162
Views
6
CrossRef citations to date
0
Altmetric
Review

Recent developments in biological aspects of chalcones: the odyssey continues

, , &
Pages 249-288 | Received 07 Nov 2018, Accepted 21 Jan 2019, Published online: 18 Feb 2019

References

  • Kozlowski D, Trouillas P, Calliste C, et al. Density functional theory study of the conformational, electronic, and antioxidant properties of natural chalcones. J Phys Chem. 2007;111:1138–1145.
  • Nowakowska Z. A review of anti-infective and anti-inflammatory chalcones. Eur J Med Chem. 2007;42:125–137.
  • Evranos Aksoz B, Ertan R. Chemical and structural properties of chalcones I. FABAD J Pharm Sci. 2011;36:223–242.
  • Akihisa T, Tokuda H, Hasegawa D, et al. Chalcones and other compounds from the exudates of Angelica keiskei and their cancer chemopreventive effects. J Nat Prod. 2006;69:38–42.
  • Mishra L, Sinha R, Itokawa H, et al. Anti-HIV and cytotoxic activities of Ru(II)/Ru(III) polypyridyl complexes containing 2,6-(2’-Benzimidazolyl) pyridine/chalcone as co-ligand. Bioorg Med Chem. 2001;9:1667–1671.
  • Bhale PS, Chavan HV, Dongare SB, et al. Synthesis of extended conjugated indolyl chalcones as potent anti-breast cancer, anti-inflammatory and antioxidant agents. Bioorg Med Chem Lett. 2017;27:1502–1507.
  • Coskun D, Erkisa M, Ulukaya E, et al. Novel 1-(7-ethoxy-1-benzofuran-2-yl) substituted chalcone derivatives: synthesis, characterization and anticancer activity. Eur J Med Chem. 2017;136:212–22.10.
  • Gomes MN, Braga RC, Grzelak EM, et al. QSAR-driven design, synthesis and discovery of potent chalcone derivatives with antitubercular activity. Eur J Med Chem. 2017;137:126–138.
  • Li J, Li D, Xu Y, et al. Design, synthesis, biological evaluation, and molecular docking of chalcone derivatives as antiinflammatory agents. Bioorg Med Chem Lett. 2017;27:602–606.
  • Israf DA, Khaizurin TA, Syahida A, et al. Cardamonin inhibits COX and iNOS expression via inhibition of p65NF- B nuclear translocation and I -B phosphorylation in RAW264.7 macrophage cells. Mol Immunol. 2007;44:673–679.
  • Gan XH, Hu DY, Wang YJ, et al. Novel trans-ferulic acid derivatives containing a chalcone moiety as potential activator for plant resistance induction. J Agric Food Chem. 2017;65:4367–4377.
  • Cole AL, Hossain S, Cole AM, et al. Synthesis and bioevaluation of substituted chalcones, coumaranones and other flavonoids as anti-HIV agents. Bioorg Med Chem. 2016;24:2768–2776.
  • Ruiz-Torres V, Encinar JA, Herranz-Lopez M, et al. An updated review on marine anticancer compounds: the use of virtual screening for the discovery of small-molecule cancer drugs. Molecules. 2017;22:1037.
  • Kerru N, Singh P, Koorbanally N, et al. Recent advances (2015–2016) in anticancer hybrids. Eur J Med Chem. 2017;142:179–212.
  • Birbrair A, Zhang T, Wang ZM, et al. Type-2 pericytes participate in normal and tumoral angiogenesis. Am J Physiol Cell Physiol. 2014;307:C25–38.
  • Harris CC, Hollstein M. Clinical implications of the p53 tumor-suppressor gene. New Eng J Med. 1993;329:1318–1327.
  • American Cancer Society. Cancer facts & figures 2018. Atlanta (GA): American Cancer Society; 2018.
  • Shagufta A. An insight into the therapeutic potential of quinazoline derivatives as anticancer agents. Med Chem Com. 2017;8:871–885.
  • Baselga J, Swain SM. Novel anticancer targets: revisiting ERBB2 and discovering ERBB3. Nat Rev Cancer. 2009;9:463–475.
