants. J Exp Bot. 73:498–510. doi:10.1093/jxb/erab463.
  • Garcia-Pichel F. 2009. Cyanobacteria. In: Encyclopedia of microbiology. Elsevier Inc.; p. 107–124. doi:10.1016/B978-012373944-5.00250-9.
  • Geraldes V, Pinto E. 2021. Mycosporine-like amino acids (MAAs): biology, chemistry and identification features. Pharmaceuticals (Basel). 14:63. doi:10.3390/ph14010063.
  • Glick BR, Cheng Z, Czarny J, Duan J. 2007. Promotion of plant growth by ACC deaminase-producing soil bacteria. Eur J Plant Pathol. 119:329–339. doi:10.1007/s10658-007-9162-4.
  • Gòdia F, Albiol J, Montesinos JL, Pérez J, Creus N, Cabello F, Mengual X, Montras A, Lasseur C. 2002. MELISSA: a loop of interconnected bioreactors to develop life support in space. J Biotechnol. 99:319–330. doi:10.1016/S0168-1656(02)00222-5.
  • González-Pérez BK, Rivas-Castillo AM, Valdez-Calderón A, Gayosso-Morales MA. 2021. Microalgae as biostimulants: a new approach in agriculture. World J Microbiol Biotechnol. 38:4. doi:10.1007/s11274-021-03192-2.
  • Goyer A. 2010. Thiamine in plants: aspects of its metabolism and functions. Phytochemistry. 71:1615–1624. doi:10.1016/j.phytochem.2010.06.022.
  • Grinberg M, Nemtsova Y, Ageyeva M, Brilkina A, Vodeneev V. 2023. Effect of low-dose ionizing radiation on spatiotemporal parameters of functional responses induced by electrical signals in tobacco plants. Photosynth Res. doi:10.1007/s11120-023-01027-9.
  • Grinberg MA, Gudkov SV, Balalaeva IV, Gromova E, Sinitsyna Y, Sukhov V, Vodeneev V. 2021. Effect of chronic β-radiation on long-distance electrical signals in wheat and their role in adaptation to heat stress. Environ Exp Bot. 184:104378. doi:10.1016/j.envexpbot.2021.104378.
  • Gudkov SV, Grinberg MA, Sukhov V, Vodeneev V. 2019. Effect of ionizing radiation on physiological and molecular processes in plants. J Environ Radioact. 202:8–24. doi:10.1016/j.jenvrad.2019.02.001.
  • Haberle RM. 2015. Solar System/Sun, atmospheres, evolution of atmospheres planetary atmospheres: Mars. In: North G.R., Pyle J., Zhang F, editor. Encyclopedia of atmospheric sciences (2nd ed.). Oxford: Academic Press; p. 168–177. doi:10.1016/B978-0-12-382225-3.00312-1.
  • Häder D-P. 2022. Photosynthesis in plants and algae. Anticancer Res. 42:5035–5041. doi:10.21873/anticanres.16012.
  • Hall L. 2021. NASA research launches a new generation of indoor farming [WWW Document]. NASA; (accessed 14 Mar 2023). http://www.nasa.gov/directorates/spacetech/spinoff/NASA_Research_Launches_a_New_Generation_of_Indoor_Farming.
  • Handy D, Hummerick ME, Dixit AR, Ruby AM, Massa G, Palmer A. 2021. Identification of plant growth promoting bacteria within space crop production systems. Front Astron Space Sci. 8. doi:10.3389/fspas.2021.735834.
  • Havaux M, Ksas B, Szewczyk A, Rumeau D, Franck F, Caffarri S, Triantaphylidès C. 2009. Vitamin B6 deficient plants display increased sensitivity to high light and photo-oxidative stress. BMC Plant Biol. 9:130. doi:10.1186/1471-2229-9-130.
  • Heocha CO. 1965. Biliproteins of algae. Annu Rev Plant Physiol. 16:415–434. doi:10.1146/annurev.pp.16.060165.002215.
