587
Views
1
CrossRef citations to date
0
Altmetric
Plant-Plant Interactions

Intercropping of Hordeum vulgare L. and Lupinus angustifolius L. causes the generation of prenylated flavonoids in Lupinus angustifolius L.

, , &
Article: 2255039 | Received 25 Jan 2023, Accepted 30 Aug 2023, Published online: 13 Sep 2023

References

  • Abdel-Lateif K, et al. 2013. Silencing of the chalcone synthase gene in Casuarina glauca highlights the important role of flavonoids during nodulation. New Phytol. 199(4):1012–1021. doi:10.1111/nph.12326.
  • Andersen IKL, et al. 2022. Optimised extraction and LC-MS/MS analysis of flavonoids reveal large field variation in exudation into Lupinus Angustifolius L. rhizosphere soil. Rhizosphere. 22:100516. doi:10.1016/j.rhisph.2022.100516.
  • Angus JF, et al. 2015. Break crops and rotations for wheat. Crop Pasture Sci. 66(6):523–552. doi:10.1071/CP14252.
  • Araya-Cloutier C, et al. 2017. The position of prenylation of isoflavonoids and stilbenoids from legumes (Fabaceae) modulates the antimicrobial activity against Gram positive pathogens. Food Chem. 226:193–201. doi:10.1016/j.foodchem.2017.01.026.
  • Araya-Cloutier C, et al. 2018. Rapid membrane permeabilization of Listeria monocytogenes and Escherichia coli induced by antibacterial prenylated phenolic compounds from legumes. Food Chem. 240:147–155. doi:10.1016/j.foodchem.2017.07.074.
  • Bargaz A, et al. 2016. Nodulation and root growth increase in lower soil layers of water-limited faba bean intercropped with wheat. J Plant Nutr Soil Sci. 179(4):537–546. doi:10.1002/jpln.201500533.
  • Barri T, et al. 2012. Metabolic fingerprinting of high-fat plasma samples processed by centrifugation- and filtration-based protein precipitation delineates significant differences in metabolite information coverage. Anal Chim Acta. 718:47–57. doi:10.1016/j.aca.2011.12.065.
  • Begum AA, et al. 2001. Specific flavonoids induced nod gene expression and pre-activated nod genes of Rhizobium leguminosarum increased pea (Pisum sativum L.) and lentil (Lens culinaris L.) nodulation in controlled growth chamber environments. J Exp Bot. 52(360):1537–1543. doi:10.1093/jexbot/52.360.1537.
  • Bejder J, et al. 2021. An untargeted urine metabolomics approach for autologous blood transfusion detection. Med Sci Sports Exercise. 53(1):236–243. doi:10.1249/MSS.0000000000002442.
  • Berg M, et al. 2013. LC-MS metabolomics from study design to data-analysis – using a versatile pathogen as a test case. Comput Struct Biotechnol J. 4(5):e201301002. doi:10.5936/csbj.201301002.
  • Bilalis D, et al. 2010. Weed-suppressive effects of maize–legume intercropping in organic farming. Int J Pest Manag. 56(2):173–181. doi:10.1080/09670870903304471.
  • Carton N, et al. 2020. Intercropping winter lupin and triticale increases weed suppression and total yield. Agriculture. 10(8), doi:10.3390/agriculture10080316.
  • Chambers MC, et al. 2012. A cross-platform toolkit for mass spectrometry and proteomics. Nat Biotechnol. 30(10):918–920. doi:10.1038/nbt.2377.
  • Chandler JW. 2016. Auxin response factors. Plant Cell Environ. 39(5):1014–1028. doi:10.1111/pce.12662.
  • Cuyckens F, et al. 2004. Mass spectrometry in the structural analysis of flavonoids. J Mass Spectrom. 39(1):1–15. doi:10.1002/jms.585.
  • Czaban W, et al. 2018. Multiple effects of secondary metabolites on amino acid cycling in white clover rhizosphere. Soil Biol Biochem. 123:54–63. doi:10.1016/j.soilbio.2018.04.012.