  • Brown CHJ, Lain S, Verma CHS, et al. Awakening guardian angels: drugging the p53 pathway. Nat Rev Cancer. 2009;9:862–873.
  • Bellamkonda K, Satapathy SR, Douglas D, et al. Montelukast, a CysLT1 receptor antagonist, reduces colon cancer stemness and tumor burden in a mouse xenograft model of human colon cancer. Cancer Lett. 2018;437:13–24.
  • Karthikeyan C, Narayana Moorthy NSH, Ramasamy S, et al. Advances in chalcones with anticancer activities. Recent Pat Anticancer Drug Discov. 2015;10:97–115.
  • Batovska DI, Todorova IT. Trends in utilization of the pharmacological potential of chalcones. Curr Clin Pharmacol. 2010;5:1–29.
  • Singh P, Anand A, Kumar V. Recent developments in biological activities of chalcones. a mini review. Eur J Med Chem. 2014;85:758–777.
  • Reddy MVB, Su CR, Chiou WF, et al. Design, synthesis, and biological evaluation of Mannich bases of heterocyclic chalcone analogs as cytotoxic agents. Bioorg Med Chem. 2008;16:7358–7370.
  • Nagaraju M, Deepthi EG, Ashwini C, et al. Synthesis and selective cytotoxic activity of novel hybrid chalcones against prostate cancer cells. Bioorg Med Chem Lett. 2012;22:4314–4317.
  • Kamal A, Reddy JS, Ramaiah MJ, et al. Design, synthesis and biological evaluation of imidazopyridine/pyrimidine-chalcone derivatives as potential anticancer agents. Med Chem Commun. 2010;1:355–360.
  • Tseng CH, Chen YL, Hsu CY, et al. Synthesis and antiproliferative evaluation of 3-phenylquinolinylchalcone derivatives against non-small cell lung cancers and breast cancers. Eur J Med Chem. 2013;59:274–282.
  • Abonia R, Insuasty D, Castillo J, et al. Synthesis of novel quinoline-2-one based chalcones of potential anti-tumor activity. Eur J Med Chem. 2012;57:29–40.
  • Robinson MW, Overmeyer JH, Young AM, et al. Synthesis and evaluation of indole-based chalcones as inducers of methuosis, a novel type of nonapoptotic cell death. J Med Chem. 2012;55:1940–1956.
  • Mielcke TR, Mascarello A, Chiela EF, et al. Activity of novel quinoxaline-derived chalcones on in vitro glioma cell proliferation. Eur J Med Chem. 2012;48:255–264.
  • Ratkovic Z, Juranic ZD, Stanojkovic T, et al. Synthesis, characterization, electrochemical studies and antitumor activity of some new chalcone analogues containing ferrocenyl pyrazole moiety. Bioorg Chem. 2010;38:26–32.
  • Singh A, Lumb I, Mehra V, et al. Ferrocene-appended pharmacophores: an exciting approach for modulating biological potential of organic scaffolds. Dalton Trans. 2019. doi:10.1039/C8DT03440K
  • Reddy POV, Hridhay M, Nikhil K, et al. Synthesis and investigations into the anticancer and antibacterial activity studies of β-carboline chalcones and their bromide salts. Bioorg Med Chem Lett. 2018;28:1278–1282.
  • Kuthyala S, Nagaraja GK, Sheik S, et al. Synthesis of imidazo [1, 2-a]pyridine-chalcones as potent inhibitors against A549 cell line and their crystal studies. J Mol Struc. DOI:10.1016/j.molstruc.2018.09.087.
  • Michelini LJ, Castro MRC, Custodio JMF, et al. A novel potential anticancer chalcone: synthesis, crystal structure and cytotoxic assay. J Mol Struc. 2018;1168:309–315.
  • Wang G, Qiu J, Xiao X, et al. Synthesis, biological evaluation and molecular docking studies of a new series of chalcones containing naphthalene moiety as anticancer agents. Bioorg Chem. 2018;76:249–257.
