380
Views
0
CrossRef citations to date
0
Altmetric
Review

Proteomic approaches for novel systemic lupus erythematosus (SLE) drug discovery

&
Pages 765-777 | Received 12 Feb 2018, Accepted 21 May 2018, Published online: 04 Jun 2018

References

  • Mok C, Lau C. Pathogenesis of systemic lupus erythematosus. J Clin Pathol. 2003;56(7):481–490.
  • Mohan C, Putterman C. Genetics and pathogenesis of systemic lupus erythematosus and lupus nephritis. Nat Rev Nephrol. 2015;11(6):329.
  • Chung SA, Taylor KE, Graham RR, et al. Differential genetic associations for systemic lupus erythematosus based on anti–dsDNA autoantibody production. PLoS Genet. 2011;7(3):e1001323.
  • Gleicher N, Barad DH. Gender as risk factor for autoimmune diseases. J Autoimmun. 2007;28(1):1–6.
  • Doria A, Tincani A, Lockshin M. Challenges of lupus pregnancies. Rheumatology. 2008;47(suppl_3):iii9–iii12.
  • Vilas-Boas A, Morais SA, Isenberg DA. Belimumab in systemic lupus erythematosus. RMD Open. 2015;1(1):e000011.
  • Chan VS-F, Tsang HH-L, Tam RC-Y, et al. B-cell-targeted therapies in systemic lupus erythematosus. Cell Mol Immunol. 2013;10(2):133–142.
  • Kamal A, Khamashta M. The efficacy of novel B cell biologics as the future of SLE treatment: a review. Autoimmun Rev. 2014;13(11):1094–1101.
  • Duddy ME, Alter A, Bar-Or A. Distinct profiles of human B cell effector cytokines: a role in immune regulation? J Immunol. 2004;172(6):3422–3427.
  • Liu Y, Anders H-J. Lupus nephritis: from pathogenesis to targets for biologic treatment. Nephron Clin Pract. 2014;128(3–4):224–231.
  • Korte EA, Gaffney PM, Powell DW. Contributions of mass spectrometry-based proteomics to defining cellular mechanisms and diagnostic markers for systemic lupus erythematosus. Arthritis Res Ther. 2012;14(1):204.
  • Banfi C, Baetta R, Gianazza E, et al. Technological advances and proteomic applications in drug discovery and target deconvolution: identification of the pleiotropic effects of statins. Drug Discov Today. 2017;22(6):848–869.
  • Zavala-Cerna MG, Martínez-García EA, Torres-Bugarín O, et al. The clinical significance of posttranslational modification of autoantigens. Clin Rev Allergy Immunol. 2014;47(1):73–90.
  • Anderton SM. Post-translational modifications of self antigens: implications for autoimmunity. Curr Opin Immunol. 2004 Dec;16(6):753–758.
  • Doyle HA, Mamula MJ. Autoantigenesis: the evolution of protein modifications in autoimmune disease. Curr Opin Immunol. 2012 Feb;24(1):112–118.
  • Schirle M, Bantscheff M, Kuster B. Mass spectrometry-based proteomics in preclinical drug discovery. Chem Biol. 2012;19(1):72–84.
  • Pinna S, Pasella S, Deiana M, et al. Proteomic analysis of human plasma and peripheral blood mononuclear cells in systemic lupus erythematosus patients. J Immunol Methods. 2017;446:37–46.
  • Wu T, Mohan C. Proteomics on the diagnostic horizon: lessons from rheumatology. Am J Med Sci. 2007 Jan;333(1):16–25.
  • Veenstra TD. Proteomic approaches in drug discovery. Drug Discovery Today: Technologies. 2006;3(4):433–440.
  • Wu T, Mohan C. Proteomic toolbox for autoimmunity research. Autoimmun Rev. 2009 Jun;8(7):595–598.
  • Wu T, Fu Y, Brekken D, et al. Urine proteome scans uncover total urinary protease, prostaglandin D synthase, serum amyloid P, and superoxide dismutase as potential markers of lupus nephritis. J Immunol. 2010;184(4):2183–2193.
  • Shah D, Mahajan N, Sah S, et al. Oxidative stress and its biomarkers in systemic lupus erythematosus. J Biomed Sci. 2014;21(1):23.
