173
Views
0
CrossRef citations to date
0
Altmetric
Plant-Environment Interactions (close environment)

Iron oxide nanoparticles alleviate salt-alkaline stress and improve growth by modulating antioxidant defense system in cherry tomato

, , , , , , , & show all
Article: 2375508 | Received 15 Apr 2024, Accepted 29 Jun 2024, Published online: 09 Jul 2024

References

  • Adabavazeh F, Pourseyedi S, Nadernejad N, Razavizadeh R, Mozafari H. 2022. Evaluation of synthesized magnetic nanoparticles and salicylic acid effects on improvement of antioxidant properties and essential oils of Calotropis procera hairy roots and seedlings. Plant Cell Tiss Organ Cult. 151:133–148. doi:10.1007/s11240-022-02338-w.
  • Afzal S, Aftab T, Singh NK. 2022. Impact of zinc oxide and iron oxide nanoparticles on uptake, translocation, and physiological effects in Oryza sativa L. J. Plant Growth Regul. 41:1445–1461. doi:10.1007/s00344-021-10388-1.
  • Agati G, Brunetti C, Fini A, Gori A, Guidi L, Landi M, Sebastiani F, Tattini M. 2020. Are flavonoids effective antioxidants in plants? Twenty years of our investigation. Antioxidants. 9(11):1098. doi:10.3390/antiox9111098.
  • Ahmad A, Yasin NA, Khan WU, Akram W, Wang R, Shah AA, Akbar M, Ali A, Wu T. 2021. Silicon assisted ameliorative effects of iron nanoparticles against cadmium stress: attaining new equilibrium among physiochemical parameters, antioxidative machinery, and osmoregulators of Phaseolus lunatus. Plant Physiol Biochem. 166:874–886. doi:10.1016/j.plaphy.2021.06.016.
  • Ahmad F, Kusumiyati K, Soleh MA, Khan MR, Sundari RS. 2023. Watering volume and growing design’s effect on the productivity and quality of cherry tomato (solanum lycopersicum cerasiformae) cultivar ruby. Agronomy. 13(9):2417. doi:10.3390/agronomy13092417.
  • Alabdallah NM, Hasan MM, Hammami I, Alghamdi AI, Alshehri D, Alatawi HA. 2021. Green synthesized metal oxide nanoparticles mediate growth regulation and physiology of crop plants under drought stress. Plants. 10(8):1730. doi:10.3390/plants10081730.
  • Ali EF, El-Shehawi AM, Ibrahim OHM, Abdul-Hafeez EY, Moussa MM, Hassan FAS. 2021. A vital role of chitosan nanoparticles in improvisation the drought stress tolerance in Catharanthus roseus (L.) through biochemical and gene expression modulation. Plant Physiol Biochem. 161:166–175. doi:10.1016/j.plaphy.2021.02.008.
  • Al-Khayri JM, Rashmi R, Ulhas R, Sudheer WN, Banadka A, Nagella P, Aldaej MI, Rezk AA, Shehata WF, Almaghasla MI. 2023. The role of nanoparticles in response of plants to abiotic stress at physiological, biochemical, and molecular levels. Plants. 12(2):292. doi:10.3390/plants12020292.
  • Almendros P, González D, Fernández MD, García-Gomez C, Obrador A. 2022. Both Zn biofortification and nutrient distribution pattern in cherry tomato plants are influenced by the application of ZnO nanofertilizer. Heliyon. 8:e09130. doi:10.1016/j.heliyon.2022.e09130.
  • An Y-M, Song L-L, Liu Y-R, Shu Y-J, Guo C-H. 2016. De novo transcriptional analysis of alfalfa in response to saline-alkaline stress. Front Plant Sci. 7:931. doi:10.3389/fpls.2016.00931.
  • Bai L, Wang C, Zang S, Wu C, Luo J, Wu Y. 2018. Mapping soil alkalinity and salinity in northern songnen plain, China with the HJ-1 hyperspectral imager data and partial least squares regression. Sensors. 18(11):3855. doi:10.3390/s18113855.
  • Bassi R, Dall'Osto L. 2021. Dissipation of light energy absorbed in excess: the molecular mechanisms. Annu Rev Plant Biol. 72:47–76. doi:10.1146/annurev-arplant-071720-015522.