  • Dong Q, et al. 2022. Maize and peanut intercropping improves the nitrogen accumulation and yield per plant of maize by promoting the secretion of flavonoids and abundance of Bradyrhizobium in rhizosphere. Front Plant Sci. 13:957336. doi:10.3389/fpls.2022.957336.
  • Dong W, et al. 2020. The significance of flavonoids in the process of biological nitrogen fixation. Int J Mol Sci. 21(16). doi:10.3390/ijms21165926.
  • Duan Y, et al. 2021. The effects of tea plants-soybean intercropping on the secondary metabolites of tea plants by metabolomics analysis. BMC Plant Biol. 21(1):482. doi:10.1186/s12870-021-03258-1.
  • Duca DR, et al. 2020. Indole-3-acetic acid biosynthesis and its regulation in plant-associated bacteria. Appl Microbiol Biotechnol. 104(20):8607–8619. doi:10.1007/s00253-020-10869-5.
  • Falcone Ferreyra ML, et al. 2012. Flavonoids: biosynthesis, biological functions, and biotechnological applications. Front Plant Sci. 3(222), doi:10.3389/fpls.2012.00222.
  • Ferguson BJ, et al. 2010. Molecular analysis of legume nodule development and autoregulation. J Integr Plant Biol. 52(1):61–76. doi:10.1111/j.1744-7909.2010.00899.x.
  • Fernie AR, et al. 2011. Recommendations for reporting metabolite data. Plant Cell. 23(7):2477–2482. doi:10.1105/tpc.111.086272.
  • Fustec J, et al. 2010. Nitrogen rhizodeposition of legumes. A review. Agron Sustainable Dev. 30(1):57–66. doi:10.1051/agro/2009003.
  • Gagnon H, et al. 1997. Effects of various elicitors on the accumulation and secretion of isoflavonoids in white lupin. Phytochemistry. 44(8):1463–1467. doi:10.1016/S0031-9422(96)00735-2.
  • Gagnon H, et al. 1998. Aldonic acids: a novel family of nod gene inducers of Mesorhizobium loti, Rhizobium lupini, and Sinorhizobium meliloti. Mol Plant-Microbe Interactions®. 11(10):988–998. doi:10.1094/MPMI.1998.11.10.988.
  • Geng P, et al. 2016. Comprehensive characterization of C-glycosyl flavones in wheat (Triticum aestivum L.) germ using UPLC-PDA-ESI/HRMS n and mass defect filtering. J Mass Spectrom. 51(10):914–930. doi:10.1002/jms.3803.
  • Hama JR, et al. 2020. Natural alkaloids from narrow-leaf and yellow lupins transfer to soil and soil solution in agricultural fields. Environ Sci Europe. 32(1):126. doi:10.1186/s12302-020-00405-7.
  • Hartwig UA, et al. 1991. Release and modification of nod-gene-inducing flavonoids from alfalfa seeds. Plant Physiol. 95(3):804–807. doi:10.1104/pp.95.3.804.
  • Hazrati H, et al. 2021. Targeted metabolomics unveil alteration in accumulation and root exudation of flavonoids as a response to interspecific competition. Journal of Plant Interactions. 16(1):53–63. doi:10.1080/17429145.2021.1881176.
  • Hazrati H, et al. 2022. Integrated LC–MS and GC–MS-based metabolomics reveal the effects of plant competition on the Rye metabolome. J Agric Food Chem. 70(9):3056–3066. doi:10.1021/acs.jafc.1c06306.
  • Hu F, et al. 2017. Improving N management through intercropping alleviates the inhibitory effect of mineral N on nodulation in pea. Plant Soil. 412(1):235–251. doi:10.1007/s11104-016-3063-2.
  • Jain V, et al. 2002. Plant flavonoids: signals to legume nodulation and soil microorganisms. J Plant Biochem Biotechnol. 11(1):1–10. doi:10.1007/BF03263127.