  • Hessel V, Liang S, Tran NN, Escribà-Gelonch M, Zeckovic O, Knowling M, Rebrov E, This H, Westra S, Fisk I, et al. 2022. Eustress in space: opportunities for plant stressors beyond the earth ecosystem. Front Astron Space Sci. 9. doi:10.3389/fspas.2022.841211.
  • Hoeck A, Horemans N, Hees M, Nauts R, Knapen D, Vandenhove H, Blust R. 2015. Characterizing dose response relationships: chronic gamma radiation in Lemna minor induces oxidative stress and altered polyploidy level. J Environ Radioact. 150:195–202. doi:10.1016/j.jenvrad.2015.08.017.
  • Juan Carlos CABRERA. 2018. Activators of plant metabolic changes. PCT/EP2018/050147.
  • Kageyama H, Waditee-Sirisattha R. 2022. Cyanobacterial physiology: from fundamentals to biotechnology. London: Academic Press.
  • Kapoore RV, Wood EE, Llewellyn CA. 2021. Algae biostimulants: A critical look at microalgal biostimulants for sustainable agricultural practices. Biotechnol Adv. 49:107754. doi:10.1016/j.biotechadv.2021.107754.
  • Kashyap AK, Dubey SK, Jain BP. 2022. 1 - Cyanobacterial diversity concerning the extreme environment and their bioprospecting. In: Singh P., Fillat M., Kumar A., editor. Cyanobacterial lifestyle and its applications in biotechnology. Academic Press; p. 1–22. doi:10.1016/B978-0-323-90634-0.00008-1.
  • Kauff F, Büdel B. 2011. Phylogeny of cyanobacteria: an overview. In: Lüttge U.E., Beyschlag W., Büdel B., Francis D, editor. Progress in botany, Vol. 72, progress in botany. Berlin, Heidelberg: Springer; p. 209–224. doi:10.1007/978-3-642-13145-5_8.
  • Kees ED, Murugapiran SK, Bennett AC, Hamilton TL. 2022. Distribution and genomic variation of thermophilic cyanobacteria in diverse microbial mats at the upper temperature limits of photosynthesis. mSystems. 7:e00317–22. doi:10.1128/msystems.00317-22.
  • Kehr J-C, Dittmann E. 2015. Biosynthesis and function of extracellular glycans in cyanobacteria. Life (Basel). 5:164–180. doi:10.3390/life5010164.
  • Kessler P, Prater T, Nickens T, Harris D. 2022. Artemis deep space habitation: enabling a sustained human presence on the moon and beyond. In: 2022 IEEE aerospace conference (AERO). Presented at the 2022 IEEE aerospace conference (AERO). p. 01–12. doi:10.1109/AERO53065.2022.9843393.
  • Khodadad CLM, Hummerick ME, Spencer LE, Dixit AR, Richards JT, Romeyn MW, Smith TM, Wheeler RM, Massa GD. 2020. Microbiological and nutritional analysis of lettuce crops grown on the international space station. Front Plant Sci. 11. doi:10.3389/fpls.2020.00199.
  • Konopka A, Brock TD. 1978. Effect of temperature on blue-green algae (cyanobacteria) in lake mendota. Appl Environ Microbiol. 36:572–576. doi:10.1128/aem.36.4.572-576.1978.
  • Kordyum E. 2003. Calcium signaling in plant cells in altered gravity. Adv Space Res. 32:1621–1630. doi:10.1016/S0273-1177(03)90403-0.
  • Koza N, Adedayo A, Babalola O, Kappo A. 2022. Microorganisms in plant growth and development: roles in abiotic stress tolerance and secondary metabolites secretion. Microorganisms. 10:1528. doi:10.3390/microorganisms10081528.
  • Kreft H, Jetz W. 2007. Global patterns and determinants of vascular plant diversity. Proc Natl Acad Sci USA. 104:5925–5930. doi:10.1073/pnas.0608361104.