  • Bidi H, Fallah H, Niknejad Y, Barari Tari D. 2021. Iron oxide nanoparticles alleviate arsenic phytotoxicity in rice by improving iron uptake, oxidative stress tolerance and diminishing arsenic accumulation. Plant Physiol Biochem. 163:348–357. doi:10.1016/j.plaphy.2021.04.020.
  • Chen F, Jiang F, Okla MK, Abbas ZK, Al-Qahtani SM, Al-Harbi NA, Abdel-Maksoud MA, Gómez-Oliván LM. 2024. Nanoparticles synergy: enhancing wheat (Triticum aestivum L.) cadmium tolerance with iron oxide and selenium. Sci. Total Environ. 915:169869. doi:10.1016/j.scitotenv.2024.169869.
  • Choi HG. 2021. Effect of TiO2 nanoparticles on the yield and photophysiological responses of cherry tomatoes during the rainy season. Horticulturae. 7(12):563. doi:10.3390/horticulturae7120563.
  • Csiszár J, Horváth E, Váry Z, Gallé A, Bela K, Brunner S, Tari I. 2014. Glutathione transferase supergene family in tomato: salt stress-regulated expression of representative genes from distinct GST classes in plants primed with salicylic acid. Plant Physiol Biochem. 78:15–26. doi:10.1016/j.plaphy.2014.02.010.
  • Djanaguiraman M, Belliraj N, Bossmann S, Prasad PVV. 2018. High temperature stress alleviation by selenium nanoparticles treatment in grain sorghum. ACS Omega. 3(3):2479–2491. doi:10.1021/acsomega.7b01934.
  • Djanaguiraman M, Nair R, Giraldo JP, Prasad PVV. 2018. Cerium oxide nanoparticles decrease drought-induced oxidative damage in sorghum leading to higher photosynthesis and grain yield. ACS Omega. 3(10):14406–14416. doi:10.1021/acsomega.8b01894.
  • Du L, Huang X, Ding L, Wang Z, Tang D, Chen B, Ao L, Liu Y, Kang Z, Mao H. 2023. TaERF87 and TaAKS1 synergistically regulate TaP5CS1/TaP5CR1-mediated proline biosynthesis to enhance drought tolerance in wheat. New Phytol. 237:232–250. doi:10.1111/nph.18549.
  • Du Y, Zhao Q, Chen L, Yao X, Zhang W, Zhang B, Xie F. 2020. Effect of drought stress on sugar metabolism in leaves and roots of soybean seedlings. Plant Physiol Biochem. 146:1–12. doi:10.1016/j.plaphy.2019.11.003.
  • Dumanović J, Nepovimova E, Natić M, Kuča K, Jaćević V. 2021. The significance of reactive oxygen species and antioxidant defense system in plants: A concise overview. Front Plant Sci. 11:552969. doi:10.3389/fpls.2020.552969.
  • Endo T, Uebayashi N, Ishida S, Ikeuchi M, Sato F. 2014. Light energy allocation at PSII under field light conditions: how much energy is lost in NPQ-associated dissipation? Plant Physiol Biochem. 81:115–120. doi:10.1016/j.plaphy.2014.03.018.
  • Fan Y, Lu X, Chen X, Wang J, Wang D, Wang S, Guo L, Rui C, Zhang Y, Cui R, et al. 2021. Cotton transcriptome analysis reveals novel biological pathways that eliminate reactive oxygen species (ROS) under sodium bicarbonate (NaHCO3) alkaline stress. Genomics. 113:1157–1169. doi:10.1016/j.ygeno.2021.02.022.
  • Fatima A, Hussain S, Hussain S, Ali B, Ashraf U, Zulfiqar U, Aslam Z, Al-Robai SA, Alzahrani FO, Hano C, et al. 2021. Differential morphophysiological, biochemical, and molecular responses of maize hybrids to salinity and alkalinity stresses. Agronomy. 11(6):1150. doi:10.3390/agronomy11061150.
  • Fibiani M, Paolo D, Leteo F, Campanelli G, Picchi V, Bianchi G, Lo Scalzo R. 2022. Influence of year, genotype and cultivation system on nutritional values and bioactive compounds in tomato (Solanum lycopersicum L.). Food Chem. 389:133090. doi:10.1016/j.foodchem.2022.133090.
  • Foyer CH, Hanke G. 2022. ROS production and signalling in chloroplasts: cornerstones and evolving concepts. Plant J. 111(3):642–661. doi:10.1111/tpj.15856.
