858
Views
1
CrossRef citations to date
0
Altmetric
Plant-Insect Interactions

More than trichomes and acylsugars: the role of jasmonic acid as mediator of aphid resistance in tomato

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Article: 2255597 | Received 02 Apr 2023, Accepted 31 Aug 2023, Published online: 11 Sep 2023

References

  • Agrawal AA. 2014. Asymmetry of plant-mediated interactions between specialist aphids and caterpillars on two milkweeds. Funct Ecol. 28(6):1404–1412. doi:10.1111/1365-2435.12271.
  • Alba JM, Montserrat M, Fernández-Muñoz R. 2009. Resistance to the two-spotted spider mite (Tetranychus urticae) by acylsucroses of wild tomato (Solanum pimpinellifolium) trichomes studied in a recombinant inbred line population. Experimental and Applied Acarology. 47. doi:10.1007/s10493-008-9192-4.
  • Alba JM, Schimmel BCJ, Glas JJ, Ataide LM, Pappas ML, Villarroel CA, … Kant MR. 2015. Spider mites suppress tomato defenses downstream of jasmonate and salicylate independently of hormonal crosstalk. New Phytol. 205(2):828–840. doi:10.1111/nph.13075.
  • Ali JG, Agrawal AA. 2014. Asymmetry of plant-mediated interactions between specialist aphids and caterpillars on two milkweeds. Funct Ecol. 28(6):1404–1412. doi:10.1111/1365-2435.12271.
  • Aslam H, Mushtaq S, Maalik S, Bano N, Eed EM, Bibi A, Tahir A, Ijaz I, Tanwir S, Khalifa AS. 2022. Exploring the effect of jasmonic acid for aphids control for improving the yield ofTriticum aestivum varieties. Peer J. doi:10.7717/peerj.14018.
  • Avila CA, Arévalo-Soliz LM, Jia L, Navarre DA, Chen Z, Howe GA, … Goggin FL. 2012. Loss of function of FATTY ACID DESATURASE7 in tomato enhances basal aphid resistance in a salicylate-dependent manner. Plant Physiol. 158(4):2028–2041. doi:10.1104/pp.111.191262.
  • Bhattarai KK, Xie QG, Pourshalimi D, Younglove T, Kaloshian I. 2007. Coi1-dependent signaling pathway Is Not required forMi-1—mediated potato aphid resistance. Molecular Plant-Microbe Interactions®. 20:276–282. doi:10.1094/MPMI-20-3-0276.
  • Blanco-Sánchez L, Planelló R, Llorente L, Díaz-Pendón JA, Ferrero V, Fernández-Muñoz R, … de la Peña E. 2021. Characterization of the detrimental effects of type IV glandular trichomes on the aphid Macrosiphum euphorbiaein tomato. Pest Management Science. 77. doi:10.1002/ps.6437.
  • Brading PA, Hammond-Kosack KE, Parr A, Jones JDG. 2000. Salicylic acid is not required for Cf-2- and Cf-9-dependent resistance of tomato to Cladosporium fulvum. Plant J. 23:305–318. doi:10.1046/j.1365-313x.2000.00778.x.
  • Conrath U, Beckers GJM, Langenbach CJG, Jaskiewicz MR. 2015. Priming for enhanced defense. Annu Rev Phytopathol. 53. doi:10.1146/annurev-phyto-080614-120132.
  • Cooper WR, Goggin FL. 2005. Effects of jasmonate-induced defenses in tomato on the potato aphid Macrosiphum euphorbiae. Entomol Exp Appl. 115(1). doi:10.1111/j.1570-7458.2005.00289.x.
  • da Silva AA, Andrade MC, Carvalho R, de C, Neiva IP, Santos DC, Maluf WR. 2016. Resistência à Helicoverpa armigera em genótipos de tomateiro obtidos do cruzamento de Solanum lycopersicum com Solanum galapagense. Pesquisa Agropecuária Brasileira. 51. doi:10.1590/S0100-204X2016000700002.
