93
Views
0
CrossRef citations to date
0
Altmetric
Research Article

The effect of nitrogen reduction combined with biochar application on the photosynthetic function of tobacco leaves

, , , , , , , , & show all
Article: 2369759 | Received 26 Jan 2024, Accepted 14 Jun 2024, Published online: 27 Jun 2024

References

  • Appenroth KJ, Stockel J, Srivastava A, Strasser RJ. 2001. Multiple effects of chromate on the photosynthetic apparatus of Spirodela polyrhiza as probed by OJIP chlorophyll a fluorescence measurements. Environ pollut (Barking, Essex: 1987). 115:49–64. doi:10.1016/s0269-7491(01)00091-4.
  • Babst BA, Gao F, Acosta-Gamboa LM, Karve A, Schueller MJ, Lorence A. 2019. Three NPF genes in Arabidopsis are necessary for normal nitrogen cycling under low nitrogen stress. Plant Physiol Biochem. 143:1–10. doi:10.1016/j.plaphy.2019.08.014.
  • Baker NR, Rosenqvist E. 2004. Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. J Exp Bot. 55:1607–1621. doi:10.1093/jxb/erh196.
  • Bertamini M, Nedunchezhian N. 2003. Photoinhibition of photosynthesis in mature and young leaves of grapevine (Vitis vinifera L.). Plant Sci. 164:635–644. doi:10.1016/S0168-9452(03)00018-9.
  • Bruun EW, Petersen CT, Hansen E, Holm JK, Hauggaard-Nielsen H. 2014. Biochar amendment to coarse sandy subsoil improves root growth and increases water retention. Soil Use Manag. 30:109–118. doi:10.1111/sum.12102.
  • Caffarri S, Tibiletti T, Jennings RC, Santabarbara S. 2014. A comparison between plant photosystem I and photosystem II architecture and functioning. Curr Protein Pept Sci. 15:296–331. doi:10.2174/1389203715666140327102218.
  • Chen WF, Meng J, Han XR, Lan Y, Zhang WM. 2019. Past, present, and future of biochar. Biochar. 1:75–87. doi:10.1007/s42773-019-00008-3.
  • Chow F. 2012. Nitrate assimilation: the role of in vitro nitrate reductase assay as nutritional predictor.
  • Curci PL, Cigliano RA, Zuluaga DL, Janni M, Sanseverino W, Sonnante G. 2017. Transcriptomic response of durum wheat to nitrogen starvation. Sci Rep. 7:14. doi:10.1038/s41598-017-01377-0.
  • Dernetriou G, Neonaki C, Navakoudis E, Kotzabasis K. 2007. Salt stress impact on the molecular structure and function of the photosynthetic apparatus - The protective role of polyamines. Biochim Biophys Acta-Bioenerg. 1767:272–280. doi:10.1016/j.bbabio.2007.02.020.
  • Devadasu E, Pandey J, Dhokne K, Subramanyam R. 2021. Restoration of photosynthetic activity and supercomplexes from severe iron starvation in Chlamydomonas reinhardtii. Biochim Biophys Acta-Bioenerg. 1862:13. doi:10.1016/j.bbabio.2020.148331.
  • Fang M, Ren T, Lai X, Wang Z, Song T, Li J, Zhang G. 2018. Effects of peanut shell biochar on physico-chemical properties and greenhouse gas emission in fluvo-aquic soil and red soil. J Agro-Environ Sci. 37:1300–1310.
  • Goltsev VN, Kalaji HM, Paunov M, Baba W, Horaczek T, Mojski J, Kociel H, Allakhverdiev SI. 2016. Variable chlorophyll fluorescence and its use for assessing physiological condition of plant photosynthetic apparatus. Russ J Plant Physiol. 63:869–893. doi:10.1134/S1021443716050058.
  • He YH, Yao YX, Ji YH, Deng J, Zhou GY, Liu RQ, Shao JJ, Zhou LY, Li N, Zhou XH, Bai SH. 2020. Biochar amendment boosts photosynthesis and biomass in C3 but not C4 plants: a global synthesis. GCB Bioenergy. 12:605–617. doi:10.1111/gcbb.12720.
