285
Views
1
CrossRef citations to date
0
Altmetric
Review

Combating mutations in genetic disease and drug resistance: understanding molecular mechanisms to guide drug design

, , &
Pages 553-563 | Received 27 Jan 2017, Accepted 20 Apr 2017, Published online: 11 May 2017

References

  • Kumar P, Henikoff S, Ng PC. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc. 2009;4(7):1073–1081.
  • Adzhubei IA, Schmidt S, Peshkin L, et al. A method and server for predicting damaging missense mutations. Nat Methods. 2010 Apr;7(4):248–249.
  • Kircher M, Witten DM, Jain P, et al. A general framework for estimating the relative pathogenicity of human genetic variants. Nat Genet. 2014 Mar;46(3):310–315.
  • Schwarz JM, Rodelsperger C, Schuelke M, et al. MutationTaster evaluates disease-causing potential of sequence alterations. Nat Methods. 2010 Aug;7(8):575–576.
  • Rethink the links between genes and disease. Nature. 2016 Oct 13;538(7624):140.
  • Topham CM, Srinivasan N, Blundell TL. Prediction of the stability of protein mutants based on structural environment-dependent amino acid substitution and propensity tables. Protein Eng. 1997 Jan;10(1):7–21.
  • Pires DE, De Melo-Minardi RC, Dos Santos MA, et al. Cutoff scanning matrix (CSM): structural classification and function prediction by protein inter-residue distance patterns. BMC Genomics. 2011 Dec 22;12(Suppl 4):S12.
  • Pires DE, De Melo-Minardi RC, Da Silveira CH, et al. aCSM: noise-free graph-based signatures to large-scale receptor-based ligand prediction. Bioinformatics. 2013 Apr 01;29(7):855–861.
  • Pires DE, Ascher DB. mCSM-AB: a web server for predicting antibody-antigen affinity changes upon mutation with graph-based signatures. Nucleic Acids Res. 2016 Jul 08; 44(W1):W469–73.
  • Pires DE, Ascher DB. CSM-lig: a web server for assessing and comparing protein-small molecule affinities. Nucleic Acids Res. 2016 Jul 08;44(W1):W557–61.
  • Pires DE, Ascher DB. mCSM-NA: predicting the effects of mutations on protein-nucleic acids interactions. Nucleic Acids Res. DOI: 10.1093/nar/gkx236.
  • Pires DE, Ascher DB, Blundell TL. DUET: a server for predicting effects of mutations on protein stability using an integrated computational approach. Nucleic Acids Res. 2014 Jul;42(Web Server issue):W314–9.
  • Pires DE, Ascher DB, Blundell TL. mCSM: predicting the effects of mutations in proteins using graph-based signatures. Bioinformatics. 2014 Feb 01; 30(3):335–342.
  • Pires DE, Blundell TL, Ascher DB. mCSM-lig: quantifying the effects of mutations on protein-small molecule affinity in genetic disease and emergence of drug resistance. Sci Rep. 2016 Jul 07;6:29575.
  • Andrews KA, Vialard L, Ascher DB, et al. Tumour risks and genotype–phenotype–proteotype analysis of patients with germline mutations in the succinate dehydrogenase subunit genes SDHB, SDHC, and SDHD. Lancet. 2016 Feb 25;387:S19.
  • Gossage L, Pires DE, Olivera-Nappa A, et al. An integrated computational approach can classify VHL missense mutations according to risk of clear cell renal carcinoma. Hum Mol Genet. 2014 Nov 15;23(22):5976–5988.
  • Nemethova M, Radvanszky J, Kadasi L, et al. Twelve novel HGD gene variants identified in 99 alkaptonuria patients: focus on ‘black bone disease’ in Italy. Eur J Hum Genet. 2016 Jan;24(1):66–72.
  • Usher JL, Ascher DB, Pires DE, et al. Analysis of HGD gene mutations in patients with alkaptonuria from the United Kingdom: identification of novel mutations. JIMD Rep. 2015 Feb;15(24):3–11.
  • Kano FS, Souza-Silva FA, Torres LM, et al. The presence, persistence and functional properties of plasmodium vivax duffy binding protein II antibodies are Influenced by HLA class II allelic variants. Plos Negl Trop Dis. 2016 Dec;10(12):e0005177.
  • Silvino AC, Costa GL, Araujo FC, et al. Variation in human cytochrome P-450 drug-metabolism genes: a gateway to the understanding of plasmodium vivax relapses. Plos One. 2016;11(7):e0160172.