  • Gao F, Zhang X, Zhang J, Li J, Niu T, Tang C, Wang C, Xie J. 2022. Zinc oxide nanoparticles improve lettuce (Lactuca sativa L.) plant tolerance to cadmium by stimulating antioxidant defense, enhancing lignin content and reducing the metal accumulation and translocation. Front Plant Sci. 13:1015745. doi:10.3389/fpls.2022.1015745.
  • Gao Y, Zhang J, Wang C, Han K, Hu L, Niu T, Yang Y, Chang Y, Xie J. 2023. Exogenous proline enhances systemic defense against salt stress in celery by regulating photosystem, phenolic compounds, and antioxidant system. Plants. 12(4):928. doi:10.3390/plants12040928.
  • García-Locascio E, Valenzuela EI, Cervantes-Avilés P. 2024. Impact of seed priming with selenium nanoparticles on germination and seedlings growth of tomato. Sci Rep. 14:6726. doi:10.1038/s41598-024-57049-3.
  • Ghassemi-Golezani K, Abdoli S. 2021. Improving ATPase and PPase activities, nutrient uptake and growth of salt stressed ajowan plants by salicylic acid and iron-oxide nanoparticles. Plant Cell Rep. 40:559–573. doi:10.1007/s00299-020-02652-7.
  • Göbel M, Fichtner F. 2023. Functions of sucrose and trehalose 6-phosphate in controlling plant development. J Plant Physiol. 291:154140. doi:10.1016/j.jplph.2023.154140.
  • Guo W, Xing Y, Luo X, Li F, Ren M, Liang Y. 2023. Reactive oxygen species: a crosslink between plant and human eukaryotic cell systems. Int J Mol Sci. 24(17):13052. doi:10.3390/ijms241713052.
  • Gutiérrez-Miceli FA, Oliva-Llaven MÁ, Luján-Hidalgo MC, Velázquez-Gamboa MC, González-Mendoza D, Sánchez-Roque Y. 2021. Zinc oxide phytonanoparticles’ effects on yield and mineral contents in fruits of tomato (Solanum lycopersicum L. cv. Cherry) under field conditions. Scientific World J. 2021:5561930. doi:10.1155/2021/5561930.
  • Hasanuzzaman M, Bhuyan M, Anee TI, Parvin K, Nahar K, Mahmud JA, Fujita M. 2019. Regulation of ascorbate-glutathione pathway in mitigating oxidative damage in plants under abiotic stress. Antioxidants. 8(9):384. doi:10.3390/antiox8090384.
  • Hasanuzzaman M, Bhuyan MHMB, Parvin K, Bhuiyan TF, Anee TI, Nahar K, Hossen MS, Zulfiqar F, Alam MM, Fujita M. 2020. Regulation of ROS metabolism in plants under environmental stress: a review of recent experimental evidence. Int J Mol Sci. 21(22):8695. doi:10.3390/ijms21228695.
  • Hasegawa PM. 2013. Sodium (Na+) homeostasis and salt tolerance of plants. Environ Exp Bot. 92:19–31. doi:10.1016/j.envexpbot.2013.03.001.
  • He X, Wan Z, Jin N, Jin L, Zhang G, Lyu J, Liu Z, Luo S, Yu J. 2022. Enhancement of cucumber resistance under salt stress by 2, 4-epibrassinolide lactones. Front Plant Sci. 13:1023178. doi:10.3389/fpls.2022.1023178.
  • Heath RL, Packer L. 1968. Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys. 125(1):189–198. doi:10.1016/0003-9861(68)90654-1.
  • Hou R, Yang L, Wuyun T, Chen S, Zhang L. 2023. Genes related to osmoregulation and antioxidation play important roles in the response of Trollius chinensis seedlings to saline-alkali stress. Front Plant Sci. 14:1080504. doi:10.3389/fpls.2023.1080504.
  • Hsieh EJ, Waters BM. 2016. Alkaline stress and iron deficiency regulate iron uptake and riboflavin synthesis gene expression differently in root and leaf tissue: implications for iron deficiency chlorosis. J Exp Bot. 67(19):5671–5685. doi:10.1093/jxb/erw328.