  • Kuiper I, Bloemberg GV, Lugtenberg BJ. 2001. Selection of a plant-bacterium pair as a novel tool for rhizostimulation of polycyclic aromatic hydrocarbon-degrading bacteria. Mol Plant Microbe Interact. 14:1197–1205. doi:10.1094/MPMI.2001.14.10.1197.
  • Kulik MM. 1995. The potential for using cyanobacteria (blue-green algae) and algae in the biological control of plant pathogenic bacteria and fungi. Eur J Plant Pathol. 101:585–599. doi:10.1007/BF01874863.
  • Kultschar B, Llewellyn C, Kultschar B, Llewellyn C. 2018. Secondary metabolites in cyanobacteria, secondary metabolites – sources and applications. IntechOpen. doi:10.5772/intechopen.75648.
  • Lakhiar IA, Gao J, Syed TN, Chandio FA, Buttar NA. 2018. Modern plant cultivation technologies in agriculture under controlled environment: a review on aeroponics. J Plant Interact. 13:338–352. doi:10.1080/17429145.2018.1472308.
  • Laroche C. 2022. Exopolysaccharides from microalgae and cyanobacteria: diversity of strains, production strategies, and applications. Mar Drugs. 20:336. doi:10.3390/md20050336.
  • Lasseur C, Paillé C, Lamaze B, Rebeyre P, Rodriguez A, Ordonez L, Marty F. 2005. MELISSA: overview of the project and perspectives. Presented at the International conference on environmental systems. p. 2005-01–3066. doi:10.4271/2005-01-3066.
  • Li F, He X, Sun Y, Zhang X, Tang X, Li Y, Yi Y. 2019. Distinct endophytes are used by diverse plants for adaptation to karst regions. Sci Rep. 9:5246. doi:10.1038/s41598-019-41802-0.
  • Litchman E, Klausmeier CA, Schofield OM, Falkowski PG. 2007. The role of functional traits and trade-offs in structuring phytoplankton communities: scaling from cellular to ecosystem level. Ecol Lett. 10:1170–1181. doi:10.1111/j.1461-0248.2007.01117.x.
  • Liu M, Wu T, Zhao X, Zan F, Yang G, Miao Y. 2021. Cyanobacteria blooms potentially enhance volatile organic compound (VOC) emissions from a eutrophic lake: field and experimental evidence. Environ Res. 202:111664. doi:10.1016/j.envres.2021.111664.
  • Liu W, Wang J, Li Y, Zhu Z, Qie D, Ding L. 2019. Natural convection heat transfer at reduced pressures. Exp Heat Transf. 32:14–24. doi:10.1080/08916152.2018.1468833.
  • Lucas WJ, Groover A, Lichtenberger R, Furuta K, Yadav S-R, Helariutta Y, He X-Q, Fukuda H, Kang J, Brady SM, et al. 2013. The plant vascular system: evolution, development and functions. J Integr Plant Biol. 55:294–388. doi:10.1111/jipb.12041.
  • Lugtenberg B, Kamilova F. 2009. Plant-growth-promoting rhizobacteria. Annu Rev Microbiol. 63:541–556. doi:10.1146/annurev.micro.62.081307.162918.
  • Macário IPE, Veloso T, Frankenbach S, Serôdio J, Passos H, Sousa C, Gonçalves FJM, Ventura SPM, Pereira JL. 2022. Cyanobacteria as candidates to support Mars colonization: growth and biofertilization potential using Mars regolith as a resource. Front Microbiol. 13:840098. doi:10.3389/fmicb.2022.840098.
  • Malavasi V, Soru S, Cao G. 2020. Extremophile microalgae: the potential for biotechnological application. J Phycol. 56:559–573. doi:10.1111/jpy.12965.
  • Mapstone LJ, Leite MN, Purton S, Crawford IA, Dartnell L. 2022. Cyanobacteria and microalgae in supporting human habitation on Mars. Biotechnol Adv. 59:107946. doi:10.1016/j.biotechadv.2022.107946.