  • De Vos M, Van Oosten VR, Van Poecke RM, Van Pelt JA, Pozo MJ, Mueller MJ, … Pieterse CM. 2005. Signal signature and transcriptome changes of Arabidopsis during pathogen and insect attack. Molecular Plant-Microbe Interactions®. 18(9):923–937. doi:10.1094/MPMI-18-0923.
  • Dugravot S, Brunissen L, Létocart E, Tjallingii WF, Vincent C, Giordanengo P, Cherqui A. 2007. Local and systemic responses induced by aphids in Solanum tuberosum plants. Entomol Exp Appl. 123(3):271–277. doi:10.1111/j.1570-7458.2007.00542.x.
  • Eisenring M, Glauser G, Meissle M, Romeis J. 2018. Differential impact of herbivores from three feeding guilds on systemic secondary metabolite induction, phytohormone levels and plant-mediated herbivore interactions. J Chem Ecol. 44:1178–1189. doi:10.1007/s10886-018-1015-4.
  • Ellis C, Karafyllidis I, Turner JG. 2002. Constitutive activation of jasmonate signaling in an Arabidopsis Mutant correlates with enhanced resistance to Erysiphe cichoracearum, Pseudomonas syringae, and Myzus persicae. Molecular Plant-Microbe Interactions®. 15. doi:10.1094/MPMI.2002.15.10.1025.
  • El-Wakeil NE, Volkmar C, Sallam AA. 2010. Jasmonic acid induces resistance to economically important insect pests in winter wheat. Pest Management Science: Formerly Pesticide Science. 66(5):549–554.
  • Erb M, Reymond P. 2019. Molecular interactions between plants and insect herbivores. Annu Rev Plant Biol. 70. doi:10.1146/annurev-Faarplant-050718-095910.
  • Escobar-Bravo R, Alba JM, Pons C, Granell A, Kant MR, Moriones E, Fernández-Muñoz R. 2016. A jasmonate-inducible defense trait transferred from wild into cultivated tomato establishes increased whitefly resistance and reduced viral disease incidence. Front Plant Sci. 7:1732.
  • Feng JL, Zhang J, Yang J, Zou LP, Fang TT, Xu HL, Cai QN. 2021. Exogenous salicylic acid improves resistance of aphid-susceptible wheat to the grain aphid, Sitobion avenae (F.) (Hemiptera: Aphididae). Bull Entomol Res. 111(5):544–552. doi:10.1017/S0007485321000237.
  • Ferrero V, Baeten L, Blanco-Sánchez L, Planelló R, Díaz-Pendón JA, Rodríguez-Echeverría S, Haegeman A, de la Peña E. 2020. Complex patterns in tolerance and resistance to pests and diseases underpin the domestication of tomato. New Phytologist. 226(1):254–266. doi:10.1111/nph.16353.
  • Fürstenberg-Hägg J, Zagrobelny M, Bak S. 2013. Plant defense against insect herbivores. Int J Mol Sci. 14(5). doi:10.3390/ijms140510242.
  • Gao J, Tao T, Arthurs SP, Ye F, An X, Hussain M, Mao R. 2023. Plant jasmonic acid mediated contrasting effects of two citrus aphid species on Diaphorina citri Kuwayama. Pest Management Science. 79(2):811–820. doi:10.1002/ps.7249.
  • Glas JJ, Schimmel BCJ, Alba JM, Escobar-Bravo R, Schuurink RC, Kant MR. 2012. Plant glandular trichomes as targets for breeding or engineering of resistance to herbivores. Int J Mol Sci. 13(12). doi:10.3390/ijms131217077.
  • Goffreda JC, Steffens JC, Mutschler MA. 1990. Association of epicuticular sugars with aphid resistance in hybrids with wild tomato. J Am Soc Hortic Sci. 115(1):161–165. doi:10.21273/JASHS.115.1.161.
  • Islam T, Moore BD, Johnson SN. 2022. Plant silicon defences reduce the performance of a chewing insect herbivore which benefits a contemporaneous sap-feeding insect. Ecol Entomol. 47(6):951–958. doi:10.1111/een.13183.
  • Javed K, Wang Y, Javed H, Wang C, Liu C, Huang Y. 2023. Tomato aphid (Aphis gossypii) secreted saliva can enhance aphid resistance by upregulating signaling molecules in tomato (Solanum lycopersicum). Int J Mol Sci. 24(16):12768. doi:10.3390/ijms241612768.