  • Hu X, Wang D, Ren S, Feng S, Zhang H, Zhang J, Qiao K, Zhou A. 2022. Inhibition of root growth by alkaline salts due to disturbed ion transport and accumulation in Leymus chinensis. Environ Exp Bot. 200:104907. doi:10.1016/j.envexpbot.2022.104907.
  • Huihui Z, Xin L, Yan-hui C, Yue W, Ma-bo L, Rong-yi Y, Nan X, Guang-yu S. 2020. A study on the effects of salinity and pH on PSII function in mulberry seedling leaves under saline–alkali mixed stress. Trees. 34:693–706. doi:10.1007/s00468-019-01949-9.
  • Hussain A, Ali S, Rizwan M, Rehman M, Qayyum MF, Wang H, Rinklebe J. 2019. Responses of wheat (Triticum aestivum) plants grown in a Cd contaminated soil to the application of iron oxide nanoparticles. Ecotoxicol Environ Saf. 173:156–164. doi:10.1016/j.ecoenv.2019.01.118.
  • Isah T. 2019. Stress and defense responses in plant secondary metabolites production. Biol Res. 52:39. doi:10.1186/s40659-019-0246-3.
  • Jafari A, Hatami M. 2022. Foliar-applied nanoscale zero-valent iron (nZVI) and iron oxide (Fe3O4) induce differential responses in growth, physiology, antioxidative defense and biochemical indices in Leonurus cardiaca L. Environ Res. 215(2):114254. doi:10.1016/j.envres.2022.114254.
  • Jia XM, Zhu YF, Hu Y, Zhang R, Cheng L, Zhu ZI, Zhao T, Zhang X, Wang YX. 2019. Integrated physiologic, proteomic, and metabolomic analyses of Malus halliana adaptation to saline–alkali stress. Hortic Res. 6:91. doi:10.1038/s41438-019-0172-0.
  • Jin X, Liu T, Xu J, Gao Z, Hu X. 2019. Exogenous GABA enhances muskmelon tolerance to salinity-alkalinity stress by regulating redox balance and chlorophyll biosynthesis. BMC Plant Biol. 19(1):48. doi:10.1186/s12870-019-1660-y.
  • Jin Z, Jiang W, Luo Y, Huang H, Yi D, Pang Y. 2022. Analyses on flavonoids and transcriptome reveals Key MYB gene for proanthocyanidins regulation in Onobrychis Viciifolia. Front Plant Sci. 13:941918. doi:10.3389/fpls.2022.941918.
  • Kalwani M, Chakdar H, Srivastava A, Pabbi S, Shukla P. 2022. Effects of nanofertilizers on soil and plant-associated microbial communities: emerging trends and perspectives. Chemosphere. 287:132107. doi:10.1016/j.chemosphere.2021.132107.
  • Kreslavski VD, Shmarev AN, Ivanov AA, Zharmukhamedov SK, Strokina V, Kosobryukhov A, Yu M, Allakhverdiev SI, Shabala S. 2023. Effects of iron oxide nanoparticles (Fe3O4) and salinity on growth, photosynthesis, antioxidant activity and distribution of mineral elements in wheat (Triticum aestivum). Funct Plant Biol. 50(11):932–940. doi:10.1071/FP23085.
  • Li J, Cao X, Jia X, Liu L, Cao H, Qin W, Li M. 2021a. Iron deficiency leads to chlorosis through impacting chlorophyll synthesis and nitrogen metabolism in Areca catechu L. Front Plant Sci. 12:710093. doi:10.3389/fpls.2021.710093.
  • Li J, Yang Y. 2023. How do plants maintain pH and ion homeostasis under saline-alkali stress? Front Plant Sci. 14:1217193. doi:10.3389/fpls.2023.1217193.
  • Li M, Zhang P, Adeel M, Guo Z, Chetwynd AJ, Ma C, Bai T, Hao Y, Rui Y. 2021b. Physiological impacts of zero valent iron, Fe3O4 and Fe2O3 nanoparticles in rice plants and their potential as Fe fertilizers. Environ Pollut. 269:116134. doi:10.1016/j.envpol.2020.116134.
  • Li N, Zhang Z, Gao S, Lv Y, Chen Z, Cao B, Xu K. 2021c. Different responses of two Chinese cabbage (Brassica rapa L. ssp. pekinensis) cultivars in photosynthetic characteristics and chloroplast ultrastructure to salt and alkali stress. Planta. 254(5):102. doi:10.1007/s00425-021-03754-6.