  • Gupta R, Yadav A, Misra R, et al. Urinary prostaglandin D synthase as biomarker in lupus nephritis: a longitudinal study. Clin Exp Rheumatol. 2015;33(5):694–698.
  • Pepys M, Butler P. Serum amyloid P component is the major calcium-dependent specific DNA binding protein of the serum. Biochem Biophys Res Commun. 1987;148(1):308–313.
  • Bharadwaj D, Mold C, Markham E, et al. Serum amyloid P component binds to Fcγ receptors and opsonizes particles for phagocytosis. J Immunol. 2001;166(11):6735–6741.
  • Connolly KM, Stecher VJ, Rudofsky UH, et al. Elevation of plasma fibronectin and serum amyloid P in autoimmune NZB, BW, and MRL1pr mice. Exp Mol Pathol. 1988;49(3):388–394.
  • Bickerstaff M, Botto M, Hutchinson W, et al. Serum amyloid P component controls chromatin degradation and prevents antinuclear autoimmunity. Nat Med. 1999;5(6):694.
  • Zhang W, Wu J, Qiao B, et al. Amelioration of lupus nephritis by serum amyloid P component gene therapy with distinct mechanisms varied from different stage of the disease. PLoS One. 2011;6(7):e22659.
  • Pavón EJ, García-Rodríguez S, Zumaquero E, et al. Increased expression and phosphorylation of the two S100A9 isoforms in mononuclear cells from patients with systemic lupus erythematosus: a proteomic signature for circulating low-density granulocytes. J Proteomics. 2012;75(6):1778–1791.
  • Lood C, Stenström M, Tydén H, et al. Protein synthesis of the pro-inflammatory S100A8/A9 complex in plasmacytoid dendritic cells and cell surface S100A8/A9 on leukocyte subpopulations in systemic lupus erythematosus. Arthritis Res Ther. 2011;13(2):R60.
  • Ferreira TAR, De Andrade HM, De Pádua PM, et al. Identification of potential biomarkers for systemic lupus erythematosus diagnosis using two-dimensional differential gel electrophoresis (2D-DIGE) and mass spectrometry. Autoimmunity. 2017;50(4):247–256.
  • Nicolaou O, Kousios A, Hadjisavvas A, et al. Biomarkers of systemic lupus erythematosus identified using mass spectrometry‐based proteomics: a systematic review. J Cell Mol Med. 2017;21(5):993–1012.
  • Yuan Y, Lin ZT, Wang H, et al. Protein arrays I: antibody arrays. Methods Mol Biol. 2017;1654:261–269.
  • Yuan Y, Wang H, Lin ZT, et al. Protein arrays II: antigen arrays. Methods Mol Biol. 2017;1654:271–277.
  • Yuan Y, Hong X, Lin ZT, et al. Protein arrays III: reverse-phase protein arrays. Methods Mol Biol. 2017;1654:279–289.
  • Hinchliffe TE, Lin ZT, Wu T. Protein arrays for biomarker discovery in lupus. Proteomics Clin Appl. 2016 Jun;10(6):625–634.
  • Wu T, Xie C, Bhaskarabhatla M, et al. Excreted urinary mediators in an animal model of experimental immune nephritis with potential pathogenic significance. Arthritis Rheumatol. 2007;56(3):949–959.
  • Qin M, Guo Y, Jiang L, et al. Elevated levels of serum sCXCL16 in systemic lupus erythematosus; potential involvement in cutaneous and renal manifestations. Clin Rheumatol. 2014;33(11):1595–1601.
  • Bauer JW, Baechler EC, Petri M, et al. Elevated serum levels of interferon-regulated chemokines are biomarkers for active human systemic lupus erythematosus. PLoS Med. 2006;3(12):e491.
  • Zhen QL, Xie C, Wu T, et al. Identification of autoantibody clusters that best predict lupus disease activity using glomerular proteome arrays. J Clin Invest. 2005;115(12):3428–3439.
  • Price JV, Haddon DJ, Kemmer D, et al. Protein microarray analysis reveals BAFF-binding autoantibodies in systemic lupus erythematosus. J Clin Invest. 2013;123(12):5135.