  • Park S, Kim EH, Kim J, et al. Biological evaluation of indolizine-chalcone hybrids as new anticancer agents. Eur J Med Chem. 2018;144:435–443.
  • Wang G, Peng Z, Zhang J, et al. Synthesis, biological evaluation and molecular docking studies of aminochalcone derivatives as potential anticancer agents by targeting tubulin colchicine binding site. Bioorg Chem. 2018;78:332–340.
  • Ayati A, Esmaeili R, Moghimi S, et al. Synthesis and biological evaluation of 4-amino-5-cinnamoylthiazoles as chalcone-like anticancer agents. Eur J Med Chem. 2018;145:404–412.
  • Peerzada MN, Khan P, Ahmad K, et al. Synthesis, characterization and biological evaluation of tertiary sulfonamide derivatives of pyridyl-indole based heteroaryl chalcone as potential carbonic anhydrase IX inhibitors and anticancer agents. Eur J Med Chem. 2018;155:13–23.
  • Pontes O, Costa M, Santos F, et al. Exploitation of new chalcones and 4H-chromenes as agents for cancer treatment. Eur J Med Chem. 2018;157:101–114.
  • Huang X, Huang R, Wang Z, et al. Pt(IV) complexes conjugating with chalcone analogue as inhibitors of microtubule polymerization exhibited selective inhibition in human cancer cells. Eur J Med Chem. 2018;146:435–450.
  • Singh A, Saha ST, Shanen PS, et al. Azide–alkyne cycloaddition en route to 1H-1,2,3-triazole-tethered isatin–ferrocene, ferrocenylmethoxy-isatin, and isatin-ferrocenylchalcone conjugates: synthesis and antiproliferative evaluation. ACS Omega. 2018;3:1263–1268.
  • Badr G, Gul HI, Yamali C, et al. Curcumin analogue 1,5-bis(4-hydroxy-3-((4-methylpiperazin-1-yl)methyl)phenyl)penta-1,4-dien-3-one mediates growth arrest and apoptosis by targeting the PI3K/AKT/mTOR and PKC-theta signalling pathways in human breast carcinoma cells. Bioorg Chem. 2018;78:46–57.
  • Gul HI, Yamali C, Gunesacar G, et al. Cytotoxicity, apoptosis, and QSAR studies of phenothiazine derived methoxylated chalcones as anticancer drug candidates. Med Chem Res. 2018;27:2366–2378.
  • Williams IS, Joshi P, Gatchie L, et al. Synthesis and biological evaluation of pyrrole-based chalcones as CYP1 enzyme inhibitors, for possible prevention of cancer and overcoming cisplatin resistance. Bioorg Med Chem Lett. 2017;27:3683–3687.
  • Ren B, Ablise M, Yang X, et al. Synthesis and biological evaluation of α-methyl-chalcone for anti-cervical cancer activity. Med Chem Res. 2017;26:1871–1883.
  • YueQiu H, Wang F, Wang X, et al. Design, synthesis, and biological evaluation of chalcone-containing shikonin derivatives as inhibitors of tubulin polymerization. ChemMedChem. 2017;12:399–406.
  • Yamali C, Ozgun DO, Gul HI, et al. Synthesis and structure elucidation of 1-(2,5/3,5-difluorophenyl)-3-(2,3/2,4/2,5/3,4-dimethoxyphenyl)-2-propen-1-ones as anticancer agents. Med Chem Res. 2017;26:2015–2023.
  • Lima RS, Perez CN, Da Silva CC, et al. Structure and cytotoxic activity of terpenoid-like chalcones. Arabian J Chem. DOI:10.1016/j.arabjc.2016.02.013.
  • Singh AK, Saxena G, Dixit S, et al. Synthesis, characterization and biological activities of some Ru(II) complexes with substituted chalcones and their applications as chemotherapeutics against breast cancer. J Mol Struct. 2016;1111:90–99.
  • Maoa Z, Zheng X, Qi Y, et al. Synthesis and biological evaluation of novel hybrid compounds between chalcone and piperazine as potential antitumor agents. RSC Adv. 2016. DOI:10.1039/C5RA20197G.
