575
Views
151
CrossRef citations to date
0
Altmetric
Review

An overview of quinoline as a privileged scaffold in cancer drug discovery

Pages 583-597 | Received 28 Jan 2017, Accepted 11 Apr 2017, Published online: 20 Apr 2017

References

  • Hazuda DJ, Felock P, Witmer M, et al. Inhibitors of strand transfer that prevent integration and inhibit HIV-1 replication in cells. Science. 2000;287:646–650.
  • Andonie R, Fabry-Asztalos L, Abdul-Wahid CB, et al. Fuzzy ARTMAP prediction of biological activities for potential HIV-1 protease inhibitors using a small molecular data set. IEEE/ACM Trans Comput Biol Bioinform. 2011;8:80–93.
  • Goodarzi M, Freitas MP. MIA-QSAR coupled to principal component analysis-adaptive neuro-fuzzy inference systems (PCA-ANFIS) for the modeling of the anti-HIV reverse transcriptase activities of TIBO derivatives. Eur J Med Chem. 2010;45:1352–1358.
  • Ban TA. The role of serendipity in drug discovery. Dialogues Clin Neurosci. 2006;8:335–344.
  • Johnson MA, Maggiora GM. Concepts and applications of molecular similarity. New York:John Wiley & Sons; 1990.
  • Buonfiglio R, Engkvist O, Várkonyi P, et al. Investigating pharmacological similarity by charting chemical space. J Chem Inf Model. 2015;55:2375–2390.
  • Evans BE, Rittle KE, Bock MG, et al. Methods for drug discovery: development of potent, selective, orally effective cholecystokinin antagonists. J Med Chem. 1988;31:2235–2246.
  • Patchett AA, Nargund RP. Privileged structures – an update. Annu. Reports Med. Chem. Elsevier Inc. 2000;35:289–298.
  • DeSimone RW, Currie KS, Mitchell SA, et al. Privileged structures: applications in drug discovery. Comb Chem High Throughput Screen. 2004;7:473–494.
  • Bondensgaard K, Ankersen M, Thøgersen H, et al. Recognition of privileged structures by G-protein coupled receptors. J Med Chem. 2004;47:888–899.
  • Duarte CD, Barreiro EJ, Fraga CAM. Privileged structures: a useful concept for the rational design of new lead drug candidates. Mini Rev Med Chem. 2007;7:1108–1119.
  • Horton DA, Bourne GT, Smythe ML. The combinatorial synthesis of bicyclic privileged structures or privileged substructures. Chem Rev. 2003;103:893–930.
  • Costantino L, Barlocco D. Privileged structures as leads in medicinal chemistry. Curr Med Chem. 2006;13:65–85.
  • Che Y, Marshall GR. Privileged scaffolds targeting reverse-turn and helix recognition. Expert Opin Ther Targets. 2008;12:101–114.
  • Austin JF, MacMillan DWC. Enantioselective organocatalytic indole alkylations. Design of a new and highly effective chiral amine for iminium catalysis. J Am Chem Soc. 2002;124:1172–1173.
  • Hajduk PJ, Greer J. A decade of fragment-based drug design: strategic advances and lessons learned. Nat Rev Drug Discov. 2007;6:211–219. .
  • Barakat KJ, Cheng K, Chan WW, et al. Synthesis and biological activities of phenyl piperazine-based peptidomimetic growth hormone secretagogues. Bioorg Med Chem Lett. 1998;8:1431–1436.
  • Jacobson KA, Kim YC, King BF. In search of selective P2 receptor ligands: interaction of dihydropyridine derivatives at recombinant rat P2X(2) receptors. J. Auton Nerv Syst. 2000;81:152–157.
  • Nicolaou KC, Pfefferkorn JA, Roecker AJ, et al. Natural product-like combinatorial libraries based on privileged structures. 1. General principles and solid-phase synthesis of benzopyrans. JAm Chem Soc. 2000;122:9939–9953.
  • Nicolaou KC, Roecker AJ, Barluenga S, et al. Discovery of novel antibacterial agents active against methicillin-resistant Staphylococcus aureus from combinatorial benzopyran libraries. Chembiochem. 2001;2:460–465.
  • Liu Z, Chen X, Yu L, et al. Synthesis and pharmacological investigation of novel 2-aminothiazole-privileged aporphines. Bioorg Med Chem. 2008;16:6675–6681.
  • Welsch ME, Snyder SA, Stockwell BR. Privileged scaffolds for library design and drug discovery. Curr Opin Chem Biol. 2010;14:1–15.
  • Bemis GW, Murcko MA. The properties of known drugs. 1. Molecular frameworks. J Med Chem. 1996;39:2887–2893.
  • Polanski J, Kurczyk A, Bak A, et al. Privileged structures – dream or reality: preferential organization of azanaphthalene scaffold. Curr Med Chem. 2012;19:1921–1945.
  • Musiol R, Serda M, Hensel-Bielowka S, et al. Quinoline-based antifungals. Curr Med Chem. 2010;17:1960–1973.
  • Musiol R, Jampilek J, Buchta V, et al. Antifungal properties of new series of quinoline derivatives. Bioorg Med Chem. 2006;14:3592–3598.