  • Johnson SN, Rowe RC, Hall CR. 2020. Aphid feeding induces phytohormonal cross-talk without affecting silicon defense against subsequent chewing herbivores. Plants. 9(8):1009. doi:10.3390/plants9081009.
  • Juvik JA, Shapiro JA, Young TE, Mutschler MA. 1994. Acylglucoses from wild tomatoes alter behavior and reduce growth and survival of Helicoverpa zea and Spodoptera exigua (Lepidoptera: Noctuidae). J Econ Entomol. 87(2). doi:10.1093/jee/87.2.482.
  • Kortbeek RWJ, Galland MD, Muras A, van der Kloet FM, André B, Heilijgers M, van Hijum SAFT, Haring MA, Schuurink RC, Bleeker PM. 2021. Natural variation in wild tomato trichomes; selecting metabolites that contribute to insect resistance using a random forest approach. BMC Plant Biol. 21(1). doi:10.1186/s12870-021-03070-x.
  • Kroes A, Stam JM, David A, Boland W, van Loon JJA, Dicke M, Poelman EH. 2016. Plant-mediated interactions between two herbivores differentially affect a subsequently arriving third herbivore in populations of wild cabbage. Plant Biology. 18:981–12991. doi:10.1111/plb.12490.
  • Kuśnierczyk A, Tran DHT, Winge P, Jørstad TS, Reese JC, Troczyńska J, Bones AM. 2011. Testing the importance of jasmonate signalling in induction of plant defences upon cabbage aphid (brevicoryne brassicae) attack. BMC Genomics. 12. doi:10.1186/1471-2164-12-423.
  • Leckie BM, D’Ambrosio DA, Chappell TM, Halitschke R, de Jong DM, Kessler A, Kennedy GG, Mutschler MA. 2016. Differential and synergistic functionality of acylsugars in suppressing oviposition by insect herbivores. PLoS ONE. 11(4). doi:10.1371/journal.pone.0153345.
  • Li C, Liu G, Xu C, Lee GI, Bauer P, Ling HQ, Ganal MW, Howe GA. 2003. The tomato suppressor of prosystemin-mediated responses 2 gene encodes a fatty acid desaturase required for the biosynthesis of jasmonic acid and the production of a systemic wound signal for defense gene expression. Plant Cell. 15:1646–1661. doi:10.1105/tpc.012237.
  • Li L, Zhao Y, McCaig BC, Wingerd BA, Wang J, Whalon ME, … Howe GA. 2004. The tomato homolog of CORONATINE-INSENSITIVE1 Is required for the maternal control of seed maturation, jasmonate-signaled defense responses, and glandular trichome development[W]. Plant Cell. 16(1):126–143. doi:10.1105/tpc.017954.
  • Li Q, Xie QG, Smith-Becker J, Navarre DA, Kaloshian I. 2006. Mi-1-mediated aphid resistance involves salicylic acid and mitogen-activated protein kinase signaling cascades. Molecular Plant-Microbe Interactions®. 19(6):655–664. doi:10.1094/MPMI-19-0655.
  • Li Y, Cai L, Ding T, Tian E, Yan X, Wang X, Zhang J, Yu K, Chen Z. 2023. Comparative transcriptome analysis reveals the molecular basis of brassica napus in response to aphid stress. Plants. 12(15):2855. doi:10.3390/plants12152855.
  • Li YH, Meijer D, Dicke M, Gols R. 2018. Oviposition preference of three lepidopteran species is not affected by previous aphid infestation in wild cabbage. Entomol Exp Appl. 166:402–411. doi:10.1111/eea.12663.
  • Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 25(4):402–408. doi:10.1006/meth.2001.1262.
  • López-Ráez JA, Verhage A, Fernández I, García JM, Azcón-Aguilar C, Flors V, Pozo MJ. 2010. Hormonal and transcriptional profiles highlight common and differential host responses to arbuscular mycorrhizal fungi and the regulation of the oxylipin pathway. J Exp Bot. 61:2589–2601. doi:10.1093/jxb/erq089.