  • Jayashree BS, Patel HH, Mathew NS, et al. Synthesis of newer piperidinyl chalcones and their anticancer activity in human cancer cell lines. Res Chem Intermed. 2016;42:3673–3688.
  • Yamali C, Gul HI, Sakagami H, et al. Synthesis and bioactivities of halogen bearing phenolic chalcones and their corresponding bis Mannich bases. J Enzyme Inhib Med Chem. 2016;31:125–131.
  • Banday AH, Kulkarni VV, Hruby VJ. Design, synthesis, and biological and docking studies of novel epipodophyllotoxin-chalcone hybrids as potential anticancer agents. Med Chem Commun. 2015;6:94–104.
  • Wang L, Chen G, Lu X, et al. Novel chalcone derivatives as hypoxia-inducible factor (HIF)-1 inhibitor: synthesis, anti-invasive and anti-angiogenic properties. Eur J Med Chem. 2015;89:88–97.
  • Markovic V, Debeljak N, Stanojkovic T, et al. Anthraquinoneechalcone hybrids: synthesis, preliminary antiproliferative evaluation and DNA-interaction studies. Eur J Med Chem. 2015;89:401–410.
  • Shen YN, Lin L, Qiu HY, et al. The design, synthesis, in vitro biological evaluation and molecular modeling of novel benzenesulfonate derivatives bearing chalcone moieties as potent anti-microtubulin polymerization agents. RSC Adv. 2015. DOI:10.1039/C4RA12108B.
  • Tugrak M, Yamali C, Sakagami H, et al. Synthesis of mono Mannich bases of 2-(4-hydroxybenzylidene)-2,3-dihydroinden-1-one and evaluation of their cytotoxicities. J Enzyme Inhib Med Chem. 2015. Early Online:1-6. DOI:10.3109/14756366.2015.1070263.
  • Chu DTW, Plattner JJ, Katz L. New directions in antibacterial research. J Med Chem. 1996;39:3853–3873.
  • Verhoef J, Fluit A. Surveillance uncovers the smoking gun for resistance emergence. Biochem Pharmacol. 2006;71:1036–1041.
  • Ronat J-B, Kakol J, Khoury MN, et al. Highly drugresistant pathogens implicated in burn associated Bacteremia in an Iraqi burn care unit. PLoS ONE. 2014;9:e101017.
  • Mitscher LA, Pillai SP, Gentry EJ, et al. Multiple drug resistance. Med Res Rev. 1999;19:477–496.
  • Yoneyama H, Katsumata R. Antibiotic resistance in bacteria and its future for novel antibiotic development. Biosci Biotechnol Biochem. 2006;70:1060–1075.
  • Abbas SY, Sh El-Sharief MAM, Basyouni MW, et al. Thiourea derivatives incorporating a hippuric acid moiety: synthesis and evaluation of antibacterial and antifungal activities. Eur J Med Chem. 2013;64:111–120.
  • Helal MH, Abbas SY, Salem MA, et al. Synthesis and characterization of new types of 2-(6-methoxy-2-naphthyl) propionamide derivatives as potential antibacterial and antifungal agents. Med Chem Res. 2013;22:5598–5609.
  • Fluit AC, van der Bruggen JT, Aarestrup FM, et al. Priorities for antibiotic resistance surveillance in Europe. Clin Microbiol Infect. 2006;12:410–417.
  • Alcaraz LE, Blanco SE, Puig ON, et al. Antibacterial activity of flavonoids against methicillin-resistant Staphylococcus aureus strains. J Theor Biol. 2008;205:231–240.
  • Lahtchev KL, Batovska DI, Parushev SP, et al. Antifungal activity of chalcones: A mechanistic study using various yeast strains. Eur J Med Chem. 2008;43:2220–2228.
  • Liu YT, Sheng J, Yin DW, et al. Ferrocenyl chalcone-based Schiff bases and their metal complexes: highlyefficient, solvent-free synthesis, characterization, biological research. J Organomet Chem. 2018;856:27–33.