  • White RR, Ponsford AH, Weekes MP, et al. Ubiquitin-dependent modification of skeletal muscle by the parasitic nematode, trichinella spiralis. Plos Pathog. 2016 Nov;12(11):e1005977.
  • Pires DE, Chen J, Blundell TL, et al. In silico functional dissection of saturation mutagenesis: interpreting the relationship between phenotypes and changes in protein stability, interactions and activity. Sci Rep. 2016 Jan 22;6:19848.
  • Worth CL, Preissner R, Blundell TL. SDM–a server for predicting effects of mutations on protein stability and malfunction. Nucleic Acids Res. 2011 Jul;39(Web Server issue):W215–22.
  • Pandurangan AP, Ochoa-Montaño B, Ascher DB, et al. SDM: a server for predicting effects of mutations on protein stability and malfunction. Nucleic Acids Res. Fourth coming.
  • Dehouck Y, Kwasigroch JM, Gilis D, et al. PoPMuSiC 2.1: a web server for the estimation of protein stability changes upon mutation and sequence optimality. BMC Bioinformatics. 2011 May 13;12:151.
  • Frappier V, Chartier M, Najmanovich RJ. ENCoM server: exploring protein conformational space and the effect of mutations on protein function and stability. Nucleic Acids Res. 2015 Jul 01;43(W1):W395–400.
  • Laimer J, Hiebl-Flach J, Lengauer D, et al. MAESTROweb: a web server for structure-based protein stability prediction. Bioinformatics. 2016 May 01;32(9):1414–1416.
  • Quan L, Lv Q, Zhang Y. STRUM: structure-based prediction of protein stability changes upon single-point mutation. Bioinformatics. 2016 Oct 01;32(19):2936–2946.
  • Witvliet DK, Strokach A, Giraldo-Forero AF, et al. ELASPIC web-server: proteome-wide structure-based prediction of mutation effects on protein stability and binding affinity. Bioinformatics. 2016 May 15;32(10):1589–1591.
  • Dehouck Y, Kwasigroch JM, Rooman M, et al. BeAtMuSiC: prediction of changes in protein-protein binding affinity on mutations. Nucleic Acids Res. 2013 Jul;41(Web Server issue):W333–9.
  • Li M, Simonetti FL, Goncearenco A, et al. MutaBind estimates and interprets the effects of sequence variants on protein-protein interactions. Nucleic Acids Res. 2016 Jul 08;44(W1):W494–501.
  • Jafri M, Wake NC, Ascher DB, et al. Germline mutations in the CDKN2B tumor suppressor gene predispose to renal cell carcinoma. Cancer Discov. 2015 Jul;5(7):723–729.
  • Casey RT, Ascher DB, Rattenberry E, et al. SDHA related tumorigenesis: a new case series and literature review for variant interpretation and pathogenicity. Mol Genet Genomic Med. DOI: 10.1002/mgg3.279.
  • Paez JG, Janne PA, Lee JC, et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science. 2004 Jun 04;304(5676):1497–1500.
  • Lievre A, Bachet JB, Le Corre D, et al. KRAS mutation status is predictive of response to cetuximab therapy in colorectal cancer. Cancer Res. 2006 Apr 15;66(8):3992–3995.
  • Jubb HC, Pandurangan AP, Turner MA, et al. Mutations at protein-protein interfaces: small changes over big surfaces have large impacts on human health. Prog Biophys Mol Biol. DOI: 10.1016/j.pbiomolbio.2016.10.002.
  • Zatkova A, Sedlackova T, Radvansky J, et al. Identification of 11 novel homogentisate 1,2 dioxygenase variants in alkaptonuria patients and establishment of a novel LOVD-based HGD mutation database. JIMD Rep. 2012;4:55–65.
  • Poduri A, Sheidley BR, Shostak S, et al. Genetic testing in the epilepsies-developments and dilemmas. Nat Rev Neurol. 2014 May;10(5):293–299.
  • Soardi FC, Machado-Silva A, Linhares ND, et al. Familial STAG2 germline mutation defines a new human cohesinopathy. Npj Genomic Medicine. 2017;2(1):7.
  • Phelan J, Coll F, McNerney R, et al. Mycobacterium tuberculosis whole genome sequencing and protein structure modelling provides insights into anti-tuberculosis drug resistance. BMC Med. 2016 Mar 23;14(1):31.