  • Martinez E, Florez M, Carbonell MV. 2017. Stimulatory effect of the magnetic treatment on the germination of cereal seeds. Int J Environ Agric Biotechnol. 2. doi:10.22161/ijeab/2.1.47.
  • Massa GD, Dufour NF, Carver JA, Hummerick ME, Wheeler RM, Morrow RC, Smith TM. 2017. VEG-01: veggie hardware validation testing on the international space station. Open Agric. 2:33–41. doi:10.1515/opag-2017-0003.
  • Medina FJ, Manzano A, Villacampa A, Ciska M, Herranz R. 2021. Understanding reduced gravity effects on early plant development before attempting life-support farming in the moon and Mars. Front Astron Space Sci. 8. doi:10.3389/fspas.2021.729154.
  • Melkozernov AN, Barber J, Blankenship RE. 2006. Light harvesting in photosystem I supercomplexes. Biochemistry. 45:331–345. doi:10.1021/bi051932o.
  • Mishra S. 2020. Cyanobacterial imprints in diversity and phylogeny. Elsevier. 1–15. doi:10.1016/B978-0-12-819311-2.00001-2.
  • Mridha N, Chattaraj S, Chakraborty D, Anand A, Aggarwal P, Nagarajan S. 2016. Pre-sowing static magnetic field treatment for improving water and radiation use efficiency in chickpea (Cicer arietinum L.) under soil moisture stress. Bioelectromagnetics. 37:400–408. doi:10.1002/bem.21994.
  • Msfc JW. 2015. What is microgravity? [WWW Document]. NASA; [accessed 29 Aug 2022]. http://www.nasa.gov/audience/forstudents/5-8/features/nasa-knows/what-is-microgravity-58.html.
  • Mungin R, Weislogel M, Hatch T, McQuillen J. 2019. Omni-gravity hydroponics for space exploration.
  • Mutale-joan C, Rachidi F, Mohamed HA, Mernissi NE, Aasfar A, Barakate M, Mohammed D, Sbabou L, Arroussi HE. 2021. Microalgae-cyanobacteria–based biostimulant effect on salinity tolerance mechanisms, nutrient uptake, and tomato plant growth under salt stress. J Appl Phycol. 33:3779–3795. doi:10.1007/s10811-021-02559-0.
  • Muthert LWF, Izzo LG, van Zanten M, Aronne G. 2020. Root tropisms: investigations on earth and in space to unravel plant growth direction. Front Plant Sci. 10. doi:10.3389/fpls.2019.01807.
  • Naing AH, Maung T-T, Kim CK. 2021. The ACC deaminase-producing plant growth-promoting bacteria: influences of bacterial strains and ACC deaminase activities in plant tolerance to abiotic stress. Physiol Plant. 173:1992–2012. doi:10.1111/ppl.13545.
  • Nir I. 1982. Growing plants in aeroponics growth system. Acta Hortic. 435–448. doi:10.17660/ActaHortic.1982.126.49.
  • Nunnery JK, Mevers E, Gerwick WH. 2010. Biologically active secondary metabolites from marine cyanobacteria. Curr Opin Biotechnol, Chem Biotechnol – Pharm Biotechnol. 21:787–793. doi:10.1016/j.copbio.2010.09.019.
  • Nyakane NE, Markus ED, Sedibe MM. 2019. The effects of magnetic fields on plants growth: a comprehensive review. ETP Int J Food Eng. 79–87. doi:10.18178/ijfe.5.1.79-87.
  • Oren A. 2015. Cyanobacteria in hypersaline environments: biodiversity and physiological properties. Biodivers Conserv. 24:781–798. doi:10.1007/s10531-015-0882-z.
  • Ouzounis T, Rosenqvist E, Ottosen C-O. 2015. Spectral effects of artificial light on plant physiology and secondary metabolism: a review. HortScience. 50:1128–1135. doi:10.21273/HORTSCI.50.8.1128.