  • Seidani TB, Keivanloo A, Kaboudin B, et al. Regioselective synthesis of 2,3-disubstituted 1-alkyl pyrrolo[2,3-b]quinoxalines through palladium-catalyzed Heck reaction of chalcones and evaluation of their anti-bacterial activities. Tetrahedron. 2018;74:2350–2358.
  • Lal K, Yadav P, Kumar A, et al. Design, synthesis, characterization, antimicrobial evaluation and molecular modeling studies of some dehydroacetic acid-chalcone-1,2,3-triazole hybrids. Bioorg Chem. 2018;77:236–244.
  • Yadav P, Lal P, Kumar L, et al. Synthesis, crystal structure and antimicrobial potential of some fluorinated chalcone-1,2,3-triazole conjugates. Eur J Med Chem. 2018;155:263–274.
  • Vanangamudi G, Subramanian M, Thirunarayanan G. Synthesis, spectral linearity, antimicrobial, antioxidant and insect antifeedant activities of some 2,5-dimethyl-3-thienyl chalcones. Arabian J Chem. 2017;10:S1254–S1266.
  • Prabhakar V, Babu KS, Ravindranath LK, et al. Design and facile synthesis of 2H-Chromene halcone derivatives as anti-microbial agents. Heterocycl Lett. 2016;6:687–699.
  • Chlupacova MK, Tyllova VV, Finkova LR, et al. Novel halogenated pyrazine-based chalcones as potential antimicrobial drugs. Molecules. 2016;21:1421.
  • Wei ZY, Chi KQ, Yu ZK, et al. Synthesis and biological evaluation of chalcone derivatives containing aminoguanidine or acylhydrazone moieties. Bioorg Med Chem Lett. 2016;26:5920–5925.
  • Muskinja J, Burmudzija A, Ratkovic Z, et al. Ferrocenyl chalcones with O-alkylated vanillins: synthesis, spectral characterization, microbiological evaluation, and single-crystal X-ray analysis. Med Chem Res. 2016;25:1744–1753.
  • Ashok D, Ravi S, Ganesh A, et al. Microwave-assisted synthesis and biological evaluation of carbazole-based chalcones, aurones and flavones. Med Chem Res. 2016;25:909–922.
  • Boopathy M, Subramanian K. Preparation of polycyclic pendant chalcone moiety based antimicrobial polyacrylamides. Adv Polym Technol. 2017;36:21606.
  • Prasath R, Bhavana P, Sarveswari S, et al. Efficient ultrasound-assisted synthesis, spectroscopic, crystallographic and biological investigations of pyrazole-appended quinolinyl chalcones. J Mol Struct. 2015;1081:201–210.
  • Hamada NMM, Abdo NYM. Synthesis, characterization, antimicrobial screening and free-radical scavenging activity of some novel substituted pyrazoles. Molecules. 2015;20:10468–10486.
  • Gaugler J, James B, Johnson T, et al. 2016 Alzheimer’s disease facts and figures. Alzheimers Dement. 2016;12:459–509.
  • Goedert M, Spillantini MG. A century of Alzheimer’s disease. Science. 2006;314:777–778.
  • von Strauss E, Viitanen M, De Ronchi D, et al. Aging and the occurrence of dementia findings from a population-based cohort with a large sample of nonagenarians. Arch Neurol. 1999;56:587–592.
  • Alzheimer’s Association. Alzheimer’s disease facts and figures. Alzheimers Dement. 2018;2018(14):367–429.
  • Dementia fact sheet. World Health Organisation; Dec 2017 [cited 2018 Oct 1]. Available from: http://www.who.int/news-room/fact-sheets/detail/dementia
  • Iwatsubo T, Odaka A, Suzuki N, et al. Visualization of A beta 42 (43)and A beta 40 in senile plaques with end-specific A beta monoclonals: evidence that an initially deposited species is A beta 42(43). Neuron. 1994;13:45–53.
  • Giacobini E. Cholinesterase inhibitors stabilize Alzheimer’s disease. Ann N Y Acad Sci. 2000;920:321–327.
