1,107
Views
1
CrossRef citations to date
0
Altmetric
Plant-Microorganism Interactions

Transcriptome analysis of lemon leaves (Citrus limon) infected by Plenodomus tracheiphilus reveals the effectiveness of Pseudomonas mediterranea in priming the plant response to mal secco disease

, , , , , & show all
Article: 2243097 | Received 13 Mar 2023, Accepted 27 Jul 2023, Published online: 02 Aug 2023

References

  • Aiello D, Leonardi GR, Di Pietro C, Vitale A, Polizzi G. 2022. A new strategy to improve management of citrus mal secco disease using bioformulates based on Bacillus amyloliquefaciens strains. Plants. 11:446. doi: 10.3390/plants11030446.
  • Batuman O, Ritenour M, Vicent A, Li H, Hyun J, Catara V, Ma H, Cano LM. 2020. Diseases caused by fungi and oomycetes. In: Talón M, Caruso M, Gmitter FG Jr, editors. The genus Citrus. Amsterdam: Elsevier; p. 349–369.
  • Benjamini Y, Hochberg Y. 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol. 57:289–300. doi:10.1111/j.2517-6161.1995.tb02031.x.
  • Bharath P, Gahir S, Raghavendra AS. 2021. Abscisic acid-induced stomatal closure: an important component of plant defense against abiotic and biotic stress. Front Plant Sci. 12:615114. doi: 10.3389/fpls.2021.615114.
  • Catalano C, Di Guardo M, Distefano G, Caruso M, Nicolosi E, Deng Z, Gentile A, La Malfa SG. 2021. Biotechnological approaches for genetic improvement of lemon (Citrus limon (L.) Burm. f.) against mal secco disease. Plants. 10:1002. doi:10.3390/plants10051002.
  • Catara A, Catara V. 2019. Il “mal secco” degli agrumi: da un secolo in Sicilia. Memorie e Rendiconti USPI Associato all'Unione Stampa Periodica Italiana; Giovanni Battista RM. 3:33–58.
  • Catara V. 2007. Pseudomonas corrugata: plant pathogen and/or biological resource? Mol Plant Pathol. 8:233. doi: 10.1111/j.1364-3703.2007.00391.x.
  • Catara V, Sutra L, Morineau A, Achouak W, Christen R, Gardan L. 2002. Phenotypic and genomic evidence for the revision of Pseudomonas corrugata and proposal of Pseudomonas mediterranea sp. nov. Int J Syst Evol Microbiol. 52:1749–1758. doi:10.1099/00207713-52-5-1749.
  • Chang M, Clinton M, Liu F, Fu ZQ. 2019. NAD+ cleavage: TIR domain-containing resistance proteins in action. Trends Plant Sci. 24:1069. doi: 10.1016/j.tplants.2019.10.005.
  • Cheng J, Fan H, Li L, Hu B, Liu H, Li Z. 2018. Genome-wide identification and expression analyses of RPP13-like genes in barley. Biochip J. 12:102. doi: 10.1007/s13206-017-2203-y.
  • Coco V, Grimaldi V, Catara V, Licciardello G, Cirvilleri G, Grasso S, Catara A. 2004. Inhibition of Phoma tracheiphila by Pseudomonads in citrus seedlings. Proc Int Soc Citriculture. 2:729–732.
  • Coleman AD, Maroschek J, Raasch L, Takken FLW, Ranf S, Hückelhoven R. 2021. The Arabidopsis leucine-rich repeat receptor-like kinase MIK2 is a crucial component of early immune responses to a fungal-derived elicitor. New Phytol. 229(6):3453–3466. doi: 10.1111/nph.17122.
  • Conrath U, Beckers GJM, Langenbach CJG, Jaskiewicz MR. 2015. Priming for enhanced defense. Annu Rev Phytopathol. 53:97. doi:10.1146/annurev-phyto-080614-120132.
  • Corke ATK. 1974. Biological control of plant pathogens. By Baker KF and James Cook R. San Francisco: Freeman; p. 433.
  • Deng H, Li XF, Cheng WD, Zhu YG. 2009. Resistance and resilience of Cu-polluted soil after Cu perturbation, tested by a wide range of soil microbial parameters. FEMS Microbiol Ecol. 70(2):293–304. doi: 10.1111/j.1574-6941.2009.00741.x.
  • Dimaria G, Mosca A, Anzalone A, Paradiso G, Nicotra D, Privitera GF, Pulvirenti A, Catara V. 2023. Sour orange microbiome is affected by infections of Plenodomus tracheiphilus causal agent of citrus mal secco disease. Agronomy. 13(3):654. doi: 10.3390/agronomy13030654.
  • Duke KA, Becker MG, Girard IJ, Millar JL, Fernando D, Belmonte WG, de Kievit TR. 2017. The biocontrol agent Pseudomonas chlororaphis PA23 primes Brassica napus defenses through distinct gene networks. BMC Genom. 18(1):467. doi: 10.1186/s12864-017-3848-6.
  • EPPO Global Database. 2022. [accessed 2022 Oct 17]. https://gd.eppo.int/taxon/DEUTTR.
