3,410
Views
2
CrossRef citations to date
0
Altmetric
Plant-Environment Interactions (Close Environment)

The impact of copper oxide nanoparticles on plant growth: a comprehensive review

ORCID Icon
Article: 2243098 | Received 18 Apr 2023, Accepted 27 Jul 2023, Published online: 05 Aug 2023

References

  • Adams J, Wright M, Wagner H, Valiente J, Britt D, Anderson A. 2017. Cu from dissolution of CuO nanoparticles signals changes in root morphology. Plant Physiol Biochem. 110:108–117. doi:10.1016/j.plaphy.2016.08.005.
  • Adhikari T, Kundu S, Biswas AK, Tarafdar JC, Rao AS. 2012. Effect of copper oxide nano particle on seed germination of selected crops. J Agr Sci Technol. A. 2(6A):815.
  • Ahmad MA, Javed R, Adeel M, Rizwan M, Ao Q, Yang Y. 2020. Engineered ZnO and CuO nanoparticles ameliorate morphological and biochemical response in tissue culture regenerants of candyleaf (Stevia rebaudiana). Molecules. 25(6):1356. doi:10.3390/molecules25061356.
  • Ahmed B, Khan MS, Musarrat J. 2018. Toxicity assessment of metal oxide nano-pollutants on tomato (Solanum lycopersicon): a study on growth dynamics and plant cell death. Environ Pollut. 240:802–816. doi:10.1016/j.envpol.2018.05.015.
  • Atha DH, Wang H, Petersen EJ, Cleveland D, Holbrook RD, Jaruga P, … Nelson BC. 2012. Copper oxide nanoparticle mediated DNA damage in terrestrial plant models. Environ Sci Technol. 46(3):1819–1827. doi:10.1021/es202660k.
  • Azhar W, Khan AR, Muhammad N, Liu B, Song G, Hussain A, … Gan Y. 2020. Ethylene mediates CuO NP-induced ultrastructural changes and oxidative stress in Arabidopsis thaliana leaves. Environmental Science: Nano. 7(3):938–953. doi:10.1039/C9EN01302D.
  • Azhar W, Khan AR, Salam A, Ulhassan Z, Qi J, Shah G, … Gan Y. 2023. Ethylene accelerates copper oxide nanoparticle-induced toxicity at physiological, biochemical, and ultrastructural levels in rice seedlings. Env Sci Pollut Res. 30(10):26137–26149. doi:10.1007/s11356-022-23915-8.
  • Badawy AA, Abdelfattah NA, Salem SS, Awad MF, Fouda A. 2021. Efficacy assessment of biosynthesized copper oxide nanoparticles (CuO-NPs) on stored grain insects and their impacts on morphological and physiological traits of wheat (Triticum aestivum L.) plant. Biology. 10(3):233. doi:10.3390/biology10030233.
  • Baskar V, Nayeem S, Kuppuraj SP, Muthu T, Ramalingam S. 2018. Assessment of the effects of metal oxide nanoparticles on the growth, physiology and metabolic responses in in vitro grown eggplant (Solanum melongena). 3 Biotech. 8:1–12. doi:10.1007/s13205-018-1386-9.
  • Boboc M, Curti F, Fleacă AM, Jianu ML, Roşu AM, Curutiu C, … Grumezescu AM. 2017. Preparation and antimicrobial activity of inorganic nanoparticles: promising solutions to fight antibiotic resistance. In: Ficai Anton, Grumezescu Alexandru Mihai, editors. Nanostructures for antimicrobial therapy. Elsevier; p. 325–340. doi:10.1016/B978-0-323-46152-8.00014-7.
  • Bonilla-Bird NJ, Ye Y, Akter T, Valdes-Bracamontes C, Darrouzet-Nardi AJ, Saupe GB, … Gardea-Torresdey JL. 2020. Effect of copper oxide nanoparticles on two varieties of sweetpotato plants. Plant Physiol Biochem. 154:277–286. doi:10.1016/j.plaphy.2020.06.009.