  • Pagels F, Vasconcelos V, Guedes AC. 2021. Carotenoids from cyanobacteria: biotechnological potential and optimization strategies. Biomolecules. 11:735. doi:10.3390/biom11050735.
  • Patel A, Mishra S, Pawar R, Ghosh PK. 2005. Purification and characterization of C-phycocyanin from cyanobacterial species of marine and freshwater habitat. Protein Expression Purif. 40:248–255. doi:10.1016/j.pep.2004.10.028.
  • Paul A-L. 2002. Plant adaptation to low atmospheric pressures: potential molecular responses. Life Support Biosph Sci. 8:93–101.
  • Pedrini S, Merritt DJ, Stevens J, Dixon K. 2017. Seed coating: science or marketing spin? Trends Plant Sci. 22:106–116. doi:10.1016/j.tplants.2016.11.002.
  • Perez J. 2017. Why space radiation matters [WWW document]. NASA; [accessed 10 Jul 2023]. http://www.nasa.gov/analogs/nsrl/why-space-radiation-matters.
  • Poughon L, Laroche C, Creuly C, Dussap C-G, Paille C, Lasseur C, Monsieurs P, Heylen W, Coninx I, Mastroleo F, Leys N. 2020. Limnospira indica PCC8005 growth in photobioreactor: model and simulation of the ISS and ground experiments. Life Sci Space Res (Amst). 25:53–65. doi:10.1016/j.lssr.2020.03.002.
  • Poveda J. 2020. Cyanobacteria in plant health: biological strategy against abiotic and biotic stresses. Crop Prot. 141:105450. doi:10.1016/j.cropro.2020.105450.
  • Przybyla C. 2021. Space aquaculture: prospects for raising aquatic vertebrates in a bioregenerative life-support system on a lunar base. Front Astron Space Sci. 8. doi:10.3389/fspas.2021.699097.
  • Rajashekhar K. 2013. Antioxidant activity in the four species of cyanobacteria isolated from a sulfur spring in the Western Ghats of Karnataka. Int J Pharma Bio Sci 4:275–285.
  • Rasmussen B, Fletcher IR, Brocks JJ, Kilburn MR. 2008. Reassessing the first appearance of eukaryotes and cyanobacteria. Nature. 455:1101–1104. doi:10.1038/nature07381.
  • Rastogi RP, Sinha RP, Moh SH, Lee TK, Kottuparambil S, Kim Y-J, Rhee J-S, Choi E-M, Brown MT, Häder D-P, Han T. 2014. Ultraviolet radiation and cyanobacteria. J Photochem Photobiol, B. 141:154–169. doi:10.1016/j.jphotobiol.2014.09.020.
  • Ricci M, Tilbury L, Daridon B, Sukalac K. 2019. General principles to justify plant biostimulant claims. Front Plant Sci. 10. doi:10.3389/fpls.2019.00494.
  • Rincón-Molina CI, Martínez-Romero E, Aguirre-Noyola JL, Manzano-Gómez LA, Zenteno-Rojas A, Rogel MA, Rincón-Molina FA, Ruíz-Valdiviezo VM, Rincón-Rosales R. 2022. Bacterial community with plant growth-promoting potential associated to pioneer plants from an active Mexican volcanic complex. Microorganisms. 10:1568. doi:10.3390/microorganisms10081568.
  • Rodríguez A, Stella A, Storni M, Zulpa G, Zaccaro M. 2006. Effects of cyanobacterial extracellular products and gibberellic acid on salinity tolerance in Oryza sativa L. Saline Syst. 2:7. doi:10.1186/1746-1448-2-7.
  • Rosa LM, Forseth IN. 1996. Diurnal patterns of soybean leaf inclination angles and azimuthal orientation under different levels of ultraviolet-B radiation. Agric For Meteorol. 78:107–119. doi:10.1016/0168-1923(95)02249-X.