  • McDowell ET, Kapteyn J, Schmidt A, Li C, Kang JH, Descour A, … Gang DR. 2011. Comparative functional genomic analysis of Solanum glandular trichome types. Plant Physiol. 155(1):524–539. doi:10.1104/pp.110.167114.
  • Mewis I, Appel HM, Hom A, Raina R, Schultz JC. 2005. Major signaling pathways modulate arabidopsis glucosinolate accumulation and response to both phloem-feeding and chewing insects. Plant Physiol. 138(2). doi:10.1104/pp.104.053389.
  • Moran PJ, Thompson GA. 2001. Molecular responses to aphid feeding in Arabidopsis in relation to plant defense pathways. Plant Physiol. 125(2). doi:10.1104/pp.125.2.1074.
  • Moreira X, Abdala-Roberts L, Castagneyrol B. 2018. Interactions between plant defence signalling pathways: evidence from bioassays with insect herbivores and plant pathogens. J Ecol. 106(6). doi:10.1111/1365-2745.12987.
  • Morkunas I, Mai VC, Gabryś B. 2011. Phytohormonal signaling in plant responses to aphid feeding. Acta Physiol Plant. 33(6). doi:10.1007/s11738-011-0751-7.
  • Nguyen D, Rieu I, Mariani C, van Dam NM. 2016. How plants handle multiple stresses: hormonal interactions underlying responses to abiotic stress and insect herbivory. Plant Mol Biol. 91:727–740. doi:10.1007/s11103-016-0481-8.
  • Oldroyd GED, Staskawicz BJ. 1998. Genetically engineered broad-spectrum disease resistance in tomato. Proc Natl Acad Sci USA. 95:10300–10305. PMID: 9707642. doi:10.1073/pnas.95.17.10300.
  • Ontiveros I, López-Moya JJ, Díaz-Pendón JA. 2022. Coinfection of tomato plants with Tomato yellow leaf curl virus and Tomato chlorosis virus affects the interaction with host and whiteflies. Phytopathology®. 112:944–952. doi:10.1094/PHYTO-08-21-0341-R.
  • Pieterse CMJ, van der Does D, Zamioudis C, Leon-Reyes A, van Wees SCM. 2012. Hormonal modulation of plant immunity. Annu Rev Cell Dev Biol. 28. doi:10.1146/annurev-cellbio-092910-154055.
  • Planelló R, Llorente L, Herrero Ó, Novo M, Blanco-Sánchez L, Díaz-Pendón JA, … de la Peña E. 2022. Transcriptome analysis of aphids exposed to glandular trichomes in tomato reveals stress and starvation related responses. Sci Rep. 12(1):20154. doi:10.1038/s41598-022-24490-1.
  • R Core Team. 2021. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org/.
  • Rodríguez-López MJ, Garzo E, Bonani JP, Fereres A, Fernández-Muñoz R, Moriones E. 2011. Whitefly resistance traits derived from the wild tomato Solanum pimpinellifolium affect the preference and feeding behavior of Bemisia tabaci and reduce the spread of Tomato yellow leaf curl virus. Phytopathology. 101(10). doi:10.1094/PHYTO-01-11-0028.
  • Rodríguez-López MJ, Moriones E, Fernández-Muñoz R. 2020. An acylsucrose-producing tomato line derived from the wild species Solanum pimpinellifolium decreases fitness of the whitefly trialeurodes vaporariorum. Insects. 11(9):616. doi:10.3390/insects11090616.
  • Rodriguez-Saona CR, Musser RO, Vogel H, Hum-Musser SM, Thaler JS. 2010. Molecular, biochemical, and organismal analyses of tomato plants simultaneously attacked by herbivores from two feeding guilds. J Chem Ecol. 36:1043–21057. doi:10.1007/s10886-010-9854-7.
  • Ryan CA. 2000. The systemin signaling pathway: differential activation of plant defensive genes. Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology. 1477(1-2):112–121. doi:10.1016/S0167-4838(99)00269-1.