  • Furie R, Stohl W, Ginzler EM, et al. Biologic activity and safety of belimumab, a neutralizing anti-B-lymphocyte stimulator (BLyS) monoclonal antibody: a phase I trial in patients with systemic lupus erythematosus. Arthritis Res Ther. 2008;10(5):R109.
  • Moore PA, Belvedere O, Orr A, et al. BLyS: member of the tumor necrosis factor family and B lymphocyte stimulator. Science. 1999;285(5425):260–263.
  • Schneider P, MacKay F, Steiner V, et al. BAFF, a novel ligand of the tumor necrosis factor family, stimulates B cell growth. J Exp Med. 1999;189(11):1747–1756.
  • Baker KP, Edwards BM, Main SH, et al. Generation and characterization of LymphoStat‐B, a human monoclonal antibody that antagonizes the bioactivities of B lymphocyte stimulator. Arthritis Rheumatol. 2003;48(11):3253–3265.
  • Cancro MP, D’cruz DP, Khamashta MA. The role of B lymphocyte stimulator (BLyS) in systemic lupus erythematosus. J Clin Invest. 2009;119(5):1066.
  • Chugh PK, Kalra BS. Belimumab: targeted therapy for lupus. Int J Rheum Dis. 2013;16(1):4–13.
  • Jacobi AM, Huang W, Wang T, et al. Effect of long‐term belimumab treatment on b cells in systemic lupus erythematosus: extension of a phase II, double‐blind, placebo‐controlled, dose‐ranging study. Arthritis Rheumatol. 2010;62(1):201–210.
  • Navarra SV, Guzmán RM, Gallacher AE, et al. Efficacy and safety of belimumab in patients with active systemic lupus erythematosus: a randomised, placebo-controlled, phase 3 trial. The Lancet. 2011;377(9767):721–731.
  • Merrill JT, Ginzler EM, Wallace DJ, et al. Long‐term safety profile of belimumab plus standard therapy in patients with systemic lupus erythematosus. Arthritis Rheumatol. 2012;64(10):3364–3373.
  • Wei F, Chang Y, Wei W. The role of BAFF in the progression of rheumatoid arthritis. Cytokine. 2015;76(2):537–544.
  • Pontarini E, Fabris M, Quartuccio L, et al. Treatment with belimumab restores B cell subsets and their expression of B cell activating factor receptor in patients with primary Sjogren’s syndrome. Rheumatology. 2015;54(8):1429–1434.
  • Paweletz CP, Charboneau L, Bichsel VE, et al. Reverse phase protein microarrays which capture disease progression show activation of pro-survival pathways at the cancer invasion front. Oncogene. 2001;20(16):1981.
  • Johnson SA, Hunter T. Kinomics: methods for deciphering the kinome. Nat Methods. 2005;2(1):17.
  • Kim M, Shin DS, Kim J, et al. Substrate screening of protein kinases: detection methods and combinatorial peptide libraries. Pept Sci. 2010;94(6):753–762.
  • Taher TE, Parikh K, Flores‐Borja F, et al. Protein phosphorylation and kinome profiling reveal altered regulation of multiple signaling pathways in B lymphocytes from patients with systemic lupus erythematosus. Arthritis Rheumatol. 2010;62(8):2412–2423.
  • Winkler DG, Faia KL, DiNitto JP, et al. PI3K-δ and PI3K-γ inhibition by IPI-145 abrogates immune responses and suppresses activity in autoimmune and inflammatory disease models. Chem Biol. 2013;20(11):1364–1374.
  • Barber DF, Bartolomé A, Hernandez C, et al. PI3Kγ inhibition blocks glomerulonephritis and extends lifespan in a mouse model of systemic lupus. Nat Med. 2005;11(9):933.
  • Wu T, Qin X, Kurepa Z, et al. Shared signaling networks active in B cells isolated from genetically distinct mouse models of lupus. J Clin Investig. 2007;117(8):2186.
  • Fernandez D, Bonilla E, Mirza N, et al. Rapamycin reduces disease activity and normalizes T cell activation–induced calcium fluxing in patients with systemic lupus erythematosus. Arthritis Rheumatol. 2006;54(9):2983–2988.
  • Perl A. Activation of mTOR (mechanistic target of rapamycin) in rheumatic diseases. Nat Rev Rheumatol. 2016;12(3):169.
