1,274
Views
13
CrossRef citations to date
0
Altmetric
Review

Strategies to optimize drug half-life in lead candidate identification

ORCID Icon, &
Pages 221-230 | Received 09 Oct 2018, Accepted 10 Jan 2019, Published online: 24 Jan 2019

References

  • Waring MJ, Arrowsmith J, Leach AR, et al. An analysis of the attrition of drug candidates from four major pharmaceutical companies. Nat Rev Drug Discov. 2015;14(7):457–486.
  • Varma MV, Ambler CM, Ullah M, et al. Targeting intestinal transporters for optimizing oral drug absorption. Curr Drug Metab. 2010;11(9):730–742.
  • Hopkins AL, Keserü GM, Leeson PD, et al. The role of ligand efficiency metrics in drug discovery. Nat Rev Drug Discov. 2014;13:105–121.
  • Chen M, Borlak J, Tong W. High lipophilicity and high daily dose of oral medications are associated with significant risk for drug-induced liver injury. Hepatology. 2013;58(1):388–396.
  • Paes AHP, Barker A, Soe-Agnie CJ. Impact of dosage frequency on patient compliance. Diabetes Care. 1997;20(10):1512–1517.
  • Leo A, Hansch C, Elkins D. Partition coefficients and their uses. Chem Rev. 1971;71(6):525–616.
  • Broccatelli F, Aliagas I, Zheng H. Why decreasing lipophilicity alone is often not a reliable strategy for extending IV half-life. ACS Med Chem Lett. 2018;9(6):522–527.
  • Gunaydin H, Altman MD, Ellis JM, et al. Strategy for extending half-life in drug design and its significance. ACS Med Chem Lett. 2018;9(6):528–533.
  • Smith DA, Beaumont K, Maurer TS, et al. Relevance of half-life in drug design. J Med Chem. 2018;61(10):4273–4282.
  • Sahin S, Benet LZ. The operational multiple dosing half-life: a key to defining drug accumulation in patients and to designing extended release dosage forms. In Pharm Res. 2008;25(12):2869–2877.
  • Smith DA, Di L, Kerns EH. The effect of plasma protein binding on in vivo efficacy: misconceptions in drug discovery. Nat Rev Drug Discov. 2010;9(12):929–939.
  • Liu X, Wright M, Hop CECA. Rational use of plasma protein and tissue binding data in drug design. J Med Chem. 2014;57(20):8238–8246.
  • Pang KS, Rowland M. Hepatic clearance of drugs. I. Theoretical considerations of a “Well-stirred” model and a “Parallel tube” model. influence of hepatic blood flow, plasma and blood cell binding, and the hepatocellular enzymatic activity on hepatic drug clearance. J Pharmacokinet Biopharm. 1977;5(6):625–653.
  • McGinnity DF, Collington J, Austin RP, et al. Evaluation of human pharmacokinetics, therapeutic dose and exposure predictions using marketed oral drugs. Curr Drug Metab. 2007;8(5):463–479.
  • Obach RS, Lombardo F, Waters NJ. Trend analysis of a database of intravenous pharmacokinetic parameters in humans for 670 drug compounds. Drug Metab Dispos. 2008;36(7):1385–1405.
  • Benet LZ, Hoener B. Changes in plasma protein binding have little clinical relevance. Clin Pharmacol Ther. 2002;71(3):115–121.
  • Lipinski CA. Drug-like properties and the causes of poor solubility and poor permeability. J Pharmacol Toxicol Methods. 2000;44(1):235–249.
  • Leeson PD, Empfield JR. Reducing the risk of drug attrition associated with physicochemical properties. Ann Rep Med Chem. 2010;45:393–407.
  • Young RJ, Green DVS, Luscombe CN, et al. Getting physical in drug discovery II: the impact of chromatographic hydrophobicity measurements and aromaticity. Drug Discov Today. 2011;16(1):822–830.
  • Waring MJ. Defining optimum lipophilicity and molecular weight ranges for drug candidates-molecular weight dependent lower LogD limits based on permeability. Bioorg Med Chem Lett. 2009;19(10):2844–2851.
  • Johnson TW, Dress KR, Edwards M. Using the golden triangle to optimize clearance and oral absorption. Bioorg Med Chem Lett. 2009;19(19):5560–5564.
  • Gleeson MP. Generation of a set of simple, interpretable ADMET rules of thumb. J Med Chem. 2008;51(4):817–834.
  • Yamazaki K, Kanaoka M. Computational prediction of the plasma protein-binding percent of diverse pharmaceutical compounds. J Pharm Sci. 2004;93(6):1480–1494.
  • Leeson PD, Springthorpe B. The influence of drug-like concepts on decision-making in medicinal chemistry. Nat Rev Drug Discov. 2007;6(11):881–890.
  • Hughes JD, Blagg J, Price DA, et al. Physiochemical drug properties associated with in vivo toxicological outcomes. Bioorg Med Chem Lett. 2008;18(17):4872–4875.
  • Luker T, Alcaraz L, Chohan KK, et al. Strategies to improve in vivo toxicology outcomes for basic candidate drug molecules. Bioorg Med Chem Lett. 2011;21:5673–5679.