  • Feng DX, Tasset C, Hanemian M, Barlet X, Hu J, Trémousaygue D, Deslandes L, Marco Y. 2012. Biological control of bacterial wilt in Arabidopsis thaliana involves abscissic acid signalling. New Phytol. 194:1035–1045. doi: 10.1111/j.1469-8137.2012.04113.x.
  • Freh M, Gao J, Petersen M, Panstruga R. 2022. Plant autoimmunity—fresh insights into an old phenomenon. Plant Physiol. 188:1419. doi: 10.1093/plphys/kiab590.
  • Fu ZQ, Dong X. 2013. Systemic acquired resistance: turning local infection into global defense. Annu Rev Plant Biol. 64(1):839–863. doi: 10.1146/annurev-arplant-042811-105606.
  • Gentile A, La Malfa SG. 2019. New breeding techniques for sustainable agriculture. In: Book: innovations in sustainable agriculture; p. 411–437. doi: 10.1007/978-3-030-23169-9_13.
  • Ghadamgahi F, Tarighi S, Taheri P, Saripella GV, Anzalone A, Kalyandurg PB, Catara V, Ortiz R, Vetukuri RR. 2022. Plant growth-promoting activity of Pseudomonas aeruginosa FG106 and its ability to act as a biocontrol agent against potato, tomato and taro pathogens. Biology. 11(1):140. doi: 10.3390/biology11010140.
  • Jones JD, Dangl JL. 2006. The plant immune system. Nature. 444(7117):323–329. doi: 10.1038/nature05286.
  • Kelbessa BG, Dubey M, Catara V, Ghadamgahi F, Ortiz R, Vetukuri RR. 2023. Potential of plant growth-promoting rhizobacteria to improve crop productivity and adaptation to a changing climate; p. 1–14. doi: 10.1079/cabireviews202318001.
  • Kieber JJ, Rothenberg M, Roman G, Feldmann KA, Ecker JR. 1993. CTR1, a negative regulator of the ethylene response pathway in arabidopsis, encodes a member of the Raf family of protein kinases. Cell. 72(3):427–441. doi:10.1016/0092-8674(93)90119-B.
  • Kong P, Li X, Gouker F, Hong C. 2022. cDNA transcriptome of Arabidopsis reveals various defense priming induced by a broad-spectrum biocontrol agent Burkholderia sp. SSG. Int J Mol Sci. 23(6):3151. doi: 10.3390/ijms23063151.
  • Krasnov H, Ezra D, Bahri BA, Cacciola SO, Meparishvili G, Migheli Q, Blanket L. 2022. Potential distribution of the citrus Mal Secco disease in the mediterranean basin under current and future climate conditions. Plant Pathol. 72:765–773. doi:10.1111/ppa.13692.
  • Lahlali R, Ezrari S, Radouane N, Kenfaoui J, Esmaeel Q, EL Hamss H, Belabess Z, Barka EA. 2022. Biological control of plant pathogens: a global perspective. Microorganisms. 10(3):596. doi: 10.3390/microorganisms10030596.
  • Libault M, Wan J, Czechowski T, Udvardi M, Stacey G. 2007. Identification of 118 Arabidopsis transcription factor and 30 ubiquitin-ligase genes responding to chitin, a plant-defense elicitor. Mol Plant Microbe Interact. 20(8):900–911. doi:10.1094/MPMI-20-8-0900.
  • Licciardello G, Grasso FM, Bella P, Cirvilleri G, Grimaldi V, Catara V. 2006. Identification and detection of Phoma tracheiphila, causal agent of citrus mal secco disease, by realtime polymerase chain reaction. Plant Dis. 90(12):1523–1530. doi: 10.1094/PD-90-1523.
  • Lim CW, Yang SH, Shin KH, Lee SC, Kim SH. 2015. Probable receptor-like serine/threonine-protein kinase involved in abscisic acid (ABA) signaling. Plant Cell Rep. 34(3):447–455. doi: 10.1007/s00299-014-1724-2.
  • Migheli Q, Cacciola SO, Balmas V, Pane A, Ezra D, di San Lio GM. 2009. Mal secco disease caused by Phoma tracheiphila: a potential threat to lemon production worldwide. Plant Dis. 93(9):852–867. doi: 10.1094/PDIS-93-9-0852.
  • Nigro F, Ippolito A, Salerno MG. 2011. Mal secco disease of citrus: a journey through a century of research. J Plant Pathol. 93:523.
  • Oliveri C, Modica G, Bella P, Continella A, Catara V. 2022. Preliminary evaluation of a zinc-copper-citric acid biocomplex for the control of Plenodomus tracheiphilus causal agent of citrus mal secco disease. Acta Hortic. 1354:231.
  • Palmieri D, Ianiri G, Del Grosso C, Barone G, De Curtis F, Castoria R, Lima G. 2022. Advances and perspectives in the use of biocontrol agents against fungal plant diseases. Horticulturae. 8(7):577. doi:10.3390/horticulturae8070577.
  • Pérez-Tornero O, Córdoba F, Moreno M, Yuste L, Porras I. 2012. Classic methods and biotechnical tools in lemon breeding: preliminary results. Acta Hortic. 928:259–263. doi: 10.17660/ActaHortic.2012.928.32.