  • Brar SK, Verma M, Tyagi RD, Surampalli RY. 2010. Engineered nanoparticles in wastewater and wastewater sludge–evidence and impacts. Waste Manage. 30(3):504–520. doi:10.1016/j.wasman.2009.10.012.
  • Burachevskaya M, Minkina T, Mandzhieva S, Bauer T, Nevidomskaya D, Shuvaeva V, … Rajput V. 2021. Transformation of copper oxide and copper oxide nanoparticles in the soil and their accumulation by Hordeum sativum. Environ Geochem Health. 43:1655–1672. doi:10.1007/s10653-021-00857-7.
  • Chakraborty N, Banerjee J, Chakraborty P, Banerjee A, Chanda S, Ray K, … Sarkar J. 2022. Green synthesis of copper/copper oxide nanoparticles and their applications: a review. Green Chem Lett Rev. 15(1):187–215. doi:10.1080/17518253.2022.2025916.
  • Chung IM, Rekha K, Venkidasamy B, Thiruvengadam M. 2019. Effect of copper oxide nanoparticles on the physiology, bioactive molecules, and transcriptional changes in Brassica rapa ssp. rapa seedlings. Water Air Soil Pollut. 230:1–14. doi:10.1007/s11270-018-4051-3.
  • Da Costa MVJ, Kevat N, Sharma PK. 2020. Copper oxide nanoparticle and copper (II) ion exposure in Oryza sativa reveals two different mechanisms of toxicity. Water Air Soil Pollut. 231:1–16. doi:10.1007/s11270-019-4368-6.
  • Da Costa MVJ, Sharma PK. 2016. Effect of copper oxide nanoparticles on growth, morphology, photosynthesis, and antioxidant response in Oryza sativa. Photosynthetica. 54:110–119. doi:10.1007/s11099-015-0167-5.
  • Deng C, Wang Y, Cota-Ruiz K, Reyes A, Sun Y, Peralta-Videa J, … Gardea-Torresdey J. 2020. Bok choy (Brassica rapa) grown in copper oxide nanoparticles-amended soils exhibits toxicity in a phenotype-dependent manner: translocation, biodistribution and nutritional disturbance. J Hazard Mater. 398:122978. doi:10.1016/j.jhazmat.2020.122978.
  • Dev A, Srivastava AK, Karmakar S. 2018. Nanomaterial toxicity for plants. Environ Chem Lett. 16:85–100. doi:10.1007/s10311-017-0667-6.
  • Dimkpa CO, McLean JE, Latta DE, Manangón E, Britt DW, Johnson WP, … Anderson AJ. 2012. Cuo and ZnO nanoparticles: phytotoxicity, metal speciation, and induction of oxidative stress in sand-grown wheat. J Nanopart Res. 14:1–15. doi:10.1007/s11051-012-1125-9.
  • Du W, Sun Y, Ji R, Zhu J, Wu J, Guo H. 2011. Tio 2 and ZnO nanoparticles negatively affect wheat growth and soil enzyme activities in agricultural soil. J Environ Monit. 13(4):822–828. doi:10.1039/c0em00611d.
  • Du W, Tan W, Peralta-Videa JR, Gardea-Torresdey JL, Ji R, Yin Y, Guo H. 2017. Interaction of metal oxide nanoparticles with higher terrestrial plants: physiological and biochemical aspects. Plant Physiol Biochem. 110:210–225. doi:10.1016/j.plaphy.2016.04.024.
  • El-Moneim DA, Dawood MF, Moursi YS, Farghaly AA, Afifi M, Sallam A. 2021. Positive and negative effects of nanoparticles on agricultural crops. Nanotechnol Env Eng. 6(2):21. doi:10.1007/s41204-021-00117-0.
  • Faraz A, Faizan M, Hayat S, Alam P. 2022. Foliar application of copper oxide nanoparticles increases the photosynthetic efficiency and antioxidant activity in Brassica juncea. J Food Qual. 2022. doi:10.1155/2022/5535100.
  • Fedorenko AG, Minkina TM, Chernikova NP, Fedorenko GM, Mandzhieva SS, Rajput VD, … Soldatov AV. 2021. The toxic effect of CuO of different dispersion degrees on the structure and ultrastructure of spring barley cells (Hordeum sativum distichum). Environ Geochem Health. 43:1673–1687. doi:10.1007/s10653-020-00530-5.