  • Li S. 2023. Novel insight into functions of ascorbate peroxidase in higher plants: more than a simple antioxidant enzyme. Redox Biol. 64:102789. doi:10.1016/j.redox.2023.102789.
  • Lin S, Song X-F, Mao H-T, Li S-Q, Gan J-Y, Yuan M, Zhang Z-W, Yuan S, Zhang H-Y, Su Y-Q, et al. 2022. Exogenous melatonin improved photosynthetic efficiency of photosystem II by reversible phosphorylation of thylakoid proteins in wheat under osmotic stress. Front Plant Sci. 13:966181. doi:10.3389/fpls.2022.966181.
  • Liu J, Li G, Chen L, Gu J, Wu H, Li Z. 2021a. Cerium oxide nanoparticles improve cotton salt tolerance by enabling better ability to maintain cytosolic K+/Na+ ratio. J Nanobiotechnology. 19(1):153. doi:10.1186/s12951-021-00892-7.
  • Liu Y, Li Y, Pan B, Zhang XY, Zhang H, Steinberg CEW, Qiu H, Vijver MG, Peijnenburg W. 2021b. Application of low dosage of copper oxide and zinc oxide nanoparticles boosts bacterial and fungal communities in soil. Sci Total Environ. 757:143807. doi:10.1016/j.scitotenv.2020.143807.
  • Lu X, Wu Q, Nie K, Wu H, Chen G, Wang J, Ma Z. 2023. Exogenous phthalanilic acid induces resistance to drought stress in pepper seedlings (Capsicum annuum L.). Front Plant Sci. 14:1156276. doi:10.3389/fpls.2023.1156276.
  • Ma C, Yuan S, Xie B, Li Q, Wang Q, Shao M. 2022. IAA plays an important role in alkaline stress tolerance by modulating root development and ROS detoxifying systems in rice plants. Int J Mol Sci. 23(23):14817. doi:10.3390/ijms232314817.
  • Ma D, Reichelt M, Yoshida K, Gershenzon J, Constabel CP. 2018. Two R2R3-MYB proteins are broad repressors of flavonoid and phenylpropanoid metabolism in poplar. Plant J. 96(5):949–965. doi:10.1111/tpj.14081.
  • Machado J, Vasconcelos MW, Soares C, Fidalgo F, Heuvelink E, Carvalho SMP. 2023. Enzymatic and Non-enzymatic antioxidant responses of young tomato plants (cv. Micro-Tom) to single and combined mild nitrogen and water deficit: not the sum of the parts. Antioxidants. 12(2):375. doi:10.3390/antiox12020375.
  • Mahmoud AWM, Ayad AA, Abdel-Aziz HSM, Williams LL, El-Shazoly RM, Abdel-Wahab A, Abdeldaym EA. 2022. Foliar application of different iron sources improves morpho-physiological traits and nutritional quality of broad bean grown in sandy soil. Plants. 11(19):2599. doi:10.3390/plants11192599.
  • Manzoor N, Ahmed T, Noman M, Shahid M, Nazir MM, Ali L, Alnusaire TS, Li B, Schulin R, Wang G. 2021. Iron oxide nanoparticles ameliorated the cadmium and salinity stresses in wheat plants, facilitating photosynthetic pigments and restricting cadmium uptake. Sci Total Environ. 769:145221. doi:10.1016/j.scitotenv.2021.145221.
  • Manzoor N, Ali L, Al-Huqail AA, Alghanem SMS, Al-Haithloul HAS, Abbas T, Chen G, Huan L, Liu Y, Wang G. 2023. Comparative efficacy of silicon and iron oxide nanoparticles towards improving the plant growth and mitigating arsenic toxicity in wheat (Triticum aestivum L.). Ecotoxicol Environ Saf. 264:115382. doi:10.1016/j.ecoenv.2023.115382.
  • Moradbeygi H, Jamei R, Heidari R, Darvishzadeh R. 2020. Investigating the enzymatic and non-enzymatic antioxidant defense by applying iron oxide nanoparticles in Dracocephalum moldavica L. plant under salinity stress. Sci Hortic. 272:109537. doi:10.1016/j.scienta.2020.109537.