  • Wainwright M. Quinoline and cyanine dyes – putative anti-MRSA drugs. Int J Antimicrob Agents. 2003;22:479–486.
  • Kunin CM, Ellis WY. Antimicrobial activities of mefloquine and a series of related compounds. Antimicrob Agents Chemother. 2000;44:848–852.
  • Keri RS, Patil SA. Quinoline: a promising antitubercular target. Biomed Pharmacother. 2014;68:1161–1175.
  • Musiol R. Quinoline-based HIV integrase inhibitors. Curr Pharm Des. 2013;19:1835–1849.
  • Foley M, Tilley L. Quinoline antimalarials: mechanisms of action and resistance. Int J Parasitol. 1997;27:231–240.
  • Foley M, Tilley L. Quinoline antimalarials mechanisms of action and resistance and prospects for new agents. Pharmacol Ther. 1998;79:55–87.
  • Vandekerckhove S, D’hooghe M. Quinoline-based antimalarial hybrid compounds. Bioorg Med Chem. 2015;23:5098–5119.
  • Mukherjee S, Pal M. Quinolines: a new hope against inflammation. Drug Discov Today. 2012;18:389–398.
  • Mukherjee S, Pal M. Medicinal chemistry of quinolines as emerging anti-inflammatory agents: an overview. Curr Med Chem. 2013;20:4386–4410.
  • GryzŁo B, Kulig K. Quinoline – a promising fragment in the search for new antimalarials. Mini Rev Med Chem. 2014;14:332–344.
  • Zajdel P, Partyka A, Marciniec K, et al. Quinoline- and isoquinoline-sulfonamide analogs of aripiprazole: novel antipsychotic agents? Future Med Chem. 2014;6:57–75.
  • Hussaini SMA. Therapeutic significance of quinolines: a patent review (2013–2015). Expert Opin Ther Pat. 2016;26:1–21. .
  • Solomon R, Lee H. Quinoline as a privileged scaffold in cancer drug discovery. Curr Med Chem. 2011;18:1488–1508.
  • Oliveri V, Vecchio G. 8-Hydroxyquinolines in medicinal chemistry: a structural perspective. Eur J Med Chem. 2016;120:252–274. .
  • Song Y, Xu H, Chen W, et al. 8-Hydroxyquinoline: a privileged structure with a broad-ranging pharmacological potential. Med Chem Commun. 2015;6:61–74.
  • Gershon H, Clarke D, Gershon M. Preparation and fungitoxicity of some dichloro-8-quinolinols. Monatsh Chem. 1999;130:653–659.
  • Gershon H, Clarke D, Gershon M. Evidence of steric factors in the fungitoxic mechanisms of 8-quinolinol and its 5- halogenated and 7-halogenated analogues. J Pharm Sci. 1991;80:542–544.
  • Gershon H, McNeil MW, Grefig AT. Reinvestigation of the action of N-halosuccinimides on bis(8-quinolinolato) copper(II). J Org Chem. 1969;34:3268–3270.
  • Staderini M, Aulić S, Bartolini M, et al. A fluorescent styrylquinoline with combined therapeutic and diagnostic activities against Alzheimer’s and prion diseases. ACS Med Chem Lett. 2013;4:225–229.
  • Larsen PO, Von Ins M. The rate of growth in scientific publication and the decline in coverage provided by science citation index. Scientometrics. 2010;84:575–603.
  • Jain S, Chandra V, Kumar Jain P, et al. Comprehensive review on current developments of quinoline-based anticancer agents. Arab J Chem. 2016. in press. DOI:10.1016/j.arabjc.2016.10.009
  • Afzal O, Kumar S, Haider MR, et al. A review on anticancer potential of bioactive heterocycle quinoline. Eur J Med Chem. 2015;97:871–910.
  • Gopaul K, Shintre SA, Koorbanally NA. A review on the synthesis and anti-cancer activity of 2-substituted quinolines. Anticancer Agents Med Chem. 2015;15:631–646.
  • Chan-On W, Huyen NTB, Songtawee N, et al. Quinoline-based clioquinol and nitroxoline exhibit anticancer activity inducing FoxM1 inhibition in cholangiocarcinoma cells. Drug Des Devel Ther. 2015;9:2033–2047.
  • Ding WQ, Lind SE. Metal ionophores – an emerging class of anticancer drugs. IUBMB Life. 2009;61:1013–1018.
  • Kimura T, Takabatake Y, Takahashi A, et al. Chloroquine in cancer therapy: a double-edged sword of autophagy. Cancer Res. 2013;73:3–7.
  • Pascolo S. Time to use a dose of chloroquine as an adjuvant to anti-cancer chemotherapies. Eur J Pharmacol. 2016;771:139–144.
  • Allen DR, Burli R, Haughan AF, et al. inventors; UCB Pharma S.A. assignee. Quinoline derivatives as kinase inhibitors. United States Patent US 8,653,105. 2015 Feb 18.
  • Knight SD, Schmidt SJ.inventors; GlaxoSmithKline LLC., assignee. Quinoline derivatives as PI3 kinase inhibitors. United State Patent US 8,633,187. 2014 Jan 21.