  • Foley S, Crowley C, Smaihi M, Bonfils C, Erlanger BF, Seta P, Larroque C. 2002. Cellular localisation of a water-soluble fullerene derivative. Biochem Biophys Res Commun. 294(1):116–119. doi:10.1016/S0006-291X(02)00445-X.
  • Gao M, Chang J, Wang Z, Zhang H, Wang T. 2023. Advances in transport and toxicity of nanoparticles in plants. J Nanobiotechnol. 21(1):75. doi:10.1186/s12951-023-01830-5.
  • Garcia L, Welchen E, Gonzalez DH. 2014. Mitochondria and copper homeostasis in plants. Mitochondrion. 19:269–274. doi:10.1016/j.mito.2014.02.011.
  • Gopalakrishnan Nair PM, Kim SH, Chung IM. 2014. Copper oxide nanoparticle toxicity in mung bean (Vigna radiata L.) seedlings: physiological and molecular level responses of in vitro grown plants. Acta Physiol Plant. 36:2947–2958. doi:10.1007/s11738-014-1667-9.
  • Grigore ME, Biscu ER, Holban AM, Gestal MC, Grumezescu AM. 2016. Methods of synthesis, properties and biomedical applications of CuO nanoparticles. Pharmaceuticals. 9(4):75. doi:10.3390/ph9040075.
  • Guan X, Gao X, Avellan A, Spielman-Sun E, Xu J, Laughton S, … Lowry GV. 2020. Cuo nanoparticles alter the rhizospheric bacterial community and local nitrogen cycling for wheat grown in a calcareous soil. Environ Sci Technol. 54(14):8699–8709. doi:10.1021/acs.est.0c00036.
  • Hafeez A, Razzaq A, Mahmood T, Jhanzab HM. 2015. Potential of copper nanoparticles to increase growth and yield of wheat. J Nanosci Adv Technol. 1(1):6–11. doi:10.24218/jnat.2015.02.
  • Hong J, Rico CM, Zhao L, Adeleye AS, Keller AA, Peralta-Videa JR, Gardea-Torresdey JL. 2015. Toxic effects of copper-based nanoparticles or compounds to lettuce (Lactuca sativa) and alfalfa (Medicago sativa). Env Sci: Proc Impacts. 17(1):177–185. doi:10.1039/C4EM00551A.
  • Hou J, Wang X, Hayat T, Wang X. 2017. Ecotoxicological effects and mechanism of CuO nanoparticles to individual organisms. Environ Pollut. 221:209–217. doi:10.1016/j.envpol.2016.11.066.
  • Ibrahim AS, Ali GA, Hassanein A, Attia AM, Marzouk ER. 2022. Toxicity and uptake of CuO nanoparticles: evaluation of an emerging nanofertilizer on wheat (Triticum aestivum L.) plant. Sustainability. 14(9):4914. doi:10.3390/su14094914.
  • Jośko I, Kusiak M, Xing B, Oleszczuk P. 2021. Combined effect of nano-CuO and nano-ZnO in plant-related system: from bioavailability in soil to transcriptional regulation of metal homeostasis in barley. J Hazard Mater. 416:126230. doi:10.1016/j.jhazmat.2021.126230.
  • Kacziba B, Szierer Á, Mészáros E, Rónavári A, Kónya Z, Feigl G. 2023. Exploration the homeostasis of signaling molecules in monocotyledonous crops with different CuO nanoparticle tolerance. Plant Stress. 7:100145. doi:10.1016/j.stress.2023.100145.
  • Kadri O, Karmous I, Kharbech O, Arfaoui H, Chaoui A. 2022. Cu and CuO nanoparticles affected the germination and the growth of barley (Hordeum vulgare L.) seedling. Bull Environ Contam Toxicol. 108(3):585–593. doi:10.1007/s00128-021-03425-y.