  • Rostami zadeh E, Majd A, Arbabian S. 2014. Effects of electromagnetic fields on seed germination in Utica Dioica L.
  • Rouphael Y, Colla G. 2020. Editorial: biostimulants in agriculture. Front. Plant Sci. 11:40. doi:10.3389/fpls.2020.00040.
  • Saa S, Olivos-Del Rio A, Castro S, Brown PH. 2015. Foliar application of microbial and plant based biostimulants increases growth and potassium uptake in almond (Prunus dulcis [Mill.] D. A. Webb). Front Plant Sci. 6. doi:10.3389/fpls.2015.00087.
  • Saad MM, Eida AA, Hirt H. 2020. Tailoring plant-associated microbial inoculants in agriculture: a roadmap for successful application. J Exp Bot. 71:3878–3901. doi:10.1093/jxb/eraa111.
  • Sánchez-Baracaldo P, Cardona T. 2020. On the origin of oxygenic photosynthesis and cyanobacteria. New Phytol. 225:1440–1446. doi:10.1111/nph.16249.
  • Santini G, Biondi N, Rodolfi L, Tredici MR. 2021. Plant biostimulants from cyanobacteria: an emerging strategy to improve yields and sustainability in agriculture. Plants (Basel). 10:643. doi:10.3390/plants10040643.
  • Santomartino R, Waajen AC, de Wit W, Nicholson N, Parmitano L, Loudon C-M, Moeller R, Rettberg P, Fuchs FM, Van Houdt R, et al. 2020. No effect of microgravity and simulated Mars gravity on final bacterial cell concentrations on the international space station: applications to space bioproduction. Front Microbiol. 11. doi:10.3389/fmicb.2020.579156.
  • Santos A, Vieira K, Nogara G, Wagner R, Jacob-Lopes E, Zepka L. 2016. Biogeneration of volatile organic compounds by microalgae: occurrence, behavior, ecological implications and industrial applications.
  • Sathasivam M, Hosamani RK, Swamy B, Kumaran GS. 2021. Plant responses to real and simulated microgravity. Life Sci Space Res (Amst). 28:74–86. doi:10.1016/j.lssr.2020.10.001.
  • Seckbach J. 2007. Algae and cyanobacteria in extreme environments. Doordrecht, The Netherlands: Springer Science & Business Media.
  • Semary NEE. 2012. The antimicrobial profile of extracts of a Phormidium-like cyanobacterium changes with phosphate levels. World J Microbiol Biotechnol. 28: 585–593. doi:10.1007/s11274-011-0851-y.
  • Shabrangy A, Majd A. 2009. Effect of magnetic fields on growth and antioxidant systems in agricultural plants. PIERS Proceedings, Beijing, China. 23–27.
  • Shah N, Wakabayashi T, Kawamura Y, Skovbjerg CK, Wang M-Z, Mustamin Y, Isomura Y, Gupta V, Jin H, Mun T, et al. 2020. Extreme genetic signatures of local adaptation during Lotus japonicus colonization of Japan. Nat Commun. 11:253. doi:10.1038/s41467-019-14213-y.
  • Shahrajabian MH, Chaski C, Polyzos N, Petropoulos SA. 2021. Biostimulants application: a low input cropping management tool for sustainable farming of vegetables. Biomolecules. 11:698. doi:10.3390/biom11050698.
  • Shanab SM, Shalaby EA. 2021. Production of plant hormones from algae and Its relation to plant growth. In: Mohamed H.I., El-Beltagi H.E.-D.S., Abd-Elsalam K.A, editor. Plant growth-promoting microbes for sustainable biotic and abiotic stress management. Cham: Springer International Publishing; p. 395–423. doi:10.1007/978-3-030-66587-6_14.
  • Shao Y, Li J, Zhou Z, Zhang F, Cui Y. 2021. The impact of indoor living wall system on air quality: a comparative monitoring test in building corridors. Sustainability. 13:7884. doi:10.3390/su13147884.