  • Shen LL, Liu GX, Tang Y. Molecular docking and 3D-QSAR studies of 2-substituted 1-indanone derivatives as acetylcholinesterase inhibitors. Acta Pharmacol Sin. 2007;28:2053–2063.
  • Lu C, Zhou Q, Yan J, et al. A novel series of tacrine-selegiline hybrids with cholinesterase and monoamine oxidase inhibition activities for the treatment of Alzheimer’s disease. Eur J Med Chem. 2013;62:745–753.
  • Ferreira-Vieira TH, Guimaraes IM, Silva FR, et al. Alzheimer’s disease: targeting the sholinergic system. Curr Neuropharmacol. 2016;14:101–115.
  • Huang WJ, Zhang X, Chen WW. Role of oxidative stress in Alzheimer’s disease. Biomed Rep. 2016;4:519–522.
  • Di Bona D, Scapagnini G, Candore G, et al. Immuneinflammatory responses and oxidative stress in Alzheimer’s disease: therapeutic implications. Curr Pharm Des. 2010;16:684–691.
  • Heneka MT, O’Banion MK, Terwel D, et al. Neuroinflammatory processes in Alzheimer’s disease. J Neural Transm. 2010;117:919–947.
  • Oakley H, Cole SL, Logan S, et al. Intraneuronal β-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer’s disease mutations: potential factors in amyloid plaque formation. J Neurosci. 2006;26:10129–10140.
  • LaFerla FM, Green KN, Oddo S. Intracellular amyloid-β in Alzheimer’s disease. Nat Rev Neurosci. 2007;8:499–509.
  • Bush AI. The metal theory of Alzheimer’s disease. J Alzheimers Dis. 2013;33:277–281.
  • Robert A, Liu Y, Nguyen M, et al. Regulation of c and iron homeostasis by metal chelators: a possible chemotherapy for Alzheimer’s disease. Acc Chem Res. 2015;48:1332–1339.
  • Mattson MP, Tomaselli KJ, Rydel RE. Calcium-destabilizing and neurodegenerative effects of aggregated beta-amyloid peptide are attenuated by basic FGF. Brain Res. 1993;621:35–49.
  • Khan HA, Sher M, Maharvi M, et al. Synthesis and inhibitory potential towards acetylcholinesterase, butyrylcholinesterase and lipoxygenase of some variably substituted chalcones. J Enzyme Inhib Med Chem. 2005;20:41–47.
  • Cui M, Ono M, Kimura H, et al. Synthesis and biological evaluation of indole-chalcone derivatives as β-amyloid imaging probe. Bioorg Med Chem Lett. 2011;21:980–982.
  • Ono M, Ikeoka R, Watanabe H, et al. Synthesis and evaluation of novel chalcone derivatives with 99mTc/Re complexes as potential probes for detection of β-amyloid plaques. ACS Chem Neurosci. 2010;1:598–607.
  • Ono M, Watanabe R, Kawashima H, et al. Fluoro-pegylated chalcones as positron emission tomography probes for in vivo imaging of β-amyloid plaques in Alzheimer’s disease. J Med Chem. 2009;52:6394–6401.
  • Wang L, Wang Y, Tian Y, et al. Design, synthesis, biological evaluation, and molecular modeling studies of chalcone-rivastigmine hybrids as cholinesterase inhibitors. Bioorg Med Chem. 2017;25:360–371.
  • Fosso MY, LeVine H, Green KD, et al. Effects of structural modifications on the metal binding, anti-amyloid activity, and cholinesterase inhibitory activity of chalcones. Org Biomol Chem. 2015;13:9418–9426.
  • Khoshneviszadeh M, Ghahremani MH, Foroumadi A, et al. Design, synthesis and biological evaluation of novel anti-cytokine 1, 2, 4-triazine derivatives. Bioorg Med Chem. 2013;21:6708–6717.
  • Cao Q, Wang X, Jia L, et al. Inhibiting DNA Methylation by 5-Aza-2’-deoxycytidine ameliorates atherosclerosis through suppressing macrophage inflammation. Endocrinology. 2014;155:4925–4938.