  • Levitt ML, Koty PP. Tyrosine kinase inhibitors in preclinical development. Invest New Drugs. 1999;17:213–226.
  • Boschelli DH. 4-Anilino-3-quinolinecarbonitriles: an emerging class of kinase inhibitors. Curr Top Med Chem. 2002;2:1051–1063.
  • Venditto VJ, Simanek EE. Cancer therapies utilizing the camptothecins: a review of the in vivo literature. Mol Pharm. 2010;7:307–349.
  • Mrozek-Wilczkiewicz A, Spaczynska E, Malarz K, et al. Design, synthesis and in vitro activity of anticancer styrylquinolines. The p53 independent mechanism of action. PLoS One. 2015;10:e0142678.
  • De Lchazin E, Da R Reis R, TV Junior W, et al. An overview on the development of new potentially active camptothecin analogs against cancer. Mini Rev Med Chem. 2014;14:953–962.
  • Legarza K, Yang L-X. Novel camptothecin derivatives. In Vivo. 2005;19:283–292.
  • Ulukan H, Swaan PW. Camptothecins: a review of their chemotherapeutic potential. Drugs. 2002;62:2039–2057.
  • Liu Y-Q, Li W-Q, Morris-Natschke SL, et al. Perspectives on biologically active camptothecin derivatives. Med Res Rev. 2015;35:753–789.
  • Wall ME, Wani MC, Cook CE, et al. Plant antitumor agents. I. The isolation and structure of camptothecin, a novel alkaloidal leukemia and tumor inhibitor from camptotheca acuminata. J Am Chem Soc. 1966;88:3888–3890.
  • Hsiang YH, Liu LF. Identification of mammalian DNA topoisomerase I as an intracellular target of the anticancer drug camptothecin. Cancer Res. 1988;48:1722–1726.
  • Hsiang YH, Hertzberg R, Hecht S, et al. Camptothecin induces protein-linked DNA breaks via mammalian DNA topoisomerase I. J Biol Chem. 1985;260:14873–14878.
  • Basili S, Moro S. Novel camptothecin derivatives as topoisomerase I inhibitors. Expert Opin Ther Pat. 2009;19:555–574.
  • Legarza K, Yang L-X. New molecular mechanisms of action of camptothecin-type drugs. Anticancer Res. 2006;26:3301–3305.
  • Robati M, Holtz D, Dunton CJ. A review of topotecan in combination chemotherapy for advanced cervical cancer. Ther Clin Risk Manag. 2008;4:213–218.
  • Long HJ, Bundy BN, Grendys EC, et al. Randomized phase III trial of cisplatin with or without topotecan in carcinoma of the uterine cervix: a Gynecologic Oncology Group study. J Clin Oncol. 2005;23:4626–4633.
  • Bowman A, Rye T, Ross G, et al. Effective dosing of topotecan with carboplatin in relapsed ovarian cancer: a phase I/II study. J Clin Oncol. 2001;19:3255–3259.
  • Hoskins P, Vergote I, Cervantes A, et al. Advanced ovarian cancer: phase III randomized study of sequential cisplatin-topotecan and carboplatin-paclitaxel vs carboplatin-paclitaxel. J Natl Cancer Inst. 2010;102:1547–1556.
  • Goto K, Ohe Y, Shibata T, et al. Combined chemotherapy with cisplatin, etoposide, and irinotecan versus topotecan alone as second-line treatment for patients with sensitive relapsed small-cell lung cancer (JCOG0605): a multicentre, open-label, randomised phase 3 trial. Lancet Oncol. 2016;17:1147–1157.
  • Francis JH, Gobin YP, Dunkel IJ, et al. Carboplatin ± topotecan ophthalmic artery chemosurgery for intraocular retinoblastoma. PLoS One. 2013;8:e72441.
  • Bochennek K, Dantonello T, Koscielniak E, et al. Response of children with stage IV soft tissue sarcoma to topotecan and carboplatin: a phase II window trial of the cooperative soft tissue sarcoma group. Klin Padiatr. 2013;225:309–314.
  • Rivory LP, Haaz MC, Canal P, et al. Pharmacokinetic interrelationships of irinotecan (CPT-11) and its three major plasma metabolites in patients enrolled in phase I/II trials. Clin Cancer Res. 1997;3:1261–1266.
  • Berg AK, Buckner JC, Galanis E, et al. Quantification of the impact of enzyme-inducing antiepileptic drugs on irinotecan pharmacokinetics and SN-38 exposure. J Clin Pharmacol. 2015;55:1303–1312.
  • Kim Y-M, Lee SW, Kim D-Y, et al. The efficacy and toxicity of belotecan (CKD-602), a camptothericin analogue topoisomerase I inhibitor, in patients with recurrent or refractory epithelial ovarian cancer. J Chemother. 2010;22:197–200.
  • Kipps E, Young K, Starling N. Liposomal irinotecan in gemcitabine-refractory metastatic pancreatic cancer: efficacy, safety and place in therapy. Ther Adv Med Oncol. 2017;9:159–170.