  • Müller-Schüssele SJ, Wang R, Gütle DD, Romer J, Rodriguez-Franco M, Scholz M, Buchert F, Lüth VM, Kopriva S, Dörmann P, et al. 2020. Chloroplasts require glutathione reductase to balance reactive oxygen species and maintain efficient photosynthesis. Plant J. 103:1140–1154. doi:10.1111/tpj.14791.
  • Mustafa H, Ilyas N, Akhtar N, Raja NI, Zainab T, Shah T, Ahmad A, Ahmad P. 2021. Biosynthesis and characterization of titanium dioxide nanoparticles and its effects along with calcium phosphate on physicochemical attributes of wheat under drought stress. Ecotoxicol Environ Saf. 223:112519. doi:10.1016/j.ecoenv.2021.112519.
  • Neysanian M, Ahmadvand R, Oraghi Ardebili Z, Ebadi M. 2021. The effect of selenium nanoparticles on some morphological and anatomical features of cherry tomato plants (Solanum lycopersicum L. var. cerasiforme). Dev Biol. 13:39–54. doi:10.30495/jdb.2021.686361.
  • Nie W, Gong B, Chen Y, Wang J, Wei M, Shi Q. 2018. Photosynthetic capacity, ion homeostasis and reactive oxygen metabolism were involved in exogenous salicylic acid increasing cucumber seedlings tolerance to alkaline stress. Sci Hortic. 235:413–423. doi:10.1016/j.scienta.2018.03.011.
  • Ning X, Lin M, Huang G, Mao J, Gao Z, Wang X. 2023. Research progress on iron absorption, transport, and molecular regulation strategy in plants. Front Plant Sci. 14:1190768. doi:10.3389/fpls.2023.1190768.
  • Noor R, Yasmin H, Ilyas N, Nosheen A, Hassan MN, Mumtaz S, Khan N, Ahmad A, Ahmad P. 2022. Comparative analysis of iron oxide nanoparticles synthesized from ginger (Zingiber officinale) and cumin seeds (Cuminum cyminum) to induce resistance in wheat against drought stress. Chemosphere. 292:133201. doi:10.1016/j.chemosphere.2021.133201.
  • Rao Y, Peng T, Xue S. 2023. Mechanisms of plant saline-alkaline tolerance. J Plant Physiol. 281:153916. doi:10.1016/j.jplph.2023.153916.
  • Rezayian M, Niknam V, Arabloo M. 2023. Iron nanoparticle regulate succinate dehydrogenase activity in canola plants under drought stress. Sci Rep. 13(1):9628. doi:10.1038/s41598-023-36105-4.
  • Rui M, Ma C, Hao Y, Guo J, Rui Y, Tang X, Zhao Q, Fan X, Zhang Z, Hou T, et al. 2016. Iron oxide nanoparticles as a potential iron fertilizer for peanut (Arachis hypogaea). Front Plant Sci. 7:815. doi:10.3389/fpls.2016.00815.
  • Sagervanshi A, Naeem A, Kaiser H, Pitann B, Mühling KH. 2021. Early growth reduction in Vicia faba L. under alkali salt stress is mainly caused by excess bicarbonate and related to citrate and malate over accumulation. Environ Exp Bot. 192:104636. doi:10.1016/j.envexpbot.2021.104636.
  • Sahab S, Suhani I, Srivastava V, Chauhan PS, Singh RP, Prasad V. 2021. Potential risk assessment of soil salinity to agroecosystem sustainability: current status and management strategies. Sci Total Environ. 764:144164. doi:10.1016/j.scitotenv.2020.144164.
  • Sári D, Ferroudj A, Abdalla N, El-Ramady H, Dobránszki J, Prokisch J. 2023. Nano-management approaches for salt tolerance in plants under field and in vitro conditions. Agronomy. 13:2695. doi:10.3390/agronomy13112695.
  • Sarker U, Oba S. 2018. Drought stress enhances nutritional and bioactive compounds, phenolic acids and antioxidant capacity of Amaranthus leafy vegetable. BMC Plant Biol. 18(1):258. doi:10.1186/s12870-018-1484-1.
  • Schmittgen TD, Livak KJ. 2008. Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc. 3(6):1101–1108. doi:10.1038/nprot.2008.73.