  • Sharma V, Prasanna R, Hossain F, Muthusamy V, Nain L, Das S, Shivay YS, Kumar A. 2020. Priming maize seeds with cyanobacteria enhances seed vigour and plant growth in elite maize inbreds. 3 Biotech. 10. doi:10.1007/s13205-020-2141-6.
  • Shimazu T, Yuda T, Miyamoto K, Yamashita M, Ueda J. 2001. Growth and development in higher plants under simulated microgravity conditions on a 3-dimensional clinostat. Adv Space Res. 27:995–1000. doi:10.1016/S0273-1177(01)00165-X.
  • Shinde S, Zhang X, Singapuri SP, Kalra I, Liu X, Morgan-Kiss RM, Wang X. 2020. Glycogen metabolism supports photosynthesis start through the oxidative pentose phosphate pathway in cyanobacteria1 [OPEN]. Plant Physiol. 182:507–517. doi:10.1104/pp.19.01184.
  • Singh S. 2014. A review on possible elicitor molecules of cyanobacteria: their role in improving plant growth and providing tolerance against biotic or abiotic stress. J Appl Microbiol. 117:1221–1244. doi:10.1111/jam.12612.
  • Singh SP, Häder D-P, Sinha RP. 2010. Cyanobacteria and ultraviolet radiation (UVR) stress: mitigation strategies. Ageing Res Rev, Microbes Ageing. 9:79–90. doi:10.1016/j.arr.2009.05.004.
  • Son JE, Kim HJ, Ahn TI. 2020. Chapter 20 – hydroponic systems. In: Kozai T., Niu G., Takagaki M., editor. Plant factory (2nd ed.). Academic Press; p. 273–283. doi:10.1016/B978-0-12-816691-8.00020-0.
  • Stal LJ Ph.D. 2007. Algae and cyanobacteria in extreme environments, cellular origin, life in extreme habitats and astrobiology. Dordrecht: Springer.
  • Stegelmeier AA, Rose DM, Joris BR, Glick BR. 2022. The use of PGPB to promote plant hydroponic growth. Plants. 11:2783. doi:10.3390/plants11202783.
  • Tan HT, Yusoff FMd, Khaw YS, Nazarudin MF, Noor Mazli NAI, Ahmad SA, Shaharuddin NA, Toda T. 2023. Characterisation and selection of freshwater cyanobacteria for phycobiliprotein contents. Aquacult Int. 31:447–477. doi:10.1007/s10499-022-00985-6.
  • Tarver WJ, Volner K, Cooper JS. 2022. Aerospace pressure effects. In: Statpearls. Treasure Island, FL: StatPearls Publishing.
  • Tirono M, Hananto FS, Suhariningsih, Aini VQ. 2021. An effective dose of magnetic field to increase sesame plant growth and Its resistance to fusarium oxysporum wilt. Int J Des Nat Ecodyn. 16:285–291. doi:10.18280/ijdne.160306.
  • Torracchi C JE, Morel MA, Tapia-Vázquez I, Castro-Sowinski S, Batista-García RA, Yarzábal RLA. 2020. Fighting plant pathogens with cold-active microorganisms: biopesticide development and agriculture intensification in cold climates. Appl Microbiol Biotechnol. 104:8243–8256. doi:10.1007/s00253-020-10812-8.
  • Van Camp C, Fraikin C, Claverie E, Onderwater R, Wattiez R. 2022. Capsular polysaccharides and exopolysaccharides from Gloeothece verrucosa under various nitrogen regimes and their potential plant defence stimulation activity. Algal Res. 64:102680. doi:10.1016/j.algal.2022.102680.
  • van Rhijn P, Vanderleyden J. 1995. The Rhizobium-plant symbiosis. Microbiol Rev. 59:124–142. doi:10.1128/mr.59.1.124-142.1995.