  • Ringel M, Tollman P, Hersch G, et al. Does size matter in R&D productivity? If not, what does? Nat Rev Drug Discov. 2013;12:901–902.
  • Nassar AEF, Kamel AM, Clarimont C. Improving the decision-making process in the structural modification of drug candidates: enhancing metabolic stability. Drug Discov Today. 2013;9(23):1020–1028.
  • Stamler D, Bradbury M, Brown F. The pharmacokinetics and safety of deuterated-tetrabenazine (P07.210). Neurology. 2013;80(Suppl 7):P07.210.
  • Benet L, Broccatelli F, Oprea T. BDDCS applied to over 900 drugs. Aaps J. 2011;13(4):519–547.
  • Milletti F, Storchi L, Sforna G, et al. New and original PKa prediction method using grid molecular interaction fields. J Chem Inf Model. 2007;47(6):2172–2181.
  • Chan R, De Bruyn T, Wright M, et al. Comparing mechanistic and preclinical predictions of volume of distribution on a large set of drugs. Pharm Res. 2018;35(4):87.
  • Rodgers T, Rowland M. Mechanistic approaches to volume of distribution predictions: understanding the processes. Pharm Res. 2007;24(5):918–933.
  • Fischer H, Atzpodien EA, Csato M, et al. In silico assay for assessing phospholipidosis potential of small druglike molecules: training, validation, and refinement using several data sets. J Med Chem. 2012;55(1):126–139.
  • Broccatelli F, Salphati L, Plise E, et al. Predicting passive permeability of drug-like molecules from chemical structure: where are we? Mol Pharm. 2013;58(1):388–396.
  • Broccatelli F, Mannhold R, Moriconi A, et al. QSAR modeling and data mining link torsades de pointes risk to the interplay of extent of metabolism, active transport, and HERG liability. Mol Pharm. 2016;13(12):4199–4208.
  • Cruciani G, Baroni M, Benedetti P, et al. Exposition and reactivity optimization to predict sites of metabolism in chemicals. Drug Discov Today Technol. 2013;10(1):e155–e165.
  • Ahlström MM, Ridderström M, Zamora I. CYP2C9 structure-metabolism relationships: substrates, inhibitors, and metabolites. J Med Chem. 2007;50(22):5382–5391.
  • Woodward HL, Innocenti P, Cheung KJ, et al. Introduction of a methyl group curbs metabolism of Pyrido[3,4-d]pyrimidine Monopolar Spindle 1 (MPS1) inhibitors and enables the discovery of the phase 1 clinical candidate N2-(2-Ethoxy-4-(4-methyl-4H-1,2,4-triazol-3-yl)phenyl)-6-methyl-N8-neopentylpyrido[3,4-d]pyrimidine-2,8-diamine (BOS172722). J Med Chem. 2018;61(18):8226–8240.
  • Pähler A, Brink A. Software aided approaches to structure-based metabolite identification in drug discovery and development. Drug Discov Today Technol. 2013;10(1):207–217.
  • Lombardo F, Desai PV, Arimoto R, et al. In silico absorption, distribution, metabolism, excretion, and pharmacokinetics (ADME-PK): utility and best practices. An industry perspective from the international consortium for innovation through quality in pharmaceutical development. J Med Chem. 2017;60(22):9097–9113.
  • Kramer C, Ting A, Zheng H, et al. Learning medicinal chemistry absorption, distribution, metabolism, excretion, and toxicity (admet) rules from cross-company Matched Molecular Pairs Analysis (MMPA). J Med Chem. 2013;58(1):388–396.
  • Aliagas I, Gobbi A, Heffron T, et al. A probabilistic method to report predictions from a human liver microsomes stability qsar model: a practical tool for drug discovery. J Comput Aided Mol Des. 2018;61(8):3277–3292.
  • Stepan AF, Kauffman GW, Keefer CE, et al. Evaluating the differences in cycloalkyl ether metabolism using the design parameter “Lipophsilic metabolism efficiency” (LipMetE) and a matched molecular Pairs analysis. J Med Chem. 2013;56(17):6985–6990.
  • Schenkel LB, Olivieri PR, Boezio AA, et al. Optimization of a novel quinazolinone-based series of transient receptor potential A1 (TRPA1) antagonists demonstrating potent in vivo activity. J Med Chem. 2016;59:2794–2809.
  • Di L, Obach RS. Addressing the challenges of low clearance in drug research. Aaps J. 2015;17(2):352–357.
  • Varma MVS, Chang G, Lai Y, et al. Physicochemical property space of hepatobiliary transport and computational models for predicting rat biliary excretion. Drug Metab Dispos. 2012;40(8):1527–1537.
  • Piroli RJ, Passananti GT, Shively CA, et al. Antipyrine and warfarin disposition in a patient with idiopathic hypoalbuminemia. Clin Pharmacol Ther. 1981;30(6):810–816.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.