  • Shah AA, Yasin NA, Mudassir M, Ramzan M, Hussain I, Siddiqui MH, Ali HM, Shabbir Z, Ali A, Ahmed S, et al. 2022. Iron oxide nanoparticles and selenium supplementation improve growth and photosynthesis by modulating antioxidant system and gene expression of chlorophyll synthase (CHLG) and protochlorophyllide oxidoreductase (POR) in arsenic-stressed Cucumis melo. Environ Pollut. 307:119413. doi:10.1016/j.envpol.2022.119413.
  • Shahzad R, Harlina PW, Gallego PP, Flexas J, Ewas M, Leiwen X, Karuniawan A. 2023. The seaweed Ascophyllum nodosum-based biostimulant enhances salt stress tolerance in rice (Oryza sativa L.) by remodeling physiological, biochemical, and metabolic responses. J Plant Interact. 18:2266514. doi:10.1080/17429145.2023.2266514.
  • Singh A, Sengar RS, Rajput VD, Minkina T, Singh RK. 2022. Zinc oxide nanoparticles improve salt tolerance in rice seedlings by improving physiological and biochemical indices. Agriculture. 12(7):1014. doi:10.3390/agriculture12071014.
  • Sofo A, Scopa A, Nuzzaci M, Vitti A. 2015. Ascorbate peroxidase and catalase activities and their genetic regulation in plants subjected to drought and salinity stresses. Int J Mol Sci. 16:13561–13578. doi:10.3390/ijms160613561.
  • Song Y, Zheng C, Li S, Chen J, Jiang M. 2023. Chitosan-Magnesium oxide nanoparticles improve salinity tolerance in rice (Oryza sativa L.). ACS Appl Mater Interfaces. 15(17):20649–20660. doi:10.1021/acsami.3c00043.
  • Tawfik MM, Mohamed MH, Sadak MS, Thalooth AT. 2021. Iron oxide nanoparticles effect on growth, physiological traits and nutritional contents of Moringa oleifera grown in saline environment. Bull Natl Res Cent. 45:177. doi:10.1186/s42269-021-00624-9.
  • Tombuloglu H, Slimani Y, Tombuloglu G, Alshammari T, Almessiere M, Korkmaz AD, Baykal A, Samia ACS. 2020. Engineered magnetic nanoparticles enhance chlorophyll content and growth of barley through the induction of photosystem genes. Environ Sci Pollut Res Int. 27(27):34311–34321. doi:10.1007/s11356-020-09693-1.
  • Wang Q, Xu W, Ren C, Zhan C, Wang C, Li J, Ren Q, Liang X, Wei L, Xiang D, et al. 2023a. Physiological and biochemical mechanisms of exogenous melatonin regulation of saline and ash; alkali tolerance in oats. Agronomy. 13(5):1327. doi:10.3390/agronomy13051327.
  • Wang W, Zhang C, Shang M, Lv H, Liang B, Li J, Zhou W. 2022a. Hydrogen peroxide regulates the biosynthesis of phenolic compounds and antioxidant quality enhancement in lettuce under low nitrogen condition. Food Chem. X. 16:100481. doi:10.1016/j.fochx.2022.100481.
  • Wang X, Xie H, Wang P, Yin H. 2023b. Nanoparticles in plants: uptake, transport and physiological activity in leaf and root. Materials (Basel). 16(8):3097. doi:10.3390/ma16083097.
  • Wang Y, Branicky R, Noë A, Hekimi S. 2018. Superoxide dismutases: dual roles in controlling ROS damage and regulating ROS signaling. J Cell Biol. 217(6):1915–1928. doi:10.1083/jcb.201708007.
  • Wang Y, Kang Y, Zhong M, Zhang L, Chai X, Jiang X, Yang X. 2022b. Effects of iron deficiency stress on plant growth and quality in flowering Chinese cabbage and its adaptive response. Agronomy. 12(4):875. doi:10.3390/agronomy12040875.
  • Wang Y, Wang J, Guo D, Zhang H, Che Y, Li Y, Tian B, Wang Z, Sun G, Zhang H. 2021. Physiological and comparative transcriptome analysis of leaf response and physiological adaption to saline alkali stress across pH values in alfalfa (Medicago sativa). Plant Physiol Biochem. 167:140–152. doi:10.1016/j.plaphy.2021.07.040.
  • Wang Y, Zhou Y, Liu K, Wang N, Wu Y, Zhang C, Ma J. 2023c. Transcriptome-Based comparative analysis of transcription factors in response to NaCl, NaOH, and Na2CO3 stresses in roots of autotetraploid rice (Oryza sativa L.). Agronomy. 13(4):959. doi:10.3390/agronomy13040959.