  • Jensen CR, et al. 2004. The effect of lupins as compared with peas and oats on the yield of the subsequent winter barley crop. Eur J Agron. 20(4):405–418. doi:10.1016/S1161-0301(03)00057-1.
  • Khan MK, et al. 2015. Phytochemical composition and bioactivities of lupin: a review. Int J Food Sci Technol. 50(9):2004–2012. doi:10.1111/ijfs.12796.
  • Kind T, et al. 2006. Metabolomic database annotations via query of elemental compositions: mass accuracy is insufficient even at less than 1 ppm. BMC Bioinformatics. 7:234. doi:10.1186/1471-2105-7-234.
  • Kirkegaard J, et al. 2008. Break crop benefits in temperate wheat production. Field Crops Res. 107(3):185–195. doi:10.1016/j.fcr.2008.02.010.
  • Liu C-W, et al. 2016. The role of flavonoids in nodulation host-range specificity: An update. Plants. 5(3), doi:10.3390/plants5030033.
  • Liu J, et al. 2018. Genistein-Specific G6DT gene for the inducible production of wighteone in lotus japonicus. Plant Cell Physiol. 59(1):128–141. doi:10.1093/pcp/pcx167.
  • Liu YC, et al. 2017. Intercropping influences component and content change of flavonoids in root exudates and nodulation of Faba bean. J Plant Interactions. 12(1):187–192. doi:10.1080/17429145.2017.1308569.
  • March RE, et al. 2004. A fragmentation study of kaempferol using electrospray quadrupole time-of-flight mass spectrometry at high mass resolution. Int J Mass Spectrom. 231(2):157–167. doi:10.1016/j.ijms.2003.10.008.
  • Ng JLP, et al. 2015. Flavonoids and auxin transport inhibitors rescue symbiotic nodulation in the Medicago truncatula cytokinin perception mutant cre. Plant Cell. 27(8):2210–2226. doi:10.1105/tpc.15.00231.
  • Novák K, et al. 2002. Effect of exogenous flavonoids on nodulation of pea (Pisum sativum L.). J Exp Bot. 53(375):1735–1745. doi:10.1093/jxb/erf016.
  • Peixoto L, et al. 2022. Deep-rooted perennial crops differ in capacity to stabilize C inputs in deep soil layers. Sci Rep. 12(1):5952. doi:10.1038/s41598-022-09737-1.
  • Plaza M, et al. 2014. Substituent effects on in vitro antioxidizing properties, stability, and solubility in flavonoids. J Agric Food Chem. 62(15):3321–3333. doi:10.1021/jf405570u.
  • Pluskal T, et al. 2010. MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics. 11:395. doi:10.1186/1471-2105-11-395.
  • Popłoński J, et al. 2018. Synthesis and antiproliferative activity of minor hops prenylflavonoids and new insights on prenyl group cyclization. Molecules. 23(4), doi:10.3390/molecules23040776.
  • Salem MA, et al. 2020. Metabolomics in the context of plant natural products research: from sample preparation to metabolite analysis. Metabolites. 10(1), doi:10.3390/metabo10010037.
  • Sarunaite L, et al. 2010. Intercropping spring wheat with grain legume for increased production in an organic crop rotation. Žemdirbystė-Agriculture. 97(3):51–58.
  • Shi S, et al. 2021. A comprehensive review: Biological activity, modification and synthetic methodologies of prenylated flavonoids. Phytochemistry. 191:112895. doi:10.1016/j.phytochem.2021.112895.
  • Simons R, et al. 2009. A rapid screening method for prenylated flavonoids with ultra-high-performance liquid chromatography/electrospray ionisation mass spectrometry in licorice root extracts. Rapid Commun Mass Spectrom. 23(19):3083–3093. doi:10.1002/rcm.4215.
  • Slámová K, et al. 2018. “Sweet flavonoids”: glycosidase-catalyzed modifications. Int J Mol Sci. 19(7), doi:10.3390/ijms19072126.
  • Stagnari F, et al. 2017. Multiple benefits of legumes for agriculture sustainability: an overview. Chem Biol Technol Agric. 4(1):2. doi:10.1186/s40538-016-0085-1.
