210
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Physiological and transcriptomic profiles of tobacco seedling leaves in response to high chloride accumulation

, , , , &
Article: 2355122 | Received 25 Dec 2023, Accepted 09 May 2024, Published online: 29 May 2024

References

  • Anders S, Pyl PT, Huber W. 2015. HTSeq–a Python framework to work with high-throughput sequencing data. Bioinformatics. 31(2):166–169. doi:10.1093/bioinformatics/btu638.
  • Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 30(15):2114–2120. doi:10.1093/bioinformatics/btu170.
  • Broadley M, Brown P, Cakmak I, Rengel Z, Zhao F. 2012. Chapter 7 – Function of nutrients: micronutrients. In: Marschner P, editor. Marschner's mineral nutrition of higher plants (third edition). San Diego: Academic Press; p. 191–248.
  • Broyer TC, Carlton AB, Johnson CM, Stout PR. 1954. Chlorine—a micronutrient element for higher plants 1. Plant Physiol. 29(6):526–532. doi:10.1104/pp.29.6.526.
  • Burdach Z, Kurtyka R, Siemieniuk A, Karcz W. 2014. Role of chloride ions in the promotion of auxin-induced growth of maize coleoptile segments. Ann Bot. 114(5):1023–1034. doi:10.1093/aob/mcu170.
  • Butler RD, Simon EW. 1971. Ultrastructural aspects of senescence in plants. Adv Gerontol Res. 3:73–129.
  • Chauhan J, Srivastava JP, Singhal RK, Soufan W, Dadarwal BK, Mishra UN, Anuragi H, Rahman MA, Sakran MI, Brestic M, et al. 2022. Alterations of oxidative stress indicators, antioxidant enzymes, soluble sugars, and amino acids in mustard [Brassica juncea (L.) Czern and Coss.] in response to varying sowing time, and field temperature. Front Plant Sci. 13:875009. doi:10.3389/fpls.2022.875009.
  • Chen Z, Cuin TA, Zhou M, Twomey A, Naidu BP, Shabala S. 2007. Compatible solute accumulation and stress-mitigating effects in barley genotypes contrasting in their salt tolerance. J Exp Bot. 58(15–16):4245–4255. doi:10.1093/jxb/erm284.
  • Churchill KA, Sze H. 1984. Anion-sensitive, H+-pumping ATPase of oat roots 1: direct effects of Cl−, NO3−, and a disulfonic stilbene. Plant Physiol. 76(2):490–497. doi:10.1104/pp.76.2.490.
  • Colmenero-Flores JM, Franco-Navarro JD, Cubero-Font P, Peinado-Torrubia P, Rosales MA. 2019. Chloride as a beneficial macronutrient in higher plants: new roles and regulation. Int J Mol Sci. 20(19):4686. doi:10.3390/ijms20194686.
  • Das K, Roychoudhury A. 2014. Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front Environ Sci. 2:53.
  • Du CX, Fan HF, Guo SR, Tezuka T, Li J. 2010. Proteomic analysis of cucumber seedling roots subjected to salt stress. Phytochemistry. 71(13):1450–1459. doi:10.1016/j.phytochem.2010.05.020.
  • Edwards KD, Fernandez-Pozo N, Drake-Stowe K, Humphry M, Evans AD, Bombarely A, Allen F, Hurst R, White B, Kernodle SP, et al. 2017. A reference genome for Nicotiana tabacum enables map-based cloning of homeologous loci implicated in nitrogen utilization efficiency. BMC Genomics. 18(1):448. doi:10.1186/s12864-017-3791-6.
  • Fan K, Wang H, Xi J, Liu Q, Meng X, Duan D, Gao L, Yan X. 2017. Optimization of Fe3O4 nanozyme activity via single amino acid modification mimicking an enzyme active site. Chem Commun. 53(2):424–427. doi:10.1039/C6CC08542C.
  • Flowers TJ. 1988. Chloride as a nutrient and as an osmoticum. Adv Plant Nutr. 3:55–78.
  • Franco-Navarro JD, Brumós J, Rosales MA, Cubero-Font P, Talón M, Colmenero-Flores JM. 2016. Chloride regulates leaf cell size and water relations in tobacco plants. J Exp Bot. 67(3):873–891. doi:10.1093/jxb/erv502.
  • Franco-Navarro JD, Rosales MA, Cubero-Font P, Calvo P, Álvarez R, Diaz-Espejo A, Colmenero-Flores JM. 2019. Chloride as a macronutrient increases water-use efficiency by anatomically driven reduced stomatal conductance and increased mesophyll diffusion to CO2. Plant J. 99(5):815–831. doi:10.1111/tpj.14423.
  • Grotto D, Maria LS, Valentini J, Paniz C, Schmitt G, Garcia SC, Pomblum VJ, Rocha JB, Farina M. 2009. Importance of the lipid peroxidation biomarkers and methodological aspects FOR malondialdehyde quantification. Química Nova. 32(1):169–174. doi:10.1590/S0100-40422009000100032.