  • Waqas Mazhar M, Ishtiaq M, Maqbool M, Akram R, Shahid A, Shokralla S, Al-Ghobari H, Alataway A, Dewidar AZ, El-Sabrout AM, et al. 2022. Seed priming with iron oxide nanoparticles raises biomass production and agronomic profile of water-stressed flax plants. Agronomy. 12(5): 982. doi:10.3390/agronomy12050982.
  • Wu X, Hu Q, Liang X, Fang S. 2022. Fabrication of colloidal stable gliadin-casein nanoparticles for the encapsulation of natamycin: molecular interactions and antifungal application on cherry tomato. Food Chem. 391:133288. doi:10.1016/j.foodchem.2022.133288.
  • Xiang F, Xia Y, Wang Y, Wang Y, Wu K, Ni X. 2021. Preparation of konjac glucomannan based films reinforced with nanoparticles and its effect on cherry tomatoes preservation. Food Packag Shelf Life. 29:100701. doi:10.1016/j.fpsl.2021.100701.
  • Xu Z, Wang J, Zhen W, Sun T, Hu X. 2022. Abscisic acid alleviates harmful effect of saline–alkaline stress on tomato seedlings. Plant Physiol Biochem. 175:58–67. doi:10.1016/j.plaphy.2022.01.018.
  • Yang J, Wang P, Li S, Liu T, Hu X. 2022. Polyamine oxidase triggers H2O2-mediated spermidine improved oxidative stress tolerance of tomato seedlings subjected to saline-alkaline stress. Int J Mol Sci. 23(3):1625. doi:10.3390/ijms23031625.
  • Yin B, Zhang J, Liu Y, Pan X, Zhao Z, Li H, Zhang C, Li C, Du X, Li Y, et al. 2019. PtomtAPX, a mitochondrial ascorbate peroxidase, plays an important role in maintaining the redox balance of Populus tomentosa Carr. Sci Rep. 9(1):19541. doi:10.1038/s41598-019-56148-w.
  • Yin X, Feng Q, Liu W, Zhu M, Zhang J, Li Y, Yang L, Zhang C, Cui M, Zheng X, et al. 2023. Assessment and mechanism analysis of plant salt tolerance regulates soil moisture dynamics and controls root zone salinity and sodicity in seasonally irrigated agroecosystems. J Hydrol. 617:129138. doi:10.1016/j.jhydrol.2023.129138.
  • Zhang H-h, Xu N, Wu X, Wang J, Ma S, Li X, Sun G. 2018. Effects of four types of sodium salt stress on plant growth and photosynthetic apparatus in sorghum leaves. J Plant Interact. 13:506–513. doi:10.1080/17429145.2018.1526978.
  • Zhang J, Cao C, Wang Y, Xie L, Li W, Li B, Guo R, Yan H. 2021. Magnesium oxide/silver nanoparticles reinforced poly(butylene succinate-co-terephthalate) biofilms for food packaging applications. Food Packag Shelf Life. 30:100748. doi:10.1016/j.fpsl.2021.100748.
  • Zhang M, He S, Zhan Y, Qin B, Jin X, Wang M, Zhang Y, Hu G, Teng Z, Wu Y. 2019a. Exogenous melatonin reduces the inhibitory effect of osmotic stress on photosynthesis in soybean. PLoS One. 14(12):e0226542. doi:10.1371/journal.pone.0226542.
  • Zhang Z, He K, Zhang T, Tang D, Li R, Jia S. 2019b. Physiological responses of Goji berry (Lycium barbarum L.) to saline-alkaline soil from Qinghai region, China. Sci Rep. 9:12057. doi:10.1038/s41598-019-48514-5.
  • Zheng H, Wang J, Zhang Y, Xv Q, Zeng Q, Wang J. 2022. Preparation and characterization of carvacrol-loaded Caseinate/Zein-composite nanoparticles using the anti-solvent precipitation method. Nanomaterials. 12(13):2189. doi:10.3390/nano12132189.
  • Zulfiqar F, Ashraf M. 2023. Proline alleviates abiotic stress induced oxidative stress in plants. J Plant Growth Regul. 42:4629–4651. doi:10.1007/s00344-022-10839-3.