  • Vassilev N, Vassileva M, Nikolaeva I. 2006. Simultaneous P-solubilizing and biocontrol activity of microorganisms: potentials and future trends. Appl Microbiol Biotechnol. 71:137–144. doi:10.1007/s00253-006-0380-z.
  • Verbelen J-P, De Cnodder T, Le J, Vissenberg K, Baluska F. 2006. The root apex of arabidopsis thaliana consists of four distinct zones of growth activities: meristematic zone, transition zone, fast elongation zone and growth terminating zone. Plant Signal Behav. 1:296–304. doi:10.4161/psb.1.6.3511.
  • Vetrano F, Moncada A, Miceli A. 2020. Use of gibberellic acid to increase the salt tolerance of leaf lettuce and rocket grown in a floating system. Agronomy. 10:505. doi:10.3390/agronomy10040505.
  • Waditee-Sirisattha R, Kageyama H. 2022. Chapter 7 – extremophilic cyanobacteria. In: Kageyama H., Waditee-Sirisattha R., editor. Cyanobacterial physiology. Academic Press; p. 85–99. doi:10.1016/B978-0-323-96106-6.00012-5.
  • Walton K, Berry JP. 2016. Indole alkaloids of the stigonematales (cyanophyta): chemical diversity, biosynthesis and biological activity. Mar Drugs. 14:73. doi:10.3390/md14040073.
  • Wang X, Pecoraro L. 2021. Diversity and co-occurrence patterns of fungal and bacterial communities from alkaline sediments and water of julong high-altitude hot Springs at Tianchi Volcano, Northeast China. Biology (Basel). 10:894. doi:10.3390/biology10090894.
  • Wheeler RM. 2017. Agriculture for space: people and places paving the Way. Open Agric. 2:14–32. doi:10.1515/opag-2017-0002.
  • Yakhin OI, Lubyanov AA, Yakhin IA, Brown PH. 2017. Biostimulants in plant science: a global perspective. Front Plant Sci. 7:2049. doi:10.3389/fpls.2016.02049.
  • Yang C. 2016. Adaptive plant physiology in extreme environments. J Plant Physiol. 194:1. doi:10.1016/j.jplph.2016.03.003.
  • Yep B, Zheng Y. 2019. Aquaponic trends and challenges – a review. J Cleaner Prod. 228:1586–1599. doi:10.1016/j.jclepro.2019.04.290.
  • Yvin J-C, Cruz F, Devault MCPV, Villar L. 2019. Use of phycobiliproteins or an extract containing as fertilizer. FR3074801A1.
  • Zanin L, Tomasi N, Cesco S, Varanini Z, Pinton R. 2019. Humic substances contribute to plant iron nutrition acting as chelators and biostimulants. Front Plant Sci. 10. doi:10.3389/fpls.2019.00675.
  • Zhang S, Ma J, Zou H, Zhang L, Li S, Wang Y. 2020. The combination of blue and red LED light improves growth and phenolic acid contents in Salvia miltiorrhiza Bunge. Ind Crops Prod. 158:112959. doi:10.1016/j.indcrop.2020.112959.
  • Zhang X, Li Z, Pang S, Jiang B, Yang Y, Duan Q, Zhu G. 2021. The impact of cell structure, metabolism and group behavior for the survival of bacteria under stress conditions. Arch Microbiol. 203:431–441. doi:10.1007/s00203-020-02050-3.
  • Zhang X, Schmidt RE. 2000. Hormone-Containing products’ impact on antioxidant status of tall fescue and creeping bentgrass subjected to drought. Crop Sci. 40:1344–1349. doi:10.2135/cropsci2000.4051344x.
  • Znój A, Gawor J, Gromadka R, Chwedorzewska KJ, Grzesiak J. 2022. Root-associated bacteria community characteristics of antarctic plants: deschampsia Antarctica and colobanthus quitensis—a comparison. Microb Ecol. 84:808–820. doi:10.1007/s00248-021-01891-9.