  • Ascher DB, Jubb HC, Pires DE, et al. Protein-protein interactions: structures and druggability. In: Scapin G, Patel D, Arnold E eds. Multifaceted roles of crystallography in modern drug discovery. Netherlands: Springer; 2015. p. 141–163.
  • Pandurangan AP, Ascher DB, Thomas SE, et al. Genomes, structural biology, and drug discovery: combating the impacts of mutations in genetic disease and antibiotic resistance. Biochem Soc Trans. 2017;45(2):303–311. DOI: 10.1042/BST20160422
  • Park JH, Sayer JM, Aniana A, et al. Binding of clinical inhibitors to a model precursor of a rationally selected multidrug resistant HIV-1 protease is significantly weaker than that to the released mature enzyme. Biochemistry. 2016 Apr 26;55(16):2390–2400.
  • Zhang H, Wang YF, Shen CH, et al. Novel P2 tris-tetrahydrofuran group in antiviral compound 1 (GRL-0519) fills the S2 binding pocket of selected mutants of HIV-1 protease. J Med Chem. 2013 Feb 14;56(3):1074–1083.
  • Koh Y, Amano M, Towata T, et al. In vitro selection of highly darunavir-resistant and replication-competent HIV-1 variants by using a mixture of clinical HIV-1 isolates resistant to multiple conventional protease inhibitors. J Virol. 2010 Nov;84(22):11961–11969.
  • Hosseini A, Alibes A, Noguera-Julian M, et al. Computational prediction of HIV-1 resistance to protease inhibitors. J Chem Inf Model. 2016 May 23;56(5):915–923.
  • Hu G, Ma A, Dou X, et al. Computational studies of a mechanism for binding and drug resistance in the wild type and four mutations of HIV-1 protease with a GRL-0519 inhibitor. Int J Mol Sci. 2016 May 27;17(6).
  • Hanna GJ, D’Aquila RT. Clinical use of genotypic and phenotypic drug resistance testing to monitor antiretroviral chemotherapy. Clin Infect Dis. 2001 Mar 01;32(5):774–782.
  • Koh Y, Nakata H, Maeda K, et al. Novel bis-tetrahydrofuranylurethane-containing nonpeptidic protease inhibitor (PI) UIC-94017 (TMC114) with potent activity against multi-PI-resistant human immunodeficiency virus in vitro. Antimicrob Agents Chemother. 2003 Oct;47(10):3123–3129.
  • Jubb HC, Higueruelo AP, Ochoa-Montano B, et al. Arpeggio: a web server for calculating and visualising interatomic interactions in protein structures. J Mol Biol. 2017 Feb 03;429(3):365–371.
  • Yoshimura K, Kato R, Kavlick MF, et al. A potent human immunodeficiency virus type 1 protease inhibitor, UIC-94003 (TMC-126), and selection of a novel (A28S) mutation in the protease active site. J Virol. 2002 Feb;76(3):1349–1358.
  • Wu Y, Gao F, Qi J, et al. Resistance to mutant group 2 influenza virus neuraminidases of an oseltamivir-zanamivir hybrid inhibitor. J Virol. 2016 Dec 01;90(23):10693–10700.
  • Yen HL. Current and novel antiviral strategies for influenza infection. Curr Opin Virol. 2016 Jun;18:126–134.
  • Hata A, Akashi-Ueda R, Takamatsu K, et al. Safety and efficacy of peramivir for influenza treatment. Drug Des Devel Ther. 2014;8:2017–2038.
  • Moscona A. Neuraminidase inhibitors for influenza. N Engl J Med. 2005 Sep 29;353(13):1363–1373.
  • McKimm-Breschkin JL, Barrett S. Neuraminidase mutations conferring resistance to laninamivir lead to faster drug binding and dissociation. Antiviral Res. 2015 Feb;114:62–66.
  • Richard M, Ferraris O, Erny A, et al. Combinatorial effect of two framework mutations (E119V and I222L) in the neuraminidase active site of H3N2 influenza virus on resistance to oseltamivir. Antimicrob Agents Chemother. 2011 Jun;55(6):2942–2952.
  • Okomo-Adhiambo M, Demmler-Harrison GJ, Deyde VM, et al. Detection of E119V and E119I mutations in influenza A (H3N2) viruses isolated from an immunocompromised patient: challenges in diagnosis of oseltamivir resistance. Antimicrob Agents Chemother. 2010 May;54(5):1834–1841.