  • Kamat JP, Devasagayam TPA, Priyadarsini KI, Mohan H. 2000. Reactive oxygen species mediated membrane damage induced by fullerene derivatives and its possible biological implications. Toxicology. 155(1–3):55–61. doi:10.1016/S0300-483X(00)00277-8.
  • Karami Mehrian S, De Lima R. 2016. Nanoparticles cyto and genotoxicity in plants: mechanisms and abnormalities. Environ Nanotechnol Monit Manag. 6:184–193. doi:10.1016/j.enmm.2016.08.003.
  • Koce JD. 2017. Effects of exposure to nano and bulk sized TiO2 and CuO in Lemna minor. Plant Physiol Biochem. 119:43–49. doi:10.1016/j.plaphy.2017.08.014.
  • Kohatsu MY, Pelegrino MT, Monteiro LR, Freire BM, Pereira RM, Fincheira P, … Lange CN. 2021. Comparison of foliar spray and soil irrigation of biogenic CuO nanoparticles (NPs) on elemental uptake and accumulation in lettuce. Env Sci Pollut Res. 28:16350–16367. doi:10.1007/s11356-020-12169-x.
  • Landa P, Cyrusova T, Jerabkova J, Drabek O, Vanek T, Podlipna R. 2016. Effect of metal oxides on plant germination: phytotoxicity of nanoparticles, bulk materials, and metal ions. Water Air Soil Pollut. 227:1–10. doi:10.1007/s11270-016-3156-9.
  • Landa P, Dytrych P, Prerostova S, Petrova S, Vankova R, Vanek T. 2017. Transcriptomic response of Arabidopsis thaliana exposed to CuO nanoparticles, bulk material, and ionic copper. Environ Sci Technol. 51(18):10814–10824. doi:10.1021/acs.est.7b02265.
  • Lee S, Chung H, Kim S, Lee I. 2013. The genotoxic effect of ZnO and CuO nanoparticles on early growth of buckwheat, Fagopyrum esculentum. Water Air Soil Pollut. 224:1–11. doi:10.1007/s11270-013-1668-0.
  • Li KE, Chang ZY, Shen CX, Yao N.. 2015. Toxicity of nanomaterials to plants. In: Manzer H. Siddiqui, Firoz Mohammad, Mohamed H. Al-Whaibi, editors. Nanotechnology and Plant Sciences - Nanoparticles and Their Impact on Plants. Springer; p. 101–123. doi:10.1007/978-3-319-14502-0_6.
  • Lin D, Xing B. 2008. Root uptake and phytotoxicity of ZnO nanoparticles. Environ Sci Technol. 42(15):5580–5585. doi:10.1021/es800422x.
  • Liu C, Yu Y, Liu H, Xin H. 2021. Effect of different copper oxide particles on cell division and related genes of soybean roots. Plant Physiol Biochem. 163:205–214. doi:10.1016/j.plaphy.2021.03.051.
  • Liu R, Zhang H, Lal R. 2016. Effects of stabilized nanoparticles of copper, zinc, manganese, and iron oxides in low concentrations on lettuce (Lactuca sativa) seed germination: nanotoxicants or nanonutrients? Water Air Soil Pollut. 227:1–14. doi:10.1007/s11270-015-2689-7.
  • Ma X, Yan J. 2018. Plant uptake and accumulation of engineered metallic nanoparticles from lab to field conditions. Curr Opin Env Sci Health. 6:16–20. doi:10.1016/j.coesh.2018.07.008.
  • Madhuban G, Rajesh K, Arunava G. 2012. Nano-pesticides-A recent approach for pest control. J Plant Prot Sci. 4(2):1–7.
  • Moon YS, Park ES, Kim TO, Lee HS, Lee SE. 2014. SELDI-TOF MS-based discovery of a biomarker in Cucumis sativus seeds exposed to CuO nanoparticles. Environ Toxicol Pharmacol. 38(3):922–931. doi:10.1016/j.etap.2014.10.002.
  • Murali M, Gowtham HG, Singh SB, Shilpa N, Aiyaz M, Alomary MN, … Amruthesh KN. 2022. Fate, bioaccumulation and toxicity of engineered nanomaterials in plants: current challenges and future prospects. Sci Total Environ. 811:152249. doi:10.1016/j.scitotenv.2021.152249.