  • Ansari N, Khodagholi F, Ramin M, et al. Inhibition of LPS-induced apoptosis in differentiated-PC12 cells by new triazine derivatives through NF-kappaB-mediated suppression of COX-2. Neurochem Int. 2010;57:958–968.
  • Miyagawa T, Fujita T, Ouhara K, et al. Irsogladine maleate regulates the inflammatory related genes in human gingival epithelial cells stimulated by Aggregatibacter actinomycetemcomitans. Int Immunopharmacol. 2013;15:340–347.
  • Moo-Huchin VM, Moo-Huchin MI, Estrada-Leon RJ, et al. Antioxidant compounds, antioxidant activity and phenolic content in peel from three tropical fruits from Yucatan, Mexico. Food Chem. 2015;166:17–22.
  • Ouellet M, Riendeau D, Percival MD. A high level of cyclooxygenase-2 inhibitor selectivity is associated with a reduced interference of platelet cyclooxygenase-1 inactivation by aspirin. Pnas. 2001;98:14583–14588.
  • Simmons DL, Botting RM, Hla T. Cyclooxygenase isozymes: the biology of prostaglandin synthesis and inhibition. Pharmacol Rev. 2004;56:387–437.
  • Moore ND. In search of an ideal analgesic for common acute pain. Acute Pain. 2009;11:129–137.
  • Dannhardt G, Laufer S. Structural approaches to explain the selectivity of COX-2 inhibitors: is there a common pharmacophore? Curr Med Chem. 2000;7:1101–1112.
  • Labiba MB, Sharkawib SMZ, El-Dalyc M. Design, synthesis of novel isoindoline hybrids as COX-2 inhibitors: antiinflammatory, analgesic activities and docking study. Bioorg Chem. 2018;80:70–80.
  • Diaz-Gonzalez F, Sanchez-Madrid F. NSAIDs: learning new tricks from old drugs. Eur J Immunol. 2015;45:679–686.
  • Domiati S, El-Mallah A, Ghoneim A, et al. Evaluation of anti-inflammatory, analgesic activities, and side effects of some pyrazole derivatives. Inflammopharmacology. 2016;24:163–172.
  • Kontogiorgis C, Mantzanidou M, Hadjipavlou LD. Chalcones and their potential role in inflammation. Mini Rev Med Chem. 2008;8:1224–1242.
  • Bukhari SNA, Jantan I, Jasamai M. Anti-inflammatory trends of 1, 3- diphenyl-2-propen-1-one derivatives. Mini Rev Med Chem. 2013;13:87–94.
  • Middleton E, Kandaswami C. Effects of flavonoids on immune and inflammatory cell functions. Biochem Pharmacol. 1992;43:1167–1179.
  • Jung JC, Lee Y, Min D, et al. Practical synthesis of chalcone derivatives and their biological activities. Molecules. 2017;22:1872.
  • Abdellatif KRA, Elshemy HAH, Salama SA, et al. Synthesis, characterization and biological evaluation of novel 4′-fluoro-2′-hydroxy-chalcone derivatives as antioxidant, anti-inflammatory and analgesic agents. J Enzyme Inhib Med Chem. 2015;30:484–491.
  • Chen W, Ge X, Xu F, et al. Design, synthesis and biological evaluation of paralleled Aza resveratrol–chalcone compounds as potential anti-inflammatory agents for the treatment of acute lung injury. Bioorg Med Chem Lett. 2015;25:2998–3004.
  • Bukhari SNA, Zhang X, Jantan I, et al. Synthesis, molecular modeling, and biological evaluation of novel 1, 3-diphenyl-2-propen-1-one based pyrazolines as anti-inflammatory agents. Chem Biol Drug Des. 2015;85:729–742.
  • Rani A, Singh A, Gut J, et al. Microwave-promoted facile access to 4-aminoquinolinephthalimides: synthesis and anti-plasmodial evaluation. Eur J Med Chem. 2018;143:150–156.