  • Van Der Vries E, Stelma FF, Boucher CA. Emergence of a multidrug-resistant pandemic influenza A (H1N1) virus. N Engl J Med. 2010 Sep 30;363(14):1381–1382.
  • McKimm-Breschkin JL. Influenza neuraminidase inhibitors: antiviral action and mechanisms of resistance. Influenza Other Respir Viruses. 2013 Jan;7(Suppl 1):25–36.
  • Kerry PS, Mohan S, Russell RJ, et al. Structural basis for a class of nanomolar influenza A neuraminidase inhibitors. Sci Rep. 2013 Oct;16(3):2871.
  • Collins PJ, Haire LF, Lin YP, et al. Crystal structures of oseltamivir-resistant influenza virus neuraminidase mutants. Nature. 2008 Jun 26;453(7199):1258–1261.
  • Niikura M, Bance N, Mohan S, et al. Replication inhibition activity of carbocycles related to oseltamivir on influenza A virus in vitro. Antiviral Res. 2011 Jun;90(3):160–163.
  • Meijer A, Rebelo-de-Andrade H, Correia V, et al. Global update on the susceptibility of human influenza viruses to neuraminidase inhibitors, 2012-2013. Antiviral Res. 2014;110:31–41.
  • Hurt AC, Besselaar TG, Daniels RS, et al. Global update on the susceptibility of human influenza viruses to neuraminidase inhibitors, 2014-2015. Antiviral Res. 2016;132:178–185.
  • Parker J, Chen J. Application of next generation sequencing for the detection of human viral pathogens in clinical specimens. J Clin Virol. 2017 Jan;86:20–26.
  • Lahiry P, Torkamani A, Schork NJ, et al. Kinase mutations in human disease: interpreting genotype-phenotype relationships. Nat Rev Genet. 2010 Jan;11(1):60–74.
  • Zhang J, Yang PL, Gray NS. Targeting cancer with small molecule kinase inhibitors. Nat Rev Cancer. 2009 Jan;9(1):28–39.
  • Gharwan H, Groninger H. Kinase inhibitors and monoclonal antibodies in oncology: clinical implications. Nat Rev Clin Oncol. 2016 Apr;13(4):209–227.
  • Agafonov RV, Wilson C, Kern D. Evolution and intelligent design in drug development. Front Mol Biosci. 2015;2:27.
  • Weisberg E, Manley P, Mestan J, et al. AMN107 (nilotinib): a novel and selective inhibitor of BCR-ABL. Br J Cancer. 2006 Jun 19;94(12):1765–1769.
  • Azam M, Seeliger MA, Gray NS, et al. Activation of tyrosine kinases by mutation of the gatekeeper threonine. Nat Struct Mol Biol. 2008 Oct;15(10):1109–1118.
  • Engelman JA, Janne PA. Mechanisms of acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors in non-small cell lung cancer. Clin Cancer Res. 2008 May 15;14(10):2895–2899.
  • Tetsu O, Hangauer MJ, Phuchareon J, et al. Drug resistance to EGFR inhibitors in lung cancer. Chemotherapy. 2016;61(5):223–235.
  • Klebl BM, Muller G. Second-generation kinase inhibitors. Expert Opin Ther Targets. 2005 Oct;9(5):975–993.
  • Yun CH, Mengwasser KE, Toms AV, et al. The T790M mutation in EGFR kinase causes drug resistance by increasing the affinity for ATP. Proc Natl Acad Sci U S A. 2008 Feb 12;105(6):2070–2075.
  • Cowan-Jacob SW, Jahnke W, Knapp S. Novel approaches for targeting kinases: allosteric inhibition, allosteric activation and pseudokinases. Future Med Chem. 2014 Apr;6(5):541–561.
  • Tokarski JS, Newitt JA, Chang CY, et al. The structure of Dasatinib (BMS-354825) bound to activated ABL kinase domain elucidates its inhibitory activity against imatinib-resistant ABL mutants. Cancer Res. 2006 Jun 01;66(11):5790–5797.
  • Fasano M, Della Corte CM, Califano R, et al. Type III or allosteric kinase inhibitors for the treatment of non-small cell lung cancer. Expert Opin Investig Drugs. 2014 Jun;23(6):809–821.
  • Wu P, Clausen MH, Nielsen TE. Allosteric small-molecule kinase inhibitors. Pharmacol Ther. 2015 Dec;156:59–68.