  • Davis ME. Design and development of IT-101, a cyclodextrin-containing polymer conjugate of camptothecin. Adv Drug Deliv Rev. 2009;61:1189–1192.
  • Kraut EH, Fishman MN, Lorusso PM, et al. Pharmacogenomic and pharmacokinetic assessment of liposome encapsulated SN-38 (LE-SN38) in advanced cancer patients. J Clin Oncol. 2004;22:2501.
  • Schluep T, Hwang J, Cheng J, et al. Preclinical efficacy of the camptothecin-polymer conjugate IT-101 in multiple cancer models. Clin Cancer Res. 2006;12:1606–1614.
  • Young C, Schluep T, Hwang J, et al. CRLX101 (formerly IT-101) – a novel nanopharmaceutical of camptothecin in clinical development. Curr Bioact Compd. 2011;7:8–14.
  • Yurkovetskiy AV, Fram RJ. XMT-1001, a novel polymeric camptothecin pro-drug in clinical development for patients with advanced cancer. Adv Drug Deliv Rev. 2009;61:1193–1202.
  • Walsh MD, Hanna SK, Sen J, et al. Pharmacokinetics and antitumor efficacy of XMT-1001, a novel, polymeric topoisomerase I inhibitor, in mice bearing HT-29 human colon carcinoma xenografts. Clin Cancer Res. 2012;18:2591–2602.
  • Takiguchi S, Kumazawa E, Shimazoe T, et al. Antitumor effect of DX-8951, a novel camptothecin analog, on human pancreatic tumor cells and their CPT-11-resistant variants cultured in vitro and xenografted into nude mice. Jpn J Cancer Res. 1997;88:760–769.
  • Sun F-X, Tohgo A, Bouvet M, et al. Efficacy of camptothecin analog DX-8951f (Exatecan Mesylate) on human pancreatic cancer in an orthotopic metastatic model. Cancer Res. 2003;63:80–85.
  • Abou-Alfa GK, Letourneau R, Harker G, et al. Randomized phase III study of exatecan and gemcitabine compared with gemcitabine alone in untreated advanced pancreatic cancer. J Clin Oncol. 2006;24:4441–4447.
  • Wente MN, Kleeff J, Büchler MW, et al. DE-310, a macromolecular prodrug of the topoisomerase-I-inhibitor exatecan (DX-8951), in patients with operable solid tumors. Invest. New Drugs. 2005;23:339–347.
  • Soepenberg O, De Jonge MJA, Sparreboom A, et al. Phase I and pharmacokinetic study of DE-310 in patients with advanced solid tumors. Clin Cancer Res. 2005;11:703–711.
  • Pommier Y, Leo E, Zhang H, et al. DNA topoisomerases and their poisoning by anticancer and antibacterial drugs. Chem Biol. 2010;17:421–433.
  • Vokes EE, Ansari RH, Masters GA, et al. A phase II study of 9-aminocamptothecin in advanced non-small-cell lung cancer. Ann Oncol. 1998;9:1085–1090.
  • Marier J-F, Pheng L, Trinh MM, et al. Pharmacokinetics of SN2310, an injectable emulsion that incorporates a new derivative of SN-38 in patients with advanced solid tumors. J Pharm Sci. 2011;100:4536–4545.
  • Hu J, Wen PY, Abrey LE, et al. A phase II trial of oral gimatecan for recurrent glioblastoma. J Neurooncol. 2013;111:347–353.
  • Seiden MV, Muggia F, Astrow A, et al. A phase II study of liposomal lurtotecan (OSI-211) in patients with topotecan resistant ovarian cancer. Gynecol Oncol. 2004;93:229–232.
  • Arnold SM, Rinehart JJ, Tsakalozou E, et al. A phase I study of 7-t-butyldimethylsilyl-10-hydroxycamptothecin in adult patients with refractory or metastatic solid malignancies. Clin Cancer Res. 2010;16:673–680.
  • Munster PN, Daud AI. Preclinical and clinical activity of the topoisomerase I inhibitor, karenitecin, in melanoma. Expert Opin Investig. Drugs. 2011;20:1565–1574.
  • Chen AY, Shih S-J, Garriques LN, et al. Silatecan DB-67 is a novel DNA topoisomerase I-targeted radiation sensitizer. Mol Cancer Ther. 2005;4:317–324.
  • Zamboni WC, Jung LL, Strychor S, et al. Plasma and tissue disposition of non-liposomal DB-67 and liposomal DB-67 in C.B-17 SCID mice. Invest New Drugs. 2008;26:399–406.
  • Daud AI, Dawson J, DeConti RC, et al. Potentiation of a topoisomerase I inhibitor, karenitecin, by the histone deacetylase inhibitor valproic acid in melanoma: translational and phase I/II clinical trial. Clin Cancer Res. 2009;15:2479–2487.
  • Daud A, Valkov N, Centeno B, et al. Phase II trial of karenitecin in patients with malignant melanoma: clinical and translational study. Clin Cancer Res. 2005;11:3009–3016.
  • Miller AA, Herndon JE, Gu L, et al. Phase II trial of karenitecin in patients with relapsed or refractory non-small cell lung cancer (CALGB 30004). Lung Cancer. 2005;48:399–407.