  • Nair PMG, Chung IM. 2014. Impact of copper oxide nanoparticles exposure on Arabidopsis thaliana growth, root system development, root lignificaion, and molecular level changes. Env Sci Pollut Res. 21:12709–12722. doi:10.1007/s11356-014-3210-3.
  • Nair PMG, Chung IM. 2015. Study on the correlation between copper oxide nanoparticles induced growth suppression and enhanced lignification in Indian mustard (Brassica juncea L.). Ecotoxicol Environ Saf. 113:302–313. doi:10.1016/j.ecoenv.2014.12.013.
  • Naz S, Gul A, Zia M. 2020. Toxicity of copper oxide nanoparticles: a review study. IET Nanobiotechnol. 14(1):1–13. doi:10.1049/iet-nbt.2019.0176.
  • Nekrasova GF, Maleva MG. 2007. Development of Anti oxidant Reactions in Elodea canadensis Leaves upon Short Term Exposure to High Ni2+, Zn2+, and Cu2+ Concentrations, Sovremennaya fiziologiya rastenii: ot molekul do eko sistem: Mat ly mezhdun. konf.(Modern Plant Physiology: From Molecules to Ecosystems. Proc. Int. Conf.). In Modern Plant Physiology: From Molecules to Ecosystems. Proceedings of International Conference (Vol. 278).
  • Nie G, Zhao J, He R, Tang Y. 2020. Cuo nanoparticle exposure impairs the root tip cell walls of arabidopsis thaliana seedlings. Water Air Soil Pollut. 231:1–11. doi:10.1007/s11270-019-4368-6.
  • Ochoa L, Medina-Velo IA, Barrios AC, Bonilla-Bird NJ, Hernandez-Viezcas JA, Peralta-Videa JR, Gardea-Torresdey JL. 2017. Modulation of CuO nanoparticles toxicity to green pea (Pisum sativum Fabaceae) by the phytohormone indole-3-acetic acid. Sci Total Environ. 598:513–524. doi:10.1016/j.scitotenv.2017.04.063.
  • Oorts K. 2013. Copper. In: B. J. Alloway, editor. Heavy metals in soils. Dordrecht: Springer Science + Business Media; p. 367–394.
  • Pelegrino MT, Kohatsu MY, Seabra AB, Monteiro LR, Gomes DG, Oliveira HC, … Lange CN. 2020. Effects of copper oxide nanoparticles on growth of lettuce (Lactuca sativa L.) seedlings and possible implications of nitric oxide in their antioxidative defense. Environ Monit Assess. 192:1–14. doi:10.1007/s10661-020-8188-3.
  • Peng C, Xu C, Liu Q, Sun L, Luo Y, Shi J. 2017. Fate and transformation of CuO nanoparticles in the soil–rice system during the life cycle of rice plants. Environ Sci Technol. 51(9):4907–4917. doi:10.1021/acs.est.6b05882.
  • Pu S, Yan C, Huang H, Liu S, Deng D. 2019. Toxicity of nano-CuO particles to maize and microbial community largely depends on its bioavailable fractions. Environ Pollut. 255:113248. doi:10.1016/j.envpol.2019.113248.
  • Qu H, Ma C, Xing W, Xue L, Liu H, White JC, … Xing B. 2022. Effects of copper oxide nanoparticles on Salix growth, soil enzyme activity and microbial community composition in a wetland mesocosm. J Hazard Mater. 424:127676. doi:10.1016/j.jhazmat.2021.127676.
  • Rafique M, Shaikh AJ, Rasheed R, Tahir MB, Bakhat HF, Rafique MS, Rabbani F. 2017. A review on synthesis, characterization and applications of copper nanoparticles using green method. Nano. 12(04):1750043. doi:10.1142/S1793292017500436.
  • Rai P, Singh VP, Peralta-Videa J, Tripathi DK, Sharma S, Corpas FJ. 2021. Hydrogen sulfide (H2S) underpins the beneficial silicon effects against the copper oxide nanoparticles (CuO NPs) phytotoxicity in Oryza sativa seedlings. J Hazard Mater. 415:124907. doi:10.1016/j.jhazmat.2020.124907.