  • Toro-Domínguez D, Carmona-Sáez P, Alarcón-Riquelme ME. Support for phosphoinositol 3 kinase and mTOR inhibitors as treatment for lupus using in-silico drug-repurposing analysis. Arthritis Res Ther. 2017;19(1):54.
  • Vanhaesebroeck B, Ali K, Bilancio A, et al. Signalling by PI3K isoforms: insights from gene-targeted mice. Trends Biochem Sci. 2005;30(4):194–204.
  • Suárez-Fueyo A, Rojas JM, Cariaga AE, et al. Inhibition of PI3Kδ reduces kidney infiltration by macrophages and ameliorates systemic lupus in the mouse. J Immunol. 2014;193(2):544–554.
  • Wu T, Ye Y, Min SY, et al. Prevention of murine lupus nephritis by targeting multiple signaling axes and oxidative stress using a synthetic triterpenoid. Arthritis Rheumatol. 2014;66(11):3129–3139.
  • Bardwell PD, Gu J, McCarthy D, et al. The Bcl-2 family antagonist ABT-737 significantly inhibits multiple animal models of autoimmunity. J Immunol. 2009;182(12):7482–7489.
  • Wu L, Qin Y, Xia S, et al. Identification of cyclin‐dependent kinase 1 as a novel regulator of type I interferon signaling in systemic lupus erythematosus. Arthritis Rheum. 2016;68(5):1222–1232.
  • Ikeda K, Hayakawa K, Fujishiro M, et al. JAK inhibitor has the amelioration effect in lupus-prone mice: the involvement of IFN signature gene downregulation. BMC Immunol. 2017;18(1):41.
  • Deng Y, Tsao BP. Genetic susceptibility to systemic lupus erythematosus in the genomic era. Nat Rev Rheumatol. 2010;6(12):683.
  • Graham RR, Cotsapas C, Davies L, et al. Genetic variants near TNFAIP3 on 6q23 are associated with systemic lupus erythematosus. Nat Genet. 2008;40(9):1059.
  • Han J-W, Zheng H-F, Cui Y, et al. Genome-wide association study in a Chinese Han population identifies nine new susceptibility loci for systemic lupus erythematosus. Nat Genet. 2009;41(11):1234.
  • Hahne M, Kataoka T, Schröter M, et al. APRIL, a new ligand of the tumor necrosis factor family, stimulates tumor cell growth. J Exp Med. 1998;188(6):1185–1190.
  • Liu Z, Davidson A. BAFF inhibition: a new class of drugs for the treatment of autoimmunity. Exp Cell Res. 2011;317(9):1270–1277.
  • Koyama T, Tsukamoto H, Miyagi Y, et al. Raised serum APRIL levels in patients with systemic lupus erythematosus. Ann Rheum Dis. 2005;64(7):1065–1067.
  • Koyama T, Tsukamoto H, Masumoto K, et al. A novel polymorphism of the human APRIL gene is associated with systemic lupus erythematosus. Rheumatology. 2003;42(8):980–985.
  • Ginzler EM, Wax S, Rajeswaran A, et al. Atacicept in combination with MMF and corticosteroids in lupus nephritis: results of a prematurely terminated trial. Arthritis Res Ther. 2012;14(1):R33.
  • Isenberg D, Gordon C, Licu D, et al. Efficacy and safety of atacicept for prevention of flares in patients with moderate-to-severe systemic lupus erythematosus (SLE): 52-week data (APRIL-SLE randomised trial). Ann Rheum Dis. 2015;74(11):2006–2015.
  • Lu J, Kwan BCH, Lai FMM, et al. Gene expression of TWEAK/Fn14 and IP‐10/CXCR3 in glomerulus and tubulointerstitium of patients with lupus nephritis. Nephrology. 2011;16(4):426–432.
  • Michaelson JS, Wisniacki N, Burkly LC, et al. Role of TWEAK in lupus nephritis: a bench-to-bedside review. J Autoimmun. 2012;39(3):130–142.
  • Brightbill HD, Suto E, Blaquiere N, et al. NF-κB inducing kinase is a therapeutic target for systemic lupus erythematosus. Nat Commun. 2018;9(1):179.