  • Guo W, Zuo Z, Cheng X, Sun J, Li H, Li L, Qiu J-L. 2014. The chloride channel family gene CLCd negatively regulates pathogen-associated molecular pattern (PAMP)-triggered immunity in Arabidopsis. J Exp Bot. 65(4):1205–1215. doi:10.1093/jxb/ert484.
  • Hameed A, Ahmed MZ, Hussain T, Aziz I, Ahmad N, Gul B, Nielsen BL. 2021. Effects of salinity stress on chloroplast structure and function. Cells. 10(8):2023. doi:10.3390/cells10082023.
  • He X, Wang C, Wang H, Li L, Wang C. 2020. The function of MAPK cascades in response to various stresses in horticultural plants. Front Plant Sci. 11:952. doi:10.3389/fpls.2020.00952.
  • Heiber I, Ströher E, Raatz B, Busse I, Kahmann U, Bevan MW, Dietz KJ, Baier M. 2007. The redox imbalanced mutants of Arabidopsis differentiate signaling pathways for redox regulation of chloroplast antioxidant enzymes. Plant Physiol. 143(4):1774–1788. doi:10.1104/pp.106.093328.
  • Herdean A, Nziengui H, Zsiros O, Solymosi K, Garab G, Lundin B, Spetea C. 2016a. The arabidopsis thylakoid chloride channel AtCLCe functions in chloride homeostasis and regulation of photosynthetic electron transport. Front Plant Sci. 7:115. doi:10.3389/fpls.2016.00115.
  • Herdean A, Teardo E, Nilsson AK, Pfeil BE, Johansson ON, Ünnep R, Nagy G, Zsiros O, Dana S, Solymosi K, et al. 2016b. A voltage-dependent chloride channel fine-tunes photosynthesis in plants. Nat Commun. 7(1):11654. doi:10.1038/ncomms11654.
  • Homann PH. 1987. The relation between the chloride status of the photosynthetic water splitting complex and the inhibitory effectiveness of amines. In: Excitation Energy and Electron Transfer in Photosynthesis: Dedicated to Warren L Butler. p. 351–357. doi:10.1007/978-94-009-3527-3_39.
  • Hu M, Korschelt K, Daniel P, Landfester K, Tremel W, Bannwarth MB. 2017. Fibrous nanozyme dressings with catalase-like activity for H2O2 reduction to promote wound healing. ACS Appl Mater Interfaces. 9(43):38024–38031. doi:10.1021/acsami.7b12212.
  • Kajal OR, Lohani P, Deshmukh R, Salvi P. 2024. Engineering the transcriptional regulatory network to improve abiotic stress tolerance in crop plants: taming the tough time. J Plant Growth Regul. 43:25–37. doi:10.1007/s00344-023-11057-1.
  • Kumari J, Udawat P, Dubey AK, Haque MI, Rathore MS, Jha B. 2017. Overexpression of SbSI-1, a nuclear protein from Salicornia brachiata confers drought and salt stress tolerance and maintains photosynthetic efficiency in transgenic tobacco. Front Plant Sci. 8:1215. doi:10.3389/fpls.2017.01215.
  • Langdon WB. 2015. Performance of genetic programming optimised Bowtie2 on genome comparison and analytic testing (GCAT) benchmarks. BioData Min. 8(1):1. doi:10.1186/s13040-014-0034-0.
  • Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 25(4):402–408. doi:10.1006/meth.2001.1262.
  • Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15(12):550. doi:10.1186/s13059-014-0550-8.
  • Ma J, Wang J, Yao P, Ye H, Yu H, Wang P, Li Y, Ye X. 2019. Effects of salt stress on subcellular structure and physiological and biochemical indexes of flue-cured tobacco leaves. Acta Geologica Sinica - English Edition. 93(5):44–47. doi:10.1111/1755-6724.14240.
  • Maron L. 2019. From foe to friend: the role of chloride as a beneficial macronutrient. Plant J. 99(5):813–814. doi:10.1111/tpj.14498.
  • Marschner H. 2012. Marschner's mineral nutrition of higher plants. Salt Lake City (UT): Academic Press.
  • Metzler DE. 2003. Biochemistry (2 Volume Set): The chemical reactions of living cells, Vol 1. Salt Lake City (UT): Academic Press.
  • Pan T, Liu M, Kreslavski VD, Zharmukhamedov SK, Nie C, Yu M, Kuznetsov VV, Allakhverdiev SI, Shabala S. 2021. Non-stomatal limitation of photosynthesis by soil salinity. Crit Rev Environ Sci Technol. 51(8):791–825. doi:10.1080/10643389.2020.1735231.
  • Pokhrel R, McConnell IL, Brudvig GW. 2011. Chloride regulation of enzyme turnover: application to the role of chloride in photosystem II. Biochemistry. 50(14):2725–2734. doi:10.1021/bi2000388.