  • Rawat S, Cota-Ruiz K, Dou H, Pullagurala VL, Zuverza-Mena N, White JC, … Gardea-Torresdey JL. 2021. Soil-Weathered CuO Nanoparticles compromise foliar health and pigment production in spinach (Spinacia oleracea). Environ Sci Technol. 55(20):13504–13512. doi:10.1021/acs.est.0c06548.
  • Rawat S, Pullagurala VL, Hernandez-Molina M, Sun Y, Niu G, Hernandez-Viezcas JA, … Gardea-Torresdey JL. 2018. Impacts of copper oxide nanoparticles on bell pepper (Capsicum annum L.) plants: a full life cycle study. Env Sci Nano. 5(1):83–95. doi:10.1039/C7EN00697G.
  • Reddy PVL, Hernandez-Viezcas JA, Peralta-Videa JR, Gardea-Torresdey JL. 2016. Lessons learned: are engineered nanomaterials toxic to terrestrial plants? Sci Total Environ. 568:470–479. doi:10.1016/j.scitotenv.2016.06.042.
  • Roy D, Adhikari S, Adhikari A, Ghosh S, Azahar I, Basuli D, Hossain Z. 2022. Impact of CuO nanoparticles on maize: comparison with CuO bulk particles with special reference to oxidative stress damages and antioxidant defense status. Chemosphere. 287:131911. doi:10.1016/j.chemosphere.2021.131911.
  • Ruttkay-Nedecky B, Krystofova O, Nejdl L, Adam V. 2017. Nanoparticles based on essential metals and their phytotoxicity. J Nanobiotechnol. 15(1):1–19. doi:10.1186/s12951-017-0268-3.
  • Servin AD, Castillo-Michel H, Hernandez-Viezcas JA, Diaz BC, Peralta-Videa JR, Gardea-Torresdey JL. 2012. Synchrotron micro-XRF and micro-XANES confirmation of the uptake and translocation of TiO2 nanoparticles in cucumber (Cucumis sativus) plants. Environ Sci Technol. 46(14):7637–7643. doi:10.1021/es300955b.
  • Shabbir Z, Sardar A, Shabbir A, Abbas G, Shamshad S, Khalid S, … Shahid M. 2020. Copper uptake, essentiality, toxicity, detoxification and risk assessment in soil-plant environment. Chemosphere. 259:127436. doi:10.1016/j.chemosphere.2020.127436.
  • Shaw AK, Hossain Z. 2013. Impact of nano-CuO stress on rice (Oryza sativa L.) seedlings. Chemosphere. 93(6):906–915. doi:10.1016/j.chemosphere.2013.05.044.
  • Shehabeldine AM, Amin BH, Hagras FA, Ramadan AA, Kamel MR, Ahmed MA, … Salem SS. 2023. Potential antimicrobial and antibiofilm properties of copper oxide nanoparticles: time-kill kinetic essay and ultrastructure of pathogenic bacterial cells. Appl Biochem Biotechnol. 195(1):467–485. doi:10.1007/s12010-022-04120-2.
  • Shende S, Rathod D, Gade A, Rai M. 2017. Biogenic copper nanoparticles promote the growth of pigeon pea (Cajanus cajan L.). IET Nanobiotechnol. 11(7):773–781. doi:10.1049/iet-nbt.2016.0179.
  • Shi J, Abid AD, Kennedy IM, Hristova KR, Silk WK. 2011. To duckweeds (Landoltia punctata), nanoparticulate copper oxide is more inhibitory than the soluble copper in the bulk solution. Environ Pollut. 159(5):1277–1282. doi:10.1016/j.envpol.2011.01.028.
  • Shi J, Peng C, Yang Y, Yang J, Zhang H, Yuan X, … Hu T. 2014. Phytotoxicity and accumulation of copper oxide nanoparticles to the Cu-tolerant plant Elsholtzia splendens. Nanotoxicology. 8(2):179–188. doi:10.3109/17435390.2013.766768.
