519
Views
0
CrossRef citations to date
0
Altmetric
Plant-Plant Interactions

Exploration of chemical interactions between Viscum combreticola Engl. and its hosts through a metabolic profiling approach and molecular networking

, , &
Article: 2266511 | Received 05 Mar 2023, Accepted 29 Sep 2023, Published online: 13 Oct 2023

References

  • Adesina SK, Illoh HC, Johnny II, Jacobs IE. 2013. African mistletoes (Loranthaceae); ethnopharmacology, chemistry and medicinal values: an update. African Journal of Traditional, Complementary and Alternative Medicines. 10:161–170.
  • Aron AT, Gentry EC, McPhail KL, Nothias LF, Nothias-Esposito M, Bouslimani A, Petras D, Gauglitz JM, Sikora N, Vargas F, et al. 2020. Reproducible molecular networking of untargeted mass spectrometry data using GNPS. Nat Protoc. 15:1954–1991. doi:10.1038/s41596-020-0317-5.
  • Ben Said R, Arafa IH, Usam AM, Abdullah Sulaiman AA, Kowalczyk M, Moldoch J, Oleszek W, Stochmal A. 2017. Tentative characterization of polyphenolic compounds in the male flowers of Phoenix dactylifera by liquid chromatography coupled with mass spectrometry and DFT. Int J Mol Sci. 18:512. doi:10.3390/ijms18030512.
  • Chen G, Li X, Saleri F, Guo M. 2016. Analysis of flavonoids in Rhamnus davurica and its antiproliferative activities. Molecules. 21:1275. doi:10.3390/molecules21101275.
  • Farag MA, Hegazi NM, Donia MS. 2020. Molecular networking based LC-MS reveals novel biotransformation products of green coffee by ex vivo cultures of the human gut microbiome. Metabolomics. 16:1–5. doi:10.1007/s11306-019-1621-3.
  • Gutiérrez Ortiz AL, Berti F, Navarini L, Crisafulli P, Colomban S, Forzato C. 2018. Aqueous extracts of walnut (Juglans regia L.) leaves: quantitative analyses of hydroxycinnamic and chlorogenic acids. J Chromatogr Sci. 56:753–760. doi:10.1093/chromsci/bmy041.
  • Hacham Y, Hershenhorn J, Dor E, Amir R. 2016. Primary metabolic profiling of Egyptian broomrape (Phelipanche aegyptiaca) compared to its host tomato roots. J Plant Physiol. 205:11–19. doi:10.1016/j.jplph.2016.08.005.
  • Hamed AI, Al-Ayed AS, Moldoch J, Piacente S, Oleszek W, Stochmal A. 2014. Profiles analysis of proanthocyanidins in the argun nut (Medemia argun-an ancient Egyptian palm) by LC-ESI-MS/MS. J Mass Spectrom. 49:306–315. doi:10.1002/jms.3344.
  • Hartley SE, Green JP, Massey FP, Press MC, Stewart AJ, John EA. 2015. Hemi-parasitic plant impacts animal and plant communities across four trophic levels. Ecology. 96:2408–2416. doi:10.1890/14-1244.1.
  • Hvattum E, Ekeberg D. 2003. Study of the collision-induced radical cleavage of flavonoid glycosides using negative electrospray ionization tandem quadrupole mass spectrometry. J Mass Spectrom. 38:43–49. doi:10.1002/jms.398.
  • Jäger T, Holandino C, Melo MN, Peñaloza EM, Oliveira AP, Garrett R, Glauser G, Grazi M, Ramm H, Urech K, Baumgartner S. 2021. Metabolomics by UHPLC-q-TOF reveals host tree-dependent phytochemical variation in Viscum album L. Plants. 10:1726. doi:10.3390/plants10081726.
  • Jaiswal R, Jayasinghe L, Kuhnert N. 2012. Identification and characterization of proanthocyanidins of 16 members of the Rhododendron genus (Ericaceae) by tandem LC–MS. J Mass Spectrom. 47:502–515. doi:10.1002/jms.2954.
  • Kelebek H. 2016. LC-DAD-ESI-MS/MS characterization of phenolic constituents in Turkish black tea: effect of infusion time and temperature. Food Chem. 204:227–238. doi:10.1016/j.foodchem.2016.02.132.