  • Kavanagh JJ, Sill MW, Ramirez PT, et al. Phase II multicenter open-label study of karenitecin in previously treated epithelial ovarian and primary peritoneal cancer: a Gynecologic Oncology Group Study. Int J Gynecol Cancer. 2008;18:460–464.
  • Meco D, Di Francesco AM, Cusano G, et al. Preclinical evaluation of the novel 7-substituted camptothecin Namitecan (ST1968) in paediatric tumour models. Cancer Chemother Pharmacol. 2012;70:811–822.
  • Pisano C, De Cesare M, Beretta GL, et al. Preclinical profile of antitumor activity of a novel hydrophilic camptothecin, ST1968. Mol Cancer Ther. 2008;7:2051–2059.
  • Beretta GL, Zuco V, De Cesare M, et al. Namitecan: a hydrophilic camptothecin with a promising preclinical profile. Curr Med Chem. 2012;19:3488–3501.
  • Gongora C, Vezzio-Vie N, Tuduri S, et al. New topoisomerase I mutations are associated with resistance to camptothecin. Mol Cancer. 2011;10:64.
  • Joerger M, Hess D, Delmonte A, et al. Phase-I dose finding and pharmacokinetic study of the novel hydrophilic camptothecin ST-1968 (namitecan) in patients with solid tumors. Invest New Drugs. 2015;33:472–479.
  • Joerger M, Hess D, Delmonte A, et al. Integrative population pharmacokinetic and pharmacodynamic dose finding approach of the new camptothecin compound namitecan (ST1968). Br J Clin Pharmacol. 2015;80:128–138.
  • Huang Q, Wang L, Lu W. Evolution in medicinal chemistry of E-ring-modified camptothecin analogs as anticancer agents. Eur J Med Chem. 2013;63:746–757.
  • Ghamande S, Lin -C-C, Cho DC, et al. A phase 1 open-label, sequential dose-escalation study investigating the safety, tolerability, and pharmacokinetics of intravenous TLC388 administered to patients with advanced solid tumors. Invest New Drugs. 2014;32:445–451.
  • Choy H, MacRae R. Irinotecan and radiation in combined-modality therapy for solid tumors. Oncology. 2001;15:22–28.
  • Huang GE, Wang H, Yang LX. Enhancement of radiation-induced DNA damage and inhibition of its repair by a novel camptothecin analog. Anticancer Res. 2010;30:937–944.
  • Huang M, Gao H, Chen Y, et al. Chimmitecan, a novel 9-substituted camptothecin, with improved anticancer pharmacologic profiles in vitro and in vivo. Clin Cancer Res. 2007;13:1298–1307.
  • Hu Z, Li X, Du F, et al. Pharmacokinetic evaluation of the anticancer prodrug simmitecan in different experimental animals. Acta Pharmacol Sin. 2013;34:1437–1448.
  • Lesueur-Ginot L, Demarquay D, Kiss R, et al. Homocamptothecin, an E-ring modified camptothecin with enhanced lactone stability, retains topoisomerase I-targeted activity and antitumor properties. Cancer Res. 1999;59:2939–2943.
  • Lavergne O, Lesueur-Ginot L, Pla Rodas F, et al. Homocamptothecins: synthesis and antitumor activity of novel E-ring-modified camptothecin analogues. J Med Chem. 1998;41:5410–5419.
  • Philippart P, Harper L, Chaboteaux C, et al. Homocamptothecin, an E-ring-modified camptothecin, exerts more potent antiproliferative activity than other topoisomerase I inhibitors in human colon cancers obtained from surgery and maintained in vitro under histotypical culture conditions. Clin Cancer Res. 2000;6:1557–1562.
  • Kroep JR, Gelderblom H. Diflomotecan, a promising homocamptothecin for cancer therapy. Expert Opin Investig Drugs. 2009;18:69–75.
  • Gelderblom H, Salazar R, Verweij J, et al. Phase I pharmacological and bioavailability study of oral diflomotecan (BN80915), a novel E-ring-modified camptothecin analogue in adults with solid tumors. Clin Cancer Res. 2003;9:4101–4107.
  • Scott L, Soepenberg O, Verweij J, et al. A multicentre phase I and pharmacokinetic study of BN80915 (diflomotecan) administered daily as a 20-min intravenous infusion for 5 days every 3 weeks to patients with advanced solid tumours. Ann Oncol. 2007;18:569–575.
  • Demarquay D, Huchet M, Coulomb H, et al. BN80927: a novel homocamptothecin that inhibits proliferation of human tumor cells in vitro and in vivo. Cancer Res. 2004;64:4942–4949.
  • Lavergne O, Harnett J, Rolland A, et al. BN 80927: a novel homocamptothecin with inhibitory activities on both topoisomerase I and topoisomerase II. Bioorg Med Chem Lett. 1999;9:2599–2602.
  • Huchet M, Demarquay D, Coulomb H, et al. The dual topoisomerase inhibitor, BN 80927, is highly potent against cell proliferation and tumor growth. Ann N Y Acad Sci. 2000;922:303–305.