  • Sumner LW, et al. 2007. Proposed minimum reporting standards for chemical analysis. Metabolomics. 3(3):211–221. doi:10.1007/s11306-007-0082-2.
  • Tanaka M, et al. 1997. Fad-dependent epoxidase as a key enzyme in fungal metabolism of prenylated flavonoids. Phytochemistry. 46(3):433–439. doi:10.1016/S0031-9422(97)00322-1.
  • Taylor LP, et al. 1992. Conditional male fertility in chalcone synthase-deficient petunia. J Hered. 83(1):11–17. doi:10.1093/oxfordjournals.jhered.a111149.
  • Wang Y, et al. 2019. GmYUC2a mediates auxin biosynthesis during root development and nodulation in soybean. J Exp Bot. 70(12):3165–3176. doi:10.1093/jxb/erz144.
  • Weston LA, et al. 2013. Flavonoids: their structure, biosynthesis and role in the rhizosphere, including allelopathy. J Chem Ecol. 39(2):283–297. doi:10.1007/s10886-013-0248-5.
  • Wichern F, et al. 2008. Nitrogen rhizodeposition in agricultural crops: Methods, estimates and future prospects. Soil Biol Biochem. 40(1):30–48. doi:10.1016/j.soilbio.2007.08.010.
  • Wojakowska A, et al. 2013. Structural analysis and profiling of phenolic secondary metabolites of Mexican lupine species using LC–MS techniques. Phytochemistry. 92:71–86. doi:10.1016/j.phytochem.2013.04.006.
  • Wu T, et al. 2021. Non-targeted and targeted metabolomics profiling of tea plants (Camellia sinensis) in response to its intercropping with Chinese chestnut. BMC Plant Biol. 21(1):55. doi:10.1186/s12870-021-02841-w.
  • Xi M, et al. 2021. Discovery of urinary biomarkers of seaweed intake using untargeted LC–MS metabolomics in a three-Way cross-over human study. Metabolites. 11(11):1–15. doi:10.3390/metabo11010011.
  • Xia J, et al. 2009. MetaboAnalyst: a web server for metabolomic data analysis and interpretation. Nucleic Acids Res. 37:W652–W660. doi:10.1093/nar/gkp356.
  • Xiao J, et al. 2016. Advance on the flavonoid C-glycosides and health benefits. Crit Rev Food Sci Nutr. 56(sup1):S29–S45. doi:10.1080/10408398.2015.1067595.
  • Yang C-q, et al. 2017. Targeted metabolomics analysis of fatty acids in soybean seeds using GC-MS to reveal the metabolic manipulation of shading in the intercropping system. Anal Methods. 9(14):2144–2152. doi:10.1039/C7AY00011A.
  • Yang D-S, et al. 2015. Three new prenylated flavonoids from Macaranga denticulata and their anticancer effects. Fitoterapia. 103:165–170. doi:10.1016/j.fitote.2015.04.001.
  • Ye J-B, et al. 2019. Characterization and identification of prenylated flavonoids from artocarpus heterophyllus Lam. roots by quadrupole time-of-flight and linear trap quadrupole orbitrap mass spectrometry. Molecules. 24(24), doi:10.3390/molecules24244591.
  • Zhang J, et al. 2009. Flavones and flavonols play distinct critical roles during nodulation of Medicago truncatula by Sinorhizobium meliloti. Plant J. 57(1):171–183. doi:10.1111/j.1365-313X.2008.03676.x.
  • Zhang J, et al. 2015. Rapid characterization and identification of flavonoids in radix astragali by ultra-high-pressure liquid chromatography coupled with linear Ion trap-orbitrap mass spectrometry. J Chromatogr Sci. 53(6):945–952. doi:10.1093/chromsci/bmu155.
  • Zhou K, et al. 2021. Naturally occurring prenylated chalcones from plants: structural diversity, distribution, activities and biosynthesis. Nat Prod Rep. 38(12):2236–2260. doi:10.1039/D0NP00083C.