  • World-malaria-report-2017. [cited 2019 Jan 14]. Available from: http://www.who.int/malaria/publications/world-malariareport-2017/en/
  • Kalaria PN, Karad SC, Raval DK. A review on diverse heterocyclic compounds as the privileged scaffolds in antimalarial drug discovery. Eur J Med Chem. 2018;158:917–936.
  • Kumari A, Manvika Karnatak M, Davinder Singh D, et al. Current scenario of artemisinin and its analogues for antimalarial activity. Eur J Med Chem. 2019;163:804–829.
  • Ecker A, Lehane AM, Clain J, et al. PfCRT and its role in antimalarial drug resistance. Trends Parasitol. 2012;28:504–514.
  • Fidock DA, Nomura T, Talley AK, et al. Mutations in the P. falciparum digestive vacuole transmembrane protein PfCRT and evidence for their role in chloroquine resistance. Mol Cell. 2000;6:861–871.
  • Gutteridge CE, Nichols DA, Curtis SM, et al. In vitro and in vivo efficacy and in vitro metabolism of 1-phenyl-3-aryl-2-propen-1-ones against Plasmodium falciparum. Bioorg Med Chem Lett. 2006;16:5682–5686.
  • Liu M, Wilairat P, Go ML. Antimalarial alkoxylated and hydroxylated chalcones [corrected]: structure-activity relationship analysis. J Med Chem. 2001;44:4443–4452.
  • Chen M, Theander TG, Christensen SB, et al. a new antimalarial agent, inhibits in vitro growth of the human malaria parasite Plasmodium falciparum and protects mice from P. yoelii infection. Antimicrob Agents Chemother. 1994;38:1470–1475.
  • Chen M, Christensen SB, Zhai L, et al. The novel oxygenated chalcone, 2,4-dimethoxy-4’-butoxychalcone, exhibits potent activity against human malaria parasite Plasmodium falciparum in vitro and rodent parasites Plasmodium berghei and Plasmodium yoelii in vivo. J Infect Dis. 1997;176:1327–1333.
  • Sriwilaijaroen N, Liu M, Go ML, et al. Plasmepsin II inhibitory activity of alkoxylated and hydroxylated chalcones. Southeast Asian J Trop Med Public Health. 2006;37:607–612.
  • Dominguez JN, Charris JE, Lobo G, et al. Synthesis of quinolinyl chalcones and evaluation of their antimalarial activity. Eur J Med Chem. 2001;36:555–560.
  • Go ML, Liu M, Wilairat P, et al. Antiplasmodial chalcones inhibit sorbitol-induced hemolysis of plasmodium falciparum-infected erythrocytes. Antimicrob Agents Chemother. 2004;48:3241–3245.
  • Singh A, Gut J, Rosenthal PJ, et al. 4-Aminoquinoline-ferrocenyl-chalcone conjugates: synthesis and anti-plasmodial evaluation. Eur J Med Chem. 2017;125:269–277.
  • Singh A, Rani A, Gut J, et al. Piperazine-linked 4-aminoquinoline-chalcone/ferrocenyl-chalcone conjugates: synthesis and antiplasmodial evaluation. Chem Biol Drug Des. 2017;90:590–595.
  • Kumar S, Saini A, Gut J. et al. 4-Aminoquinoline-chalcone/-N-acetylpyrazoline conjugates: synthesis and antiplasmodial evaluation. Eur J Med Chem. 2017;29(138):993–1001.
  • Smit FJ, Bezuidenhout JJ, Bezuidenhout CC, et al. Synthesis and in vitro biological activities of ferrocenyl-chalcone Amides. Med Chem Res. 2016;25:568–584.
  • Bjelakovic G, Nikolova D, Gluud C. Antioxidant supplements and mortality. Current Opin Clin Nutr Metab Care. 2014;17:40–44.
  • Halliwell B. Free radicals and antioxidants: a personal view. Nutr Rev. 1994;52:253–265.
  • Meo FD, Lemaur V, Cornil J, et al. Free radical scavenging by natural polyphenols: atom versus electron transfer. J