  • Jia ZT, Giehl RFH, von Wirén N. 2020. The root foraging response under Low nitrogen depends on DWARF1-mediated brassinosteroid biosynthesis. Plant Physiol. 183:998–1010. doi:10.1104/pp.20.00440.
  • Joseph SD, Camps-Arbestain M, Lin Y, Munroe P, Chia CH, Hook J, van Zwieten L, Kimber S, Cowie A, Singh BP, et al. 2010. An investigation into the reactions of biochar in soil. Aust J Soil Res. 48:501–515. doi:10.1071/sr10009.
  • Kan X, Ren JJ, Chen TT, Cui M, Li CL, Zhou RH, Zhang Y, Liu HH, Deng DX, Yin ZT. 2017. Effects of salinity on photosynthesis in maize probed by prompt fluorescence, delayed fluorescence and P700 signals. Environ Exp Bot. 140:56–64. doi:10.1016/j.envexpbot.2017.05.019.
  • Khan Z, Zhang KK, Khan MN, Fahad S, Xu ZH, Hu LY. 2020. Coupling of biochar with nitrogen supplements improve soil fertility, nitrogen utilization efficiency and rapeseed growth. Agronomy. 10:1661. doi:10.3390/agronomy10111661.
  • Lehmann J, Rillig MC, Thies J, Masiello CA, Hockaday WC, Crowley D. 2011. Biochar effects on soil biota - a review. Soil Biol Biochem. 43:1812–1836. doi:10.1016/j.soilbio.2011.04.022.
  • Li C, Yang W, Zhou B, Zhang Y, Lin Y, Xing S. 2021. Effects of biochar based fertilizer on soil nutrients, tea output and quality in an acidified tea field. Chin J Soil Sci. 52:387–397.
  • Li DD, Tian MY, Cai J, Jiang D, Cao WX, Dai TB. 2013a. Effects of low nitrogen supply on relationships between photosynthesis and nitrogen status at different leaf position in wheat seedlings. Plant Growth Regul. 70:257–263. doi:10.1007/s10725-013-9797-4.
  • Li MX, Xu J, Guo R, Liu Y, Wang SY, Wang H, Abd U, Shi LX. 2019. Identifying the metabolomics and physiological differences among Soja in the early flowering stage. Plant Physiol Biochem. 139:82–91. doi:10.1016/j.plaphy.2019.03.012.
  • Li Y, Ren BB, Ding L, Shen QR, Peng SB, Guo SW. 2013b. Does chloroplast size influence photosynthetic nitrogen use efficiency? PLoS One. 8:e62036. doi:10.1371/journal.pone.0062036.
  • Liang J, He JX. 2018. Protective role of anthocyanins in plants under low nitrogen stress. Biochem Biophys Res Commun. 498:946–953. doi:10.1016/j.bbrc.2018.03.087.
  • Lin QY, Zhang L, Riaz M, Zhang MY, Xia H, Lv B, Jiang CC. 2018. Assessing the potential of biochar and aged biochar to alleviate aluminum toxicity in an acid soil for achieving cabbage productivity. Ecotoxicol Environ Saf. 161:290–295. doi:10.1016/j.ecoenv.2018.06.010.
  • Liu DP, Li MX, Liu Y, Shi LX. 2020. Integration of the metabolome and transcriptome reveals the resistance mechanism to low nitrogen in wild soybean seedling roots. Environ Exp Bot. 175:104043. doi:10.1016/j.envexpbot.2020.104043.
  • Liu H, Zhou Q, Li J, Zhang L, Zhang M, Sun M, Liu Z, Chen J. 2016. Effect of biochar application amount on the soil improvement and the growth of flue-cured tobacco. J Nucl Agric Sci. 30:1411–1419.
  • Liu LY, Teng K, Fan XF, Han C, Zhang H, Wu JY, Chang ZH. 2022. Combination analysis of single-molecule long-read and Illumina sequencing provides insights into the anthocyanin accumulation mechanism in an ornamental grass, Pennisetum setaceum cv. Rubrum. Plant Mol Biol. 109:159–175. doi:10.1007/s11103-022-01264-x.