  • Raven JA. 2016. Chloride: essential micronutrient and multifunctional beneficial ion. J Exp Bot. 68(3):359–367.
  • Rognes SE. 1980. Anion regulation of lupin asparagine synthetase: Chloride activation of the glutamine-utilizing reactions. Phytochemistry. 19(11):2287–2293. doi:10.1016/S0031-9422(00)91013-6.
  • Rosales MA, Franco-Navarro JD, Peinado-Torrubia P, Díaz-Rueda P, Álvarez R, Colmenero-Flores JM. 2020. Chloride improves nitrate utilization and NUE in plants. Front Plant Sci. 11:442. doi:10.3389/fpls.2020.00442.
  • Ryu H, Cho Y-G. 2015. Plant hormones in salt stress tolerance. J Plant Biol. 58(3):147–155. doi:10.1007/s12374-015-0103-z.
  • Sáez PL, Bravo LA, Sáez KL, Sánchez-Olate M, Latsague MI, Ríos DG. 2012. Photosynthetic and leaf anatomical characteristics of Castanea sativa: a comparison between in vitro and nursery plants. Biologia Plantarum. 56(1):15–24. doi:10.1007/s10535-012-0010-9.
  • Schmidt GW, Delaney SK. 2010. Stable internal reference genes for normalization of real-time RT-PCR in tobacco (Nicotiana tabacum) during development and abiotic stress. Mol Genet Genomics. 283(3):233–241. doi:10.1007/s00438-010-0511-1.
  • Sharma A, Shahzad B, Rehman A, Bhardwaj R, Landi M, Zheng B. 2019. Response of phenylpropanoid pathway and the role of polyphenols in plants under abiotic stress. Molecules. 24(13):2452. doi:10.3390/molecules24132452.
  • Shelke D, Nikalje G, Nikam T, Maheshwari P, Punita D, Rao K, Kavi Kishor P, Suprasanna P. 2019. Chloride (Cl−) uptake, transport, and regulation in plant salt tolerance. In: Roychoudhury A, Tripathi D, editors. Molecular plant abiotic stress. Chichester (UK): John Wiley & Sons, Ltd; p. 241–268.
  • Sun H, Sun X, Wang H, Ma X. 2020. Advances in salt tolerance molecular mechanism in tobacco plants. Hereditas. 157(1):5. doi:10.1186/s41065-020-00118-0.
  • Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L. 2012. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc. 7(3):562–578. doi:10.1038/nprot.2012.016.
  • Uchida R. 2000. Essential nutrients for plant growth: nutrient functions and deficiency symptoms. In: Plant Nutrient Management in Hawaii’s soils. Vol. 4. p. 31–55.
  • Verma V, Ravindran P, Kumar PP. 2016. Plant hormone-mediated regulation of stress responses. BMC Plant Biol. 16:86. doi:10.1186/s12870-016-0771-y.
  • Wang L, Xu JY, Jia W, Chen Z, Xu ZC. 2020. Chloride salinity in a chloride-sensitive plant: Focusing on photosynthesis, hormone synthesis and transduction in tobacco. Plant Physiol Biochem. 153:119–130. doi:10.1016/j.plaphy.2020.05.021.
  • Wang W, Vinocur B, Altman A. 2003. Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta. 218(1):1–14. doi:10.1007/s00425-003-1105-5.
  • Wege S, Gilliham M, Henderson SW. 2017. Chloride: not simply a ‘cheap osmoticum’, but a beneficial plant macronutrient. J Exp Bot. 68(12):3057–3069. doi:10.1093/jxb/erx050.
  • White PJ, Broadley MR. 2001. Chloride in soils and its uptake and movement within the plant: a review. Ann Bot. 88(6):967–988. doi:10.1006/anbo.2001.1540.
  • Wu D, Cai S, Chen M, Ye L, Chen Z, Zhang H, Dai F, Wu F, Zhang G. 2013. Tissue metabolic responses to salt stress in wild and cultivated barley. PLoS One. 8(1):e55431. doi:10.1371/journal.pone.0055431.
  • Xu G, Magen H, Tarchitzky J, Kafkafi U. 1999. Advances in chloride nutrition of plants. In: Sparks DL, editor. Advances in Agronomy. San Diego: Academic Press; p. 97–150.
  • Yamagami M, Haga K, Napier RM, Iino M. 2004. Two distinct signaling pathways participate in auxin-induced swelling of pea epidermal protoplasts. Plant Physiol. 134(2):735–747. doi:10.1104/pp.103.031294.
  • Yang W, Wang F, Liu L-N, Sui N. 2020. Responses of membranes and the photosynthetic apparatus to salt stress in cyanobacteria. Front Plant Sci. 11:713. doi:10.3389/fpls.2020.00713.
  • Yu G, Wang LG, Han Y, He QY. 2012. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS J Integr Biol. 16(5):284–287. doi:10.1089/omi.2011.0118.