  • Kokla A, Melnyk CW. 2018. Developing a thief: haustoria formation in parasitic plants. Dev Biol. 442:53–59. doi:10.1016/j.ydbio.2018.06.013.
  • Lázaro-González A, Gargallo-Garriga A, Hódar JA, Sardans J, Oravec M, Urban O, Peñuelas J, Zamora R. 2021. Implications of mistletoe parasitism for the host metabolome: A new plant identity in the forest canopy. Plant Cell Environ. 44:3655–3666. doi:10.1111/pce.14179.
  • Lázaro-González A, Hódar JA, Zamora R. 2019. Mistletoe versus host pine: does increased parasite load alter the host chemical profile?. J Chem Ecol. 45:95–105. doi:10.1007/s10886-018-1039-9.
  • Lee SY, Shaari K. 2022. LC-MS metabolomics analysis of Stevia rebaudiana Bertoni leaves cultivated in Malaysia in relation to different developmental stages. Phytochem Anal. 33:249–261. doi:10.1002/pca.3084.
  • Ma Y, Fan R, Duan M, Yu Z, Zhao Y. 2015. A study of pharmacokinetic interactions among co-existing ingredients in Viscum coloratum after intravenous administration of three different preparations to rats. Pharmacogn Mag. 11:455. doi:10.4103/0973-1296.160448.
  • Maponga TS, Ndagurwa HG, Witkowski ET. 2021. Functional and species composition of understory plants varies with mistletoe-infection on Vachellia karroo trees in a semi-arid African savanna. Global Ecology and Conservation. 29:01897.
  • Mathiasen RL, Nickrent DL, Shaw DC, Watson DM. 2008. Mistletoes: pathology, systematics, ecology, and management. Plant Dis. 92:988–1006. doi:10.1094/PDIS-92-7-0988.
  • Mavrikou S, Tsekouras V, Karageorgou MA, Moschopoulou G, Kintzos S. 2020. Anticancer and biochemical effects of Viscum album L. protein extracts on HeLa cells. Plant Cell, Tissue and Organ Culture (PCTOC). 140:369–378. doi:10.1007/s11240-019-01733-0.
  • Mellado A, Zamora R. 2017. Parasites structuring ecological communities: the mistletoe footprint in Mediterranean pine forests. Funct Ecol. 31:2167–2176. doi:10.1111/1365-2435.12907.
  • Moyo B, Tavengwa NT, Madala NE. 2022. Diverse chemical modifications of the chlorogenic acid composition of Viscum combreticola Engl.: A premise for the state of readiness against excessive sunlight exposure. J Photochem Photobiol, B. 233:112501. doi:10.1016/j.jphotobiol.2022.112501.
  • Mutlu S, Osma E, Ilhan V, Turkoglu HI, Atici O. 2016. Mistletoe (Viscum album) reduces the growth of the Scots pine by accumulating essential nutrient elements in its structure as a trap. Trees. 30:815–824. doi:10.1007/s00468-015-1323-z.
  • Nag M, Kar A, Chanda J, Mukherjee PK. 2020. RP-HPLC analysis of methanol extract of Viscum articulatum. J Ayurveda Integr Med. 11:277–280. doi:10.1016/j.jaim.2018.02.135.
  • Ninkovic V, Rensing M, Dahlin I, Markovic D. 2019. Who is my neighbor? Volatile cues in plant interactions. Plant Signal Behav. 14:1634993. doi:10.1080/15592324.2019.1634993.
  • Nothias LF, Nothias-Esposito M, Da Silva R, Wang M, Protsyuk I, Zhang Z, Sarvepalli A, Leyssen P, Touboul D, Costa J, Paolini J. 2018. Bioactivity-based molecular networking for the discovery of drug leads in natural product bioassay-guided fractionation. J Nat Prod. 81:758–767. doi:10.1021/acs.jnatprod.7b00737.
  • Okubamichael DY, Griffiths ME, Ward D. 2016. Host specificity in parasitic plants-perspectives from mistletoes. AoB Plants. 8. doi:10.1093/aobpla/plw069.