  • Sanmartín N, Sánchez-Bel P, Pastor V, Pastor-Fernández J, Mateu D, Pozo MJ, … Flors V. 2020. Root-to-shoot signalling in mycorrhizal tomato plants upon Botrytis cinerea infection. Plant Sci. 298:110595. doi:10.1016/j.plantsci.2020.110595.
  • Sarmento RA, Lemos F, Bleeker PM, Schuurink RC, Pallini A, Oliveira MGA, … Janssen A. 2011. A herbivore that manipulates plant defence. Ecol Lett. 14(3):229–110236. doi:10.1111/j.1461-0248.2010.01575.x.
  • Schuurink R, Tissier A. 2020. Glandular trichomes: micro-organs with model status? New Phytol. 225(6):2251–2266. doi:10.1111/nph.16283.
  • Schwartzberg EG, Tumlinson JH. 2014. Aphid honeydew alters plant defence responses. Funct Ecol. 28(2). DOI: 10.1111/1365-2435.12182
  • Schweiger R, Heise AM, Persicke M, Müller C. 2014. Interactions between the jasmonic and salicylic acid pathway modulate the plant metabolome and affect herbivores of different feeding types. Plant Cell Environ. 37(7):1574–1585. doi:10.1111/pce.12257.
  • Simmons AT, Gurr GM. 2005. Trichomes of lycopersicon species and their hybrids: effects on pests and natural enemies. Agric For Entomol. 7(4). doi:10.1111/j.1461-9555.2005.00271.x.
  • Soler R, Badenes-Pérez FR, Broekgaarden C, Zheng SJ, David A, Boland W, Dicke M. 2012. Plant-mediated facilitation between a leaf-feeding and a phloem-feeding insect in a brassicaceous plant: from insect performance to gene transcription. Funct Ecol. 26:156–166. doi:10.1111/j.1365-2435.2011.01902.x.
  • Stam JM, Kroes A, Li Y, Gols R, van Loon JJA, Poelman EH, Dicke M. 2014. Plant interactions with multiple insect herbivores: from community to genes. Annu Rev Plant Biol. 65. doi:10.1146/annurev-arplant-050213-035937.
  • Steinbrenner AD, Muñoz-Amatriaín M, Chaparro AF, Aguilar-Venegas JM, Lo S, Okuda S, … Crubaugh D. 2020. A receptor-like protein mediates plant immune responses to herbivore-associated molecular patterns. Proc Natl Acad Sci USA. 117(49):31510–31518. doi:10.1073/pnas.2018415117.
  • Tian D, Tooker J, Peiffer M, Chung SH, Felton GW. 2012. Role of trichomes in defense against herbivores: comparison of herbivore response to woolly and hairless trichome mutants in tomato (Solanum lycopersicum). Planta. 236(4). doi:10.1007/s00425-012-1651-9.
  • Uppalapati SR, Ayoubi P, Weng H, Palmer DA, Mitchell RE, Jones W, Bender CL. 2005. The phytotoxin coronatine and methyl jasmonate impact multiple phytohormone pathways in tomato. Plant J. 42(2):201–217. doi:10.1111/j.1365-313X.2005.02366.x.
  • van Emden HF, Harrington R. 2007. Aphids as crop pests. Aphids as Crop Pests. doi:10.2135/cropsci2008.02.0001br.
  • War AR, Paulraj MG, Ahmad T, Buhroo AA, Hussain B, Ignacimuthu S, Sharma HC. 2012. Mechanisms of plant defense against insect herbivores. Plant Signaling and Behavior. 7(10). doi:10.4161/psb.21663.
  • Zhang Y, Li X. 2019. Salicylic acid: biosynthesis, perception, and contributions to plant immunity. Curr Opin Plant Biol. 50:29–36. doi:10.1016/j.pbi.2019.02.004.
  • Zhu-Salzman K, Salzman RA, Ahn JE, Koiwa H. 2004. Transcriptional regulation of sorghum defense determinants against a phloem-feeding aphid. Plant Physiol. 134(1). doi:10.1104/pp.103.028324.
  • Züst T, Agrawal AA. 2016. Mechanisms and evolution of plant resistance to aphids. Nat Plants. 2. doi:10.1038/nplants.2015.206.