  • Denny WA, Baguley BC. Dual topoisomerase I/II inhibitors in cancer therapy. Curr Top Med Chem. 2003;3:339–353.
  • Ketron AC, Denny WA, Graves DE, et al. Amsacrine as a topoisomerase II poison: importance of drug-DNA interactions. Biochemistry. 2012;51:1730–1739.
  • Houghton PJ, Lock R, Carol H, et al. Testing of the topoisomerase 1 inhibitor Genz-644282 by the pediatric preclinical testing program. Pediatr Blood Cancer. 2012;58:200–209.
  • Kurtzberg LS, Roth S, Krumbholz R, et al. Genz-644282, a novel non-camptothecin topoisomerase I inhibitor for cancer treatment. Clin Cancer Res. 2011;17:2777–2787.
  • Sooryakumar D, Dexheimer TS, Teicher BA, et al. Molecular and cellular pharmacology of the novel noncamptothecin topoisomerase I inhibitor Genz-644282. Mol Cancer Ther. 2011;10:1490–1499.
  • Ruiz-Morales JM, Heng DYC. Cabozantinib in the treatment of advanced renal cell carcinoma: clinical trial evidence and experience. Ther Adv Urol. 2016;8:338–347.
  • Krajewska J, Olczyk T, Jarzab B. Cabozantinib for the treatment of progressive metastatic medullary thyroid cancer. Expert Rev Clin Pharmacol. 2016;9:69–79.
  • Bowles DW, Kessler ER, Jimeno A. Multi-targeted tyrosine kinase inhibitors in clinical development: focus on XL-184 (cabozantinib). Drugs Today (Barc). 2011;47:857–868.
  • Grüllich C. Cabozantinib: a MET, RET, and VEGFR2 tyrosine kinase inhibitor. Recent Results Cancer Res. 2014;201:207–214.
  • Fay AP, Albiges L, Bellmunt J. Current role of cabozantinib in metastatic castration-resistant prostate cancer. Expert Rev Anticancer Ther. 2015;15:151–156.
  • Song M, Kim S-H, Yoon SK. Cabozantinib for the treatment of non-small cell lung cancer with KIF5B-RET fusion. An example of swift repositioning. Arch Pharm Res. 2015;38:2120–2123.
  • Roy S, Narang BK, Rastogi SK, et al. A novel multiple tyrosine-kinase targeted agent to explore the future perspectives of anti-angiogenic therapy for the treatment of multiple solid tumors: cabozantinib. Anticancer Agents Med Chem. 2015;15:37–47.
  • Stansfield L, Hughes TE, Walsh-Chocolaad TL. Bosutinib: a second-generation tyrosine kinase inhibitor for chronic myelogenous leukemia. Ann Pharmacother. 2013;47:1703–1711.
  • Boschelli F, Arndt K, Gambacorti-Passerini C. Bosutinib: a review of preclinical studies in chronic myelogenous leukaemia. Eur J Cancer. 2010;46:1781–1789.
  • Naka K, Hoshii T, Tadokoro Y, et al. Molecular pathology of tumor-initiating cells: lessons from Philadelphia chromosome-positive leukemia. Pathol Int. 2011;61:501–508.
  • Fielding AK, Zakout GA. Treatment of Philadelphia chromosome-positive acute lymphoblastic leukemia. Curr Hematol Malig Rep. 2013;8:98–108.
  • Syed YY, McCormack PL, Plosker GL. Bosutinib: a review of its use in patients with Philadelphia chromosome-positive chronic myelogenous leukemia. BioDrugs. 2014;28:107–120.
  • Manley PW, Cowan-Jacob SW, Mestan J. Advances in the structural biology, design and clinical development of Bcr-Abl kinase inhibitors for the treatment of chronic myeloid leukaemia. Biochim Biophys Acta. 2005;1754:3–13.
  • Oikonomopoulos G, Aravind P, Sarker D. Lenvatinib: a potential breakthrough in advanced hepatocellular carcinoma? Future Oncol. 2016;12:465–476.
  • Hewett Y, Ghimire S, Farooqi B, et al. Lenvatinib – a multikinase inhibitor for radioiodine-refractory differentiated thyroid cancer. J Oncol Pharm Pract. 2016. DOI:10.1177/1078155216680119.
  • Cabanillas ME, Habra MA. Lenvatinib: role in thyroid cancer and other solid tumors. Cancer Treat Rev. 2016;42:47–55.
  • Bose P, Ozer H. Neratinib: an oral, irreversible dual EGFR/HER2 inhibitor for breast and non-small cell lung cancer. Expert Opin Investig Drugs. 2009;18:1735–1751.
  • Subramaniam D, He AR, Hwang J, et al. Irreversible multitargeted ErbB family inhibitors for therapy of lung and breast cancer. Curr Cancer Drug Targets. 2015;14:775–793.
  • Kong A, Feldinger K. Profile of neratinib and its potential in the treatment of breast cancer. Breast Cancer Targets Ther. 2015;7:147.
  • Wong -K-K. HKI-272 in non small cell lung cancer. Clin Cancer Res. 2007;13:s4593–6.