  • Liu X, Wu P, Li C, Wang Y, Zhang S, Chen J. 2021. Effects of biochar and reduced nitrogen application on photosynthetic characteristics of sugar beet under saline-alkali stress. J Northwest A & F Univ Nat Sci Ed. 49:108.
  • Liu Y, Zhao Z, Fu X, Zhan E, Jiang Y, Huang W, Chen X, Li C, Zhao F, Yu H. 2014. Effects of adjusting fertilization on flue-cured tobacco growth and leaf quality in Zhaotong. Chin Tob Sci. 35:32–37.
  • Luo J, Li H, Liu TX, Polle A, Peng CH, Luo ZB. 2013. Nitrogen metabolism of two contrasting poplar species during acclimation to limiting nitrogen availability. J Exp Bot. 64:4207–4224. doi:10.1093/jxb/ert234.
  • Makoto K, Tamai Y, Kim YS, Koike T. 2010. Buried charcoal layer and ectomycorrhizae cooperatively promote the growth of Larix gmelinii seedlings. Plant Soil. 327:143–152. doi:10.1007/s11104-009-0040-z.
  • Matiu M, Ankerst DP, Menzel A. 2017. Interactions between temperature and drought in global and regional crop yield variability during 1961-2014. PLoS One. 12:e0178339. doi:10.1371/journal.pone.0178339.
  • Misra AN, Srivastava A, Strasser RJ. 2001. Utilization of fast chlorophyll a fluorescence technique in assessing the salt/ion sensitivity of Mung bean and Brassica seedlings. J Plant Physiol. 158:1173–1181. doi:10.1078/S0176-1617(04)70144-3.
  • Mu XH, Chen QW, Chen FJ, Lixing YX, Mi GH. 2016. Within-Leaf nitrogen allocation in adaptation to Low nitrogen supply in maize during grain-filling stage. Front Plant Sci. 7:11. doi:10.3389/fpls.2016.00699.
  • Mu XH, Chen YL. 2021. The physiological response of photosynthesis to nitrogen deficiency. Plant Physiol Biochem. 158:76–82. doi:10.1016/j.plaphy.2020.11.019.
  • Qian ZZ, Tang LZ, Zhuang SY, Zou Y, Fu DL, Chen X. 2020. Effects of biochar amendments on soil water retention characteristics of red soil at south China. Biochar. 2:479–488. doi:10.1007/s42773-020-00068-w.
  • Quan XY, Zeng JB, Chen G, Zhang GP. 2019. RDWN6XB, a major quantitative trait locus positively enhances root system architecture under nitrogen deficiency in rice. BMC Plant Biol. 19:12. doi:10.1186/s12870-018-1620-y.
  • Que YX, Su YC, Guo JL, Wu QB, Xu LP. 2014. A global view of transcriptome dynamics during sporisorium scitamineum challenge in sugarcane by RNA-Seq. PLoS One. 9:e106476. doi:10.1371/journal.pone.0106476.
  • Sarma B, Borkotoki B, Narzari R, Kataki R, Gogoi N. 2017. Organic amendments: effect on carbon mineralization and crop productivity in acidic soil. J Cleaner Prod. 152:157–166. doi:10.1016/j.jclepro.2017.03.124.
  • Shen YF, Zhu LX, Cheng HY, Yue SC, Li SQ. 2017. Effects of biochar application on CO2 emissions from a cultivated soil under semiarid climate conditions in northwest China. Sustainability. 9:1482. doi:10.3390/su9081482.
  • Spreitzer RJ, Salvucci ME. 2002. RUBISCO: structure, regulatory interactions, and possibilities for a better enzyme. Annu Rev Plant Biol. 53:449–475. doi:10.1146/annurev.arplant.53.100301.135233.
  • Strasser RJ, Tsimilli-Michael M, Srivastava A. 2004. Analysis of the chlorophyll a fluorescence transient. Dordrecht: Springer Netherlands; p. 19:321–362. doi:10.1007/978-1-4020-3218-9_12.