  • Siddiqi KS, Husen A. 2020. Current status of plant metabolite-based fabrication of copper/copper oxide nanoparticles and their applications: a review. Biomater Res. 24(1):1–15. doi:10.1186/s40824-020-00188-1.
  • Singh D, Kumar A. 2016. Impact of irrigation using water containing CuO and ZnO nanoparticles on spinach oleracea grown in soil media. Bull Environ Contam Toxicol. 97:548–553. doi:10.1007/s00128-016-1872-x.
  • Singh D, Kumar A. 2020. Quantification of metal uptake in Spinacia oleracea irrigated with water containing a mixture of CuO and ZnO nanoparticles. Chemosphere. 243:125239. doi:10.1016/j.chemosphere.2019.125239.
  • Song G, Hou W, Gao Y, Wang Y, Lin L, Zhang Z, … Wang H. 2016. Effects of CuO nanoparticles on Lemna minor. Botanical Studies. 57:1–8. doi:10.1186/s40529-016-0118-x.
  • Song W, Zhao B, Wang C, Ozaki Y, Lu X. 2019. Functional nanomaterials with unique enzyme-like characteristics for sensing applications. J Mater Chem B. 7(6):850–875. doi:10.1039/C8TB02878H.
  • Soria NGC, Bisson MA, Atilla-Gokcumen GE, Aga DS. 2019. High-resolution mass spectrometry-based metabolomics reveal the disruption of jasmonic pathway in Arabidopsis thaliana upon copper oxide nanoparticle exposure. Sci Total Environ. 693:133443. doi:10.1016/j.scitotenv.2019.07.249.
  • Subpiramaniyam S, Hong SC, Yi PI, Jang SH, Suh JM, Jung ES, … Cho LH. 2021. Influence of sawdust addition on the toxic effects of cadmium and copper oxide nanoparticles on Vigna radiata seeds. Environ Pollut. 289:117311. doi:10.1016/j.envpol.2021.117311.
  • Tang Y, He R, Zhao J, Nie G, Xu L, Xing B. 2016. Oxidative stress-induced toxicity of CuO nanoparticles and related toxicogenomic responses in Arabidopsis thaliana. Environ Pollut. 212:605–614. doi:10.1016/j.envpol.2016.03.019.
  • Tapan A, Biswas AK, Kundu S. 2010. Nano-fertiliser-a new dimension in agriculture. Indian J Fertilisers. 6(8):22–24.
  • Tiwari DK, Dasgupta-Schubert N, Villaseñor Cendejas LM, Villegas J, Carreto Montoya L, Borjas García SE. 2014. Interfacing carbon nanotubes (CNT) with plants: enhancement of growth, water and ionic nutrient uptake in maize (Zea mays) and implications for nanoagriculture. Appl Nanosci. 4:577–591. doi:10.1007/s13204-013-0236-7.
  • Vassell J, Racelis A, Mao Y. 2019. Effects of CuO nanoparticles on the growth of kale. ES Materials & Manufacturing. 5:19–23. doi:10.30919/esmm5f212.
  • Velicogna JR, Schwertfeger DM, Beer C, Jesmer AH, Kuo J, Chen H, … Princz JI. 2020. Phytotoxicity of copper oxide nanoparticles in soil with and without biosolid amendment. NanoImpact. 17:100196. doi:10.1016/j.impact.2019.100196.
  • Wang S, Liu H, Zhang Y, Xin H. 2015. The effect of CuO NPs on reactive oxygen species and cell cycle gene expression in roots of rice. Environ Toxicol Chem. 34(3):554–561. doi:10.1002/etc.2826.
  • Wang W, Liu J, Ren Y, Zhang L, Xue Y, Zhang L, He J. 2020a. Phytotoxicity assessment of copper oxide nanoparticles on the germination, early seedling growth, and physiological responses in Oryza sativa L. Bull Environ Contam Toxicol. 104:770–777. doi:10.1007/s00128-020-02850-9.
  • Wang W, Ren Y, He J, Zhang L, Wang X, Cui Z. 2020b. Impact of copper oxide nanoparticles on the germination, seedling growth, and physiological responses in Brassica pekinensis L. Env Sci Pollut Res. 27:31505–31515. doi:10.1007/s11356-020-09338-3.