  • Looney RJ, Anolik JH, Campbell D, et al. B cell depletion as a novel treatment for systemic lupus erythematosus: a phase I/II dose‐escalation trial of rituximab. Arthritis Rheumatol. 2004;50(8):2580–2589.
  • Looney RJ, Anolik J, Sanz I. B cells as therapeutic targets for rheumatic diseases. Curr Opin Rheumatol. 2004;16(3):180–185.
  • Tanaka Y, Yamamoto K, Takeuchi T, et al. A multicenter phase I/II trial of rituximab for refractory systemic lupus erythematosus. Mod Rheumatology. 2007;17(3):191–197.
  • Neubert K, Meister S, Moser K, et al. The proteasome inhibitor bortezomib depletes plasma cells and protects mice with lupus-like disease from nephritis. Nat Med. 2008;14(7):748.
  • Alexander T, Sarfert R, Klotsche J, et al. The proteasome inhibitior bortezomib depletes plasma cells and ameliorates clinical manifestations of refractory systemic lupus erythematosus. Ann Rheum Dis. 2015;74(7):1474–1478.
  • Stirzaker R, Biswas P, Gupta S, et al. Administration of fasudil, a ROCK inhibitor, attenuates disease in lupus-prone NZB/W F1 female mice. Lupus. 2012;21(6):656–661.
  • O’gorman WE, Hsieh EW, Savig ES, et al. Single-cell systems-level analysis of human Toll-like receptor activation defines a chemokine signature in patients with systemic lupus erythematosus. J Allergy Clin Immunol. 2015;136(5):1326–1336.
  • Ishii KJ, Koyama S, Nakagawa A, et al. Host innate immune receptors and beyond: making sense of microbial infections. Cell Host Microbe. 2008;3(6):352–363.
  • Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell. 2006;124(4):783–801.
  • Netea MG, Wijmenga C, O’neill LA. Genetic variation in Toll-like receptors and disease susceptibility. Nat Immunol. 2012;13(6):535.
  • Subramanian S, Tus K, Q-Z L, et al. A Tlr7 translocation accelerates systemic autoimmunity in murine lupus. Proc Natl Acad Sci. 2006;103(26):9970–9975.
  • Barrat FJ, Meeker T, Chan JH, et al. Treatment of lupus‐prone mice with a dual inhibitor of TLR7 and TLR9 leads to reduction of autoantibody production and amelioration of disease symptoms. Eur J Immunol. 2007;37(12):3582–3586.
  • Capolunghi F, Rosado MM, Cascioli S, et al. Pharmacological inhibition of TLR9 activation blocks autoantibody production in human B cells from SLE patients. Rheumatology. 2010;49(12):2281–2289.
  • Lacerte P, Brunet A, Egarnes B, et al. Overexpression of TLR2 and TLR9 on monocyte subsets of active rheumatoid arthritis patients contributes to enhance responsiveness to TLR agonists. Arthritis Res Ther. 2016;18(1):10.
  • Kim S, Chen Z, Essani AB, et al. Identification of a novel Toll‐like Receptor 7 endogenous ligand in rheumatoid arthritis synovial fluid that can provoke arthritic joint inflammation. Arthritis Rheum. 2016;68(5):1099–1110.
  • Crow MK. Interferon‐α: A new target for therapy in systemic lupus erythematosus? Arthritis Rheumatol. 2003;48(9):2396–2401.
  • Bennett L, Palucka AK, Arce E, et al. Interferon and granulopoiesis signatures in systemic lupus erythematosus blood. J Exp Med. 2003;197(6):711–723.
  • Mathian A, Amoura Z, Adam E, et al. Active immunisation of human interferon α transgenic mice with a human interferon α Kinoid induces antibodies that neutralise interferon α in sera from patients with systemic lupus erythematosus. Ann Rheum Dis. 2011;70(6):1138–1143.
  • Zagury D, Le Buanec H, Mathian A, et al. IFNα kinoid vaccine-induced neutralizing antibodies prevent clinical manifestations in a lupus flare murine model. Proc Natl Acad Sci. 2009;106(13):5294–5299.
  • Furie R, Merrill J, Werth V, et al. Anifrolumab, an anti-interferon alpha receptor monoclonal antibody, in moderate to severe systemic lupus erythematosus (SLE). Arthritis Rheumatol. 2015;67:3865–3868.