  • Strassert RJ, Srivastava A, Govindjee. 1995. Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria*. Photochem Photobiol. 61: 32–42. doi:10.1111/j.1751-1097.1995.tb09240.x.
  • Tantray AY, Bashir SS, Ahmad A. 2020. Low nitrogen stress regulates chlorophyll fluorescence in coordination with photosynthesis and Rubisco efficiency of rice. Physiol Mol Biol Plants. 26:83–94. doi:10.1007/s12298-019-00721-0.
  • Tazoe Y, Noguchi K, Terashima I. 2006. Effects of growth light and nitrogen nutrition on the organization of the photosynthetic apparatus in leaves of a C4 plant, Amaranthus cruentus. Plant Cell Environ. 29:691–700. doi:10.1111/j.1365-3040.2005.01453.x.
  • Wang Y, Wang JC, Guo DD, Zhang HB, Che YH, Li YY, Tian B, Wang ZH, Sun GY, Zhang HH. 2021. Physiological and comparative transcriptome analysis of leaf response and physiological adaption to saline alkali stress across pH values in alfalfa (Medicago sativa). Plant Physiol Biochem. 167:140–152. doi:10.1016/j.plaphy.2021.07.040.
  • Xu G, Guo W, Li Z, Wang C, Xu Y, Jin J, Zhou H, Deng S. 2022. Transcriptomic insights into the regulatory networks of chilling-induced early flower in tobacco (Nicotiana tabacumL.). J Plant Interact. 17:496–506. doi:10.1080/17429145.2022.2055175.
  • Ye L, Shen W, Zheng B, Song T, Chen G, Lu C. 2013. Changes of photosynthetic membrane function and protein complexes in flag leaves of Liangyoupeijiu during leaf senescence. Acta Agron Sin. 39:2030–2038. doi:10.3724/SP.J.1006.2013.02030.
  • Zhang C, Zhang Y, Lu Z, Liu L, Yang C. 2017. Effect of Low nitrogen stress on the seedling growth and root physiological traits of Fagopyrum tataricum cultivars with different low-N treatments. Acta Bot Boreali-Occidentalia Sin. 37:1331–1339.
  • Zhang HH, Xu ZS, Guo KW, Huo YZ, He GQ, Sun HW, Guan YP, Xu N, Yang W, Sun GY. 2020. Toxic effects of heavy metal Cd and Zn on chlorophyll, carotenoid metabolism and photosynthetic function in tobacco leaves revealed by physiological and proteomics analysis. Ecotoxicol Environ Saf. 202:110856. doi:10.1016/j.ecoenv.2020.110856.
  • Zhang HH, Zhong HX, Wang JF, Sui X, Xu N. 2016a. Adaptive changes in chlorophyll content and photosynthetic features to low light in Physocarpus amurensis Maxim and Physocarpus opulifolius “Diabolo”. PeerJ. 4:e2125. doi:10.7717/peerj.2125.
  • Zhang YJ, Lin F, Wang XF, Zou JW, Liu SW. 2016b. Annual accounting of net greenhouse gas balance response to biochar addition in a coastal saline bioenergy cropping system in China. Soil Tillage Res. 158:39–48. doi:10.1016/j.still.2015.11.006.
  • Zhao M, Sun J, Wang J, Xu H, Tang L, Chen W. 2011. Global genome expression analysis of photosynthesis-related genes under Low nitrogen stress in rice flag leaf. Sci Agric Sin. 44:1–8.
  • Zhong C, Jian SF, Huang J, Jin QY, Cao XC. 2019. Trade-off of within-leaf nitrogen allocation between photosynthetic nitrogen-use efficiency and water deficit stress acclimation in rice (Oryza sativa L.). Plant Physiol Biochem. 135:41–50. doi:10.1016/j.plaphy.2018.11.021.
  • Ziehe D, Dünschede B, Schünemann D. 2018. Molecular mechanism of SRP-dependent light-harvesting protein transport to the thylakoid membrane in plants. Photosynth Res. 138:303–313. doi:10.1007/s11120-018-0544-6.