  • Wang X, Xie H, Wang P, Yin H. 2023. Nanoparticles in plants: uptake, transport and physiological activity in leaf and root. Materials. 16(8):3097. doi:10.3390/ma16083097.
  • Wang Y, Deng C, Cota-Ruiz K, Peralta-Videa JR, Sun Y, Rawat S, … Gardea-Torresdey JL. 2020c. Improvement of nutrient elements and allicin content in green onion (allium fistulosum) plants exposed to CuO nanoparticles. Sci Total Environ. 725:138387. doi:10.1016/j.scitotenv.2020.138387.
  • Wang Z, Xie X, Zhao J, Liu X, Feng W, White JC, Xing B. 2012. Xylem-and phloem-based transport of CuO nanoparticles in maize (Zea mays L). Environ Sci Technol. 46(8):4434–4441. doi:10.1021/es204212z.
  • Xiong T, Dumat C, Dappe V, Vezin H, Schreck E, Shahid M, … Sobanska S. 2017. Copper oxide nanoparticle foliar uptake, phytotoxicity, and consequences for sustainable urban agriculture. Environ Sci Technol. 51(9):5242–5251. doi:10.1021/acs.est.6b05546.
  • Xiong T, Zhang S, Kang Z, Zhang T, Li S. 2021a. Dose-dependent physiological and transcriptomic responses of lettuce (Lactuca sativa L.) to copper oxide nanoparticles—insights into the phytotoxicity mechanisms. Int J Mol Sci. 22(7):3688. doi:10.3390/ijms22073688.
  • Xiong T, Zhang T, Xian Y, Kang Z, Zhang S, Dumat C, … Li S. 2021b. Foliar uptake, biotransformation, and impact of CuO nanoparticles in Lactuca sativa L. var. ramosa Hort. Environ Geochem Health. 43:423–439. doi:10.1007/s10653-020-00734-9.
  • Yang Z, Chen J, Dou R, Gao X, Mao C, Wang L. 2015. Assessment of the phytotoxicity of metal oxide nanoparticles on two crop plants, maize (Zea mays L.) and rice (Oryza sativa L.). Int J Environ Res Public Health. 12(12):15100–15109. doi:10.3390/ijerph121214963.
  • Yang Z, Xiao Y, Jiao T, Zhang Y, Chen J, Gao Y. 2020. Effects of copper oxide nanoparticles on the growth of rice (oryza sativa L.) seedlings and the relevant physiological responses. Int J Environ Res Public Health. 17(4):1260. doi:10.3390/ijerph17041260.
  • Yasmeen F, Raja NI, Ilyas N, Komatsu S. 2018. Quantitative proteomic analysis of shoot in stress tolerant wheat varieties on copper nanoparticle exposure. Pl Mol Bio Rep. 36:326–340. doi:10.1007/s11105-018-1082-2.
  • Yue L, Zhao J, Yu X, Lv K, Wang Z, Xing B. 2018. Interaction of CuO nanoparticles with duckweed (Lemna minor. L): uptake, distribution and ROS production sites. Environ Pollut. 243:543–552. doi:10.1016/j.envpol.2018.09.013.
  • Zafar H, Ali A, Zia M. 2017. Cuo nanoparticles inhibited root growth from Brassica nigra seedlings but induced root from stem and leaf explants. Appl Biochem Biotechnol. 181:365–378. doi:10.1007/s12010-016-2217-2.
  • Zhang D, Liu X, Ma J, Yang H, Zhang W, Li C. 2019. Genotypic differences and glutathione metabolism response in wheat exposed to copper. Environ Exp Bot. 157:250–259. doi:10.1016/j.envexpbot.2018.06.032.
  • Zuverza-Mena N, Medina-Velo IA, Barrios AC, Tan W, Peralta-Videa JR, Gardea-Torresdey JL. 2015. Copper nanoparticles/compounds impact agronomic and physiological parameters in cilantro (Coriandrum sativum). Env Sci Proc Impacts. 17(10):1783–1793. doi:10.1039/C5EM00329F.