  • Poles L, Licciardello C, Distefano G, Nicolosi E, Gentile A, La Malfa S. 2020. Recent advances of in vitro culture for the application of new breeding techniques in citrus. Plants. 9(8):938. doi: 10.3390/plants9080938.
  • Puglisi I, Lo Cicero L, Lo Piero AR. 2013. The glutathione S-transferase gene superfamily: an in silico approach to study the post translational regulation. Biodegradation. 24(4):471–485. doi: 10.1007/s10532-012-9604-3.
  • Raymaekers K, Ponet L, Holtappels D, Berckmans B, Cammue BPA. 2020. Screening for novel biocontrol agents applicable in plant disease management – a review. Biol Control. 144:104240. doi: 10.1016/j.biocontrol.2020.104240.
  • Russo M, Grasso FM, Bella P, Licciardello G, Catara A, Catara V. 2011. Molecular diagnostic tools for the detection and characterization of Phoma tracheiphila.». Acta Hortic. 892:207–214. doi: 10.17660/ActaHortic.2011.892.24.
  • Russo R, Caruso M, Arlotta C, Lo Piero AR, Nicolosi E, Di Silvestro S. 2020. Identification of field tolerance and resistance to mal secco disease in a citrus germplasm collection in Sicily. Agronomy. 10(11):1806. doi: 10.3390/agronomy10111806.
  • Russo R, Sicilia A, Caruso M, Arlotta C, Di Silvestro S, Gmitter FG Jr, Nicolosi E, Lo Piero AR. 2021. De novo transcriptome sequencing of rough lemon leaves (Citrus jambhiri lush.) in response to Plenodomus tracheiphilus infection. Int J Mol Sci. 22(2):882. doi: 10.3390/ijms22020882.
  • Sénéchal F, Wattier C, Rustérucci C, Pelloux J. 2014. Homogalacturonan-modifying enzymes: structure, expression, and roles in plants. J Exp Bot. 65(18):5125–5160. doi: 10.1093/jxb/eru272.
  • Sicilia A, Russo R, Caruso M, Arlotta C, Di Silvestro S, Gmitter FG Jr, Gentile A, Nicolosi E, Lo Piero AR. 2022. Transcriptome analysis of Plenodomus tracheiphilus infecting rough lemon (Citrus jambhiri Lush.) indicates a multifaceted strategy during host pathogenesis. Biology 11:761. doi:10.3390/biology11050761
  • Sicilia A, Santoro DF, Testa G, Cosentino SL, Lo Piero AR. 2020. Transcriptional response of giant reed (Arundo donax L.) low ecotype to long-term salt stress by unigene-based RNAseq. Phytochemistry. 177:112436. doi: 10.1016/j.phytochem.2020.112436.
  • Sicilia A, Testa G, Santoro DF, Cosentino SL, Lo Piero AR. 2019. RNASeq analysis of giant cane reveals the leaf transcriptome dynamics under long-term salt stress. BMC Plant Biol. 19(1):355. doi: 10.1186/s12870-019-1964-y.
  • Springer NM. 2010. Isolation of plant DNA for PCR and genotyping using organic extraction and CTAB. Cold Spring Harb Protoc. 2010(11). doi: 10.1101/pdb.prot5515.
  • Strano CP, Bella P, Licciardello G, Caruso A, Catara V. 2017. Role of secondary metabolites in the biocontrol activity of Pseudomonas corrugata and Pseudomonas mediterranea. Eur J Plant Pathol. 149(1):103–115. doi: 10.1007/s10658-017-1169-x.
  • Talon M, Gmitter FG. 2008. Citrus genomics. Int J Plant Genom. article ID:528361. doi:10.1155/2008/528361.
  • Tamm L, Thuerig B, Apostolov S, Blogg H, Borgo E, Corneo PE, Fittje S, de Palma M, Donko A, Experton C, et al. 2022. Use of copper-based fungicides in organic agriculture in twelve European countries. Agronomy. 12(3):673. doi: 10.3390/agronomy12030673.
  • Vahisalu T, Kollist H, Wang YF, Nishimura N, Chan WY, Valerio G, Lamminmäki A, Brosché M, Moldau H, Desikan R, et al. 2008. SLAC1 is required for plant guard cell S-type anion channel function in stomatal signalling. Nature. 452(7186):487–491. doi: 10.1038/nature06608.
  • van Loon LC, Bakker PAHM, Pieterse CMJ. 1998. Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol. 36(1):453–483. doi: 10.1146/annurev.phyto.36.1.453.
  • Walsh UF, Morrissey JP, O’Gara F. 2001. Pseudomonas for biocontrol of phytopathogens: from functional genomics to commercial exploitation. Curr Opin Biotechnol. 12(3):289–295. doi: 10.1016/S0958-1669(00)00212-3.
  • Zhang Z, Liu Y, Huang H, Gao M, Wu D, Kong Q, Zhang Y. 2017. The NLR protein SUMM2 senses the disruption of an immune signaling MAP kinase cascade via CRCK3. EMBO Rep. 18:292.