  • Khamashta M, Merrill JT, Werth VP, et al. Sifalimumab, an anti-interferon-α monoclonal antibody, in moderate to severe systemic lupus erythematosus: a randomised, double-blind, placebo-controlled study. Ann Rheum Dis. 2016;75(11):1909–1916.
  • Salvi V, Bosisio D, Mitola S, et al. Trichostatin A blocks type I interferon production by activated plasmacytoid dendritic cells. Immunobiology. 2010;215(9):756–761.
  • Lichtman EI, Helfgott SM, Kriegel MA. Emerging therapies for systemic lupus erythematosus—focus on targeting interferon-alpha. Clin Immunology. 2012;143(3):210–221.
  • Comte D, Karampetsou MP, Tsokos GC. T cells as a therapeutic target in SLE. Lupus. 2015;24(4–5):351–363.
  • Edwards LJ, Mizui M, Kyttaris V. Signal transducer and activator of transcription (STAT) 3 inhibition delays the onset of lupus nephritis in MRL/lpr mice. Clin Immunol. 2015;158(2):221–230.
  • Touma Z, Gladman DD. Current and future therapies for SLE: obstacles and recommendations for the development of novel treatments. Lupus Sci Med. 2017;4(1):e000239.
  • López P, Rodríguez-Carrio J, Caminal-Montero L, et al. A pathogenic IFNα, BLyS and IL-17 axis in systemic lupus erythematosus patients. Sci Rep. 2016;6:20651.
  • Shah K, Lee -W-W, Lee S-H, et al. Dysregulated balance of Th17 and Th1 cells in systemic lupus erythematosus. Arthritis Res Ther. 2010;12(2):R53.
  • Daridon C, Blassfeld D, Reiter K, et al. Epratuzumab targeting of CD22 affects adhesion molecule expression and migration of B-cells in systemic lupus erythematosus. Arthritis Res Ther. 2010;12(6):R204.
  • Liao W, Li M, Wu H, et al. Down-regulation of MBD4 contributes to hypomethylation and overexpression of CD70 in CD4+ T cells in systemic lupus erythematosus. Clin Epigenetics. 2017;9(1):104.
  • Wu X-N, Ye Y-X, Niu J-W, et al. Defective PTEN regulation contributes to B cell hyperresponsiveness in systemic lupus erythematosus. Sci Transl Med. 2014;6(246):246ra99–46ra99.
  • Cheung RK, Utz PJ. Screening: cyTOF—the next generation of cell detection. Nat Rev Rheumatol. 2011;7(9):502–503.
  • Roederer M. Spectral compensation for flow cytometry: visualization artifacts, limitations, and caveats. Cytometry Part A. 2001;45(3):194–205.
  • Bendall SC, Simonds EF, Qiu P, et al. Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science. 2011;332(6030):687–696.
  • Nowicka M, Krieg C, Weber LM, et al. CyTOF workflow: differential discovery in high-throughput high-dimensional cytometry datasets. F1000Research. 2017;6:748.
  • Yao Y, Liu R, Shin MS, et al. CyTOF supports efficient detection of immune cell subsets from small samples. J Immunol Methods. 2014;415:1–5.
  • Parodis I, Ramsköld D, Tadepally L, et al. 104 A mass cytometry (CYTOF) approach to study B cell alterations during baff blockade treatment with belimumab in systemic lupus erythematosus. Arch Dis Child. 2017;4(Suppl 1):A44–A45.
  • Leipold MD. Another step on the path to mass cytometry standardization. Cytometry Part A. 2015;87(5):380–382.
  • Gold L, Ayers D, Bertino J, et al. Aptamer-based multiplexed proteomic technology for biomarker discovery. PloS One. 2010;5(12):e15004.
  • Lin ZT, Gu J, Li CH, et al. A nanoparticle‐decorated biomolecule‐responsive polymer enables robust signaling cascade for biosensing. Adv Mater. 2017 Aug;29(31):1702090.
  • Gold L, Walker JJ, Wilcox SK, et al. Advances in human proteomics at high scale with the SOMAscan proteomics platform. N Biotechnol. 2012;29(5):543–549.