  • Ostermann T, Appelbaum S, Poier D, Boehm K, Raak C, Buessing A. 2020. A systematic review and meta-analysis on the survival of cancer patients treated with a fermented Viscum album L. extract (iscador): an update of findings. Complementary Medicine Research. 27:260–271. doi:10.1159/000505202.
  • Piccolella S, Crescente G, Volpe MG, Paolucci M, Pacifico S. 2019. UHPLC-HR-MS/MS-guided recovery of bioactive flavonol compounds from Greco di Tufo vine leaves. Molecules. 24:3630. doi:10.3390/molecules24193630.
  • Pietrzak W, Nowak R. 2021. Impact of harvest conditions and host tree species on chemical composition and antioxidant activity of extracts from Viscum album L. Molecules. 26:3741. doi:10.3390/molecules26123741.
  • Ramabulana AT, Steenkamp P, Madala N, Dubery IA. 2020. Profiling of chlorogenic acids from Bidens pilosa and differentiation of closely related positional isomers with the aid of UHPLC-QTOF-MS/MS-based in-source collision-induced dissociation. Metabolites. 10:178. doi:10.3390/metabo10050178.
  • Schmitt MH, Shuttleworth A, Ward D, Shrader AM. 2018. African elephants use plant odours to make foraging decisions across multiple spatial scales. Anim Behav. 141:17–27. doi:10.1016/j.anbehav.2018.04.016.
  • Serni E, Tomada S, Haas F, Robatscher P. 2022. Characterization of phenolic profile in dried grape skin of Vitis vinifera L. cv. Pinot Blanc with UHPLC-MS/MS and its development during ripening. J Food Compos Anal. 114:104731. doi:10.1016/j.jfca.2022.104731.
  • Singh BN, Saha C, Galun D, Upreti DK, Bayry J, Kaveri SV. 2016. European Viscum album: a potent phytotherapeutic agent with multifarious phytochemicals, pharmacological properties and clinical evidence. RSC Adv. 6:23837–23857. doi:10.1039/C5RA27381A.
  • Song C, Wang W, Xue Z, Peng H, Yang B. 2022. Characterization of the interaction between Viscum coloratum (mistletoe) and its host by ultra-high performance liquid chromatography-quadrupole-time-of-flight-mass spectrometry (UPLC-q-TOF-MS)-based metabolomics. Anal Lett. 12:1–6. doi:10.1080/22297928.2021.1980099.
  • Tsekouras V, Mavrikou S, Vlachakis D, Makridakis M, Stroggilos R, Zoidakis J, Termentzi A, Moschopoulou G, Kintzios S. 2020. Proteome analysis of leaf, stem and callus in Viscum album and identification of lectins and viscotoxins with bioactive properties. Plant Cell, Tissue and Organ Culture (PCTOC). 141:167–178. doi:10.1007/s11240-020-01777-7.
  • Upchurch RG. 2008. Fatty acid unsaturation, mobilization, and regulation in the response of plants to stress. Biotechnol Lett. 30:967–977. doi:10.1007/s10529-008-9639-z.
  • Urech K, Baumgartner S. 2015. Chemical constituents of Viscum album L.: implications for the pharmaceutical preparation of mistletoe. Mistletoe: From Mythology to Evidence-Based Medicine. 4:11–23.
  • Yuzuak S, Ballington J, Xie DY. 2018. HPLC-qTOF-MS/MS-based profiling of flavan-3-ols and dimeric proanthocyanidins in berries of two muscadine grape hybrids FLH 13-11 and FLH 17-66. Metabolites. 8:57. doi:10.3390/metabo8040057.
  • Zhang RZ, Zhao JT, Wang WQ, Fan RH, Rong R, Yu ZG, Zhao YL. 2022. Metabolomics-based comparative analysis of the effects of host and environment on Viscum coloratum metabolites and antioxidative activities. J Pharm Anal. 12:243–252. doi:10.1016/j.jpha.2021.04.003.
  • Zhao Y, Yu Z, Fan R, Gao X, Yu M, Li H, Wei H, Bi K. 2011. Simultaneous determination of ten flavonoids from Viscum coloratum grown on different host species and different sources by LC-MS. Chem Pharm Bull. 59:1322–1328. doi:10.1248/cpb.59.1322.