  • Kim H, Lim HY. Novel EGFR-TK Inhibitor EKB-569 Inhibits hepatocellular carcinoma cell proliferation by AKT and MAPK pathways. J Korean Med Sci. 2011;26:1563–1568.
  • Kwak EL, Sordella R, Bell DW, et al. Irreversible inhibitors of the EGF receptor may circumvent acquired resistance to gefitinib. Proc Natl Acad Sci USA. 2005;102:7665–7670.
  • Erlichman C, Hidalgo M, Boni JP, et al. Phase I study of EKB-569, an irreversible inhibitor of the epidermal growth factor receptor, in patients with advanced solid tumors. J Clin Oncol. 2006;24:2252–2260.
  • Baselga J. Is there a role for the irreversible epidermal growth factor receptor inhibitor EKB-569 in the treatment of cancer? A mutation-driven question. J Clin Oncol. 2006;24:2225–2226.
  • De Luca A, Normanno N. Tivozanib, a pan-VEGFR tyrosine kinase inhibitor for the potential treatment of solid tumors. IDrugs. 2010;13:636–645.
  • Yang D, Kathawala RJ, Chufan EE, et al. Tivozanib reverses multidrug resistance mediated by ABCB1 (P-glycoprotein) and ABCG2 (BCRP). Future Oncol. 2014;10:1827–1841.
  • Motzer RJ, Nosov D, Eisen T, et al. Tivozanib versus sorafenib as initial targeted therapy for patients with metastatic renal cell carcinoma: results from a phase III trial. J Clin Oncol. 2013;31:3791–3799.
  • Jamil MO, Hathaway A, Mehta A. Tivozanib: status of development. Curr Oncol Rep. 2015;17:24.
  • Lance Cowey C. Profile of tivozanib and its potential for the treatment of advanced renal cell carcinoma. Drug Des Devel Ther. 2013;7:519–527.
  • Liu P, Cheng H, Roberts TM, et al. Targeting the phosphoinositide 3-kinase (PI3K) pathway in cancer. Nat Rev Drug Discov. 2009;8:627–644.
  • Lim HJ, Crowe P, Yang J-L. Current clinical regulation of PI3K/PTEN/Akt/mTOR signalling in treatment of human cancer. J Cancer Res Clin Oncol. 2015;141:671–689.
  • Brown KK, Toker A. The phosphoinositide 3-kinase pathway and therapy resistance in cancer. F1000Prime Rep. 2015;7:13–21.
  • Cantley LC, Neel BG. New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway. Proc Natl Acad Sci USA. 1999;96:4240–4245.
  • Chen Z, Trotman LC, Shaffer D, et al. Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature. 2005;436:725–730.
  • Brown JR, Auger KR. Phylogenomics of phosphoinositide lipid kinases: perspectives on the evolution of second messenger signaling and drug discovery. BMC Evol Biol. 2011;11:4–18.
  • Sabbah DA, Brattain MG, Zhong H. Dual inhibitors of PI3K/mTOR or mTOR-selective inhibitors: which way shall we go? Curr Med Chem. 2011;18:5528–5544.
  • Wang K, Yang H, Jiang W, et al. Puquitinib mesylate (XC-302) induces autophagy via inhibiting the PI3K/AKT/mTOR signaling pathway in nasopharyngeal cancer cells. Int J Mol Med. 2015;36:1556–1562.
  • Yang H, Wang Y, Zhan J, et al. Puquitinib mesylate, an inhibitor of phosphatidylinositol 3-kinase p110δ, for treating relapsed or refractory non-Hodgkin’s lymphoma. Oncotarget. 2015;6:44049–44056.
  • Xie C, Xu Y, Lou L. Abstract 4245: Preclinical study of puquitinib, a novel orally available PI3K inhibitor in phase I clinical trials. Cancer Res. 2011;71:4245–4245.
  • Jalota-Badhwar A, Bhatia DR, Boreddy S, et al. P7170: a novel molecule with unique profile of mTORC1/C2 and activin receptor-like kinase 1 inhibition leading to antitumor and antiangiogenic activity. Mol Cancer Ther. 2015;14:1095–1106.
  • Venkatesha VA, Joshi A, Venkataraman M, et al. P7170, a novel inhibitor of mTORC1/mTORC2 and Activin receptor-like Kinase 1 (ALK1) inhibits the growth of non small cell lung cancer. Mol Cancer. 2014;13:259–270.
  • Smith MC, Mader MM, Cook JA, et al. Characterization of LY3023414, a novel PI3K/Mtor dual inhibitor eliciting transient target modulation to impede tumor growth. Mol Cancer Ther. 2016;15:2344–2356.
  • Maira S-M, Stauffer F, Brueggen J, et al. Identification and characterization of NVP-BEZ235, a new orally available dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor with potent in vivo antitumor activity. Mol Cancer Ther. 2008;7:1851–1863.
  • Mukherjee B, Tomimatsu N, Amancherla K, et al. The dual PI3K/mTOR inhibitor NVP-BEZ235 is a potent inhibitor of ATM- and DNA-PKCs-mediated DNA damage responses. Neoplasia. 2012;14:34–43.