  • Ostroff RM, Bigbee WL, Franklin W, et al. Unlocking biomarker discovery: large scale application of aptamer proteomic technology for early detection of lung cancer. PloS One. 2010;5(12):e15003.
  • Björk P, Björk A, Vogl T, et al. Identification of human S100A9 as a novel target for treatment of autoimmune disease via binding to quinoline-3-carboxamides. PLoS Biol. 2009;7(4):e1000097.
  • Bengtsson AA, Sturfelt G, Lood C, et al. Pharmacokinetics, tolerability, and preliminary efficacy of paquinimod (ABR‐215757), a new quinoline‐3‐carboxamide derivative: studies in lupus‐prone mice and a multicenter, randomized, double‐blind, placebo‐controlled, repeat‐dose, dose‐ranging study in patients with systemic lupus erythematosus. Arthritis Rheumatol. 2012;64(5):1579–1588.
  • Stohl W, Hiepe F, Latinis KM, et al. Belimumab reduces autoantibodies, normalizes low complement levels, and reduces select B cell populations in patients with systemic lupus erythematosus. Arthritis Rheumatol. 2012;64(7):2328–2337.
  • Isenberg D, Petri M, Kalunian K, et al. Efficacy and safety of subcutaneous tabalumab in patients with systemic lupus erythematosus: results from ILLUMINATE-1, a 52-week, phase III, multicentre, randomised, double-blind, placebo-controlled study. Ann Rheum Dis. 2016;75(2):323–331.
  • Merrill J, Van Vollenhoven R, Buyon J, et al. Efficacy and safety of subcutaneous tabalumab, a monoclonal antibody to B-cell activating factor, in patients with systemic lupus erythematosus: results from ILLUMINATE-2, a 52-week, phase III, multicentre, randomised, double-blind, placebo-controlled study. Ann Rheum Dis. 2016;75(2):332–340.
  • Tran NL, Schneider P, Santiago‐Raber ML. TACI‐dependent APRIL signaling maintains autoreactive B cells in a mouse model of systemic lupus erythematosus. Eur J Immunol. 2017;47(4):713–723.
  • Zhao Z, Burkly LC, Campbell S, et al. TWEAK/Fn14 interactions are instrumental in the pathogenesis of nephritis in the chronic graft-versus-host model of systemic lupus erythematosus. J Immunol. 2007;179(11):7949–7958.
  • Early GS, Zhao W, Burns CM. Anti-CD40 ligand antibody treatment prevents the development of lupus-like nephritis in a subset of New Zealand black x New Zealand white mice. Response correlates with the absence of an anti-antibody response. J Immunol. 1996;157(7):3159–3164.
  • Kalunian KC, Davis JC, Merrill JT, et al. Treatment of systemic lupus erythematosus by inhibition of T cell costimulation with anti‐CD154: A randomized, double‐blind, placebo‐controlled trial. Arthritis Rheumatol. 2002;46(12):3251–3258.
  • Boumpas DT, Furie R, Manzi S, et al. A short course of BG9588 (anti–CD40 ligand antibody) improves serologic activity and decreases hematuria in patients with proliferative lupus glomerulonephritis. Arthritis Rheumatol. 2003;48(3):719–727.
  • Mizui M, Koga T, Lieberman LA, et al. IL-2 protects lupus-prone mice from multiple end-organ damage by limiting CD4− CD8− IL-17–producing T cells. J Immunol. 2014;193(5):2168–2177.
  • Lai Z-W, Borsuk R, Shadakshari A, et al. mTOR activation triggers proinflammatory expansion of IL-4-producing and necrosis-prone double-negative T cells, precedes flares, and serves as target for treatment in patients with systemic lupus erythematosus. Arthritis Res Ther. 2014;16(1):A25.
  • Gu Z, Tan W, Ji J, et al. Rapamycin reverses the senescent phenotype and improves immuno-regulation of mesenchymal stem cells from MRL/lpr mice and systemic lupus erythematosus patients through inhibition of the mTOR signaling pathway. Aging (Albany NY). 2016;8(5):1102–1104
  • Anderson NL, Anderson NG. The human plasma proteome history, character, and diagnostic prospects. Molecular & Cellular Proteomics. 2002;1(11):845–867.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.