  • Muller S, Chaikuad A, Gray NS, et al. The ins and outs of selective kinase inhibitor development. Nat Chem Biol. 2015 Nov;11(11):818–821.
  • Blaszczyk M, Harmer NJ, Chirgadze DY, et al. Achieving high signal-to-noise in cell regulatory systems: spatial organization of multiprotein transmembrane assemblies of FGFR and MET receptors. Prog Biophys Mol Biol. 2015 Sep;118(3):103–111.
  • Liang S, Esswein SR, Ochi T, et al. Achieving selectivity in space and time with DNA double-strand-break response and repair: molecular stages and scaffolds come with strings attached. Struct Chem. 2016;28(1):161–171.
  • Sibanda BL, Chirgadze DY, Ascher DB, et al. DNA-PKcs structure suggests an allosteric mechanism modulating DNA double-strand break repair. Science. 2017 Feb 03;355(6324):520–524.
  • Wylie AA, Schoepfer J, Jahnke W, et al. The allosteric inhibitor ABL001 enables dual targeting of BCR-ABL1. Nature. 2017 Mar 30;543(7647):733–737.
  • Wylie A, Schoepfer J, Berellini G, et al. ABL001, a potent allosteric inhibitor of BCR-ABL, prevents emergence of resistant disease when administered in combination with nilotinib in an in vivo murine model of chronic myeloid leukemia. Blood. 2014;124(21):398–398.
  • Eide CA, Savage SL, Heinrich MC, et al. Combining the allosteric ABL1 tyrosine kinase inhibitor ABL001 with ATP-competitive inhibitors to suppress resistance in chronic myeloid leukemia. Blood. 2016;128(22):2747–2747.
  • Tan L, Wang J, Tanizaki J, et al. Development of covalent inhibitors that can overcome resistance to first-generation FGFR kinase inhibitors. Proc Natl Acad Sci U S A. 2014 Nov 11;111(45):E4869–77.
  • Zou Y, Xiao J, Tu Z, et al. Structure-based discovery of novel 4,5,6-trisubstituted pyrimidines as potent covalent Bruton’s tyrosine kinase inhibitors. Bioorg Med Chem Lett. 2016 Jul 01;26(13):3052–3059.
  • Ascher DB, Wielens J, Nero TL, et al. Potent hepatitis C inhibitors bind directly to NS5A and reduce its affinity for RNA. Sci Rep. 2014 Apr 23;4:4765.
  • Pires DE, Blundell TL, Ascher DB. Platinum: a database of experimentally measured effects of mutations on structurally defined protein-ligand complexes. Nucleic Acids Res. 2015 Jan;43(Database issue):D387–91.
  • Singh V, Donini S, Pacitto A, et al. The inosine monophosphate dehydrogenase, GuaB2, is a vulnerable new bactericidal drug target for tuberculosis. ACS Infect Dis. 2017 Jan 13;3(1):5–17.
  • Park Y, Pacitto A, Bayliss T, et al. Essential but not vulnerable: indazole sulfonamides targeting inosine monophosphate dehydrogenase as potential leads against mycobacterium tuberculosis. ACS Infect Dis. 2017 Jan 13;3(1):18–33.
  • Ascher DB, Cromer BA, Morton CJ, et al. Regulation of insulin-regulated membrane aminopeptidase activity by its C-terminal domain. Biochemistry. 2011 Apr 05;50(13):2611–2622.
  • Hermans SJ, Ascher DB, Hancock NC, et al. Crystal structure of human insulin-regulated aminopeptidase with specificity for cyclic peptides. Protein Sci. 2015 Feb;24(2):190–199.
  • Chai SY, Yeatman HR, Parker MW, et al. Development of cognitive enhancers based on inhibition of insulin-regulated aminopeptidase. BMC Neurosci. 2008 Dec 03;9(Suppl 2):S14.
  • Albiston AL, Morton CJ, Ng HL, et al. Identification and characterization of a new cognitive enhancer based on inhibition of insulin-regulated aminopeptidase. Faseb J. 2008 Dec;22(12):4209–4217.
  • Sigurdardottir AG, Winter A, Sobkowicz A, et al. Exploring the chemical space of the lysine-binding pocket of the first kringle domain of hepatocyte growth factor/scatter factor (HGF/SF) yields a new class of inhibitors of HGF/SF-MET binding. Chem Sci. 2015;6(11):6147–6157.
  • Pires DE, Blundell TL, Ascher DB. pkCSM: predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J Med Chem. 2015 May 14;58(9):4066–4072.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.