  • Bendell JC, Kurkjian C, Infante JR, et al. A phase 1 study of the sachet formulation of the oral dual PI3K/mTOR inhibitor BEZ235 given twice daily (BID) in patients with advanced solid tumors. Invest New Drugs. 2015;33:463–471.
  • Fazio N, Buzzoni R, Baudin E, et al. A phase II study of BEZ235 in patients with everolimus-resistant, advanced pancreatic neuroendocrine tumours. Anticancer Res. 2016;36:713–719.
  • Munster P, Aggarwal R, Hong D, et al. First-in-human phase i study of gsk2126458, an oral pan-class i phosphatidylinositol-3-kinase inhibitor, in patients with advanced solid tumor malignancies. Clin Cancer Res. 2016;22:1932–1939.
  • Herko A, Mavis C, Czuczman MS, et al. AMG 319, a novel inhibitor of phosphoinositide-3 kinase delta (pi3kd), demonstrates activity in lymphoma pre-clinical models. Blood. 2015;120(3718):LP–3718.
  • Maly J, Blachly JS. Chronic lymphocytic leukemia: exploiting vulnerabilities with targeted agents. Curr Hematol Malig Rep. 2016;11:52–60.
  • Herman SEM, Lapalombella R, Gordon AL, et al. The role of phosphatidylinositol 3-kinase-δ in the immunomodulatory effects of lenalidomide in chronic lymphocytic leukemia. Blood. 2011;117:4323–4327.
  • Glenn M, Mato AR, Allgood SD, et al. First-in-human study of AMG 319, a highly selective, small molecule inhibitor of pi3kδ, in adult patients with relapsed or refractory lymphoid malignancies. Lanasa MC, editor. Blood. 2013;122(678):LP–678.
  • Chon HJ, Bae KJ, Lee Y, et al. The casein kinase 2 inhibitor, CX-4945, as an anti-cancer drug in treatment of human hematological malignancies. Front Pharmacol. 2015;6:70–76.
  • Sarno S, Papinutto E, Franchin C, et al. ATP site-directed inhibitors of protein kinase CK2: an update. Curr Top Med Chem. 2011;11:1340–1351.
  • Piazza FA, Ruzzene M, Gurrieri C, et al. Multiple myeloma cell survival relies on high activity of protein kinase CK2. Blood. 2006;108:1698–1707.
  • Ho C, Rice R, Drygin D, et al. CX-4945, a selective and orally bioavailable inhibitor of protein kinase CK2 inhibits PI3K/Akt, JAK-STAT and NF-κB signaling and induces apoptosis in multiple myeloma cells. Blood. 2015;116(787):LP–787.
  • Pierre F, Chua PC, O’Brien SE, et al. Pre-clinical characterization of CX-4945, a potent and selective small molecule inhibitor of CK2 for the treatment of cancer. Mol Cell Biochem. 2011;356:37–43.
  • Dufies M, Jacquel A, Robert G, et al. Mechanism of action of the multikinase inhibitor Foretinib. Cell Cycle. 2011;10:4138–4148.
  • Choueiri TK, Vaishampayan U, Rosenberg JE, et al. Phase II and biomarker study of the dual MET/VEGFR2 inhibitor foretinib in patients with papillary renal cell carcinoma. J Clin Oncol. 2013;31:181–186.
  • Seiwert T, Sarantopoulos J, Kallender H, et al. Phase II trial of single-agent foretinib (GSK1363089) in patients with recurrent or metastatic squamous cell carcinoma of the head and neck. Invest New Drugs. 2013;31:417–424.
  • Zou HY, Li Q, Lee JH, et al. Sensitivity of selected human tumor models to PF-04217903, a novel selective c-Met kinase inhibitor. Mol Cancer Ther. 2012;11:1036–1047.
  • Organ SL, Tsao M-S. An overview of the c-MET signaling pathway. Ther Adv Med Oncol. 2011;3:S7–S19.
  • Posadas EM, Figlin RA. Understanding the role of MET kinase in cancer therapy. J Clin Oncol. 2013;31:169–170.
  • Ha SY, Lee J, Jang J, et al. HER2-positive gastric cancer with concomitant MET and/or EGFR overexpression: a distinct subset of patients for dual inhibition therapy. Int J Cancer. 2015;136:1629–1635.
  • Bongarzone S, Bolognesi ML. The concept of privileged structures in rational drug design: focus on acridine and quinoline scaffolds in neurodegenerative and protozoan diseases. Expert Opin Drug Discov. 2011;6:251–268.
  • Levinson NM, Boxer SG. Structural and spectroscopic analysis of the kinase inhibitor bosutinib and an isomer of bosutinib binding to the Abl tyrosine kinase domain. PLoS One. 2012;7:e29828.
  • Stierand K, Rarey M. Drawing the PDB: protein−ligand complexes in two dimensions. ACS Med Chem Lett. 2010;1:540–545.
  • Yun C-H, Mengwasser KE, Toms AV, et al. The T790M mutation in EGFR kinase causes drug resistance by increasing the affinity for ATP. Proc Natl Acad Sci USA. 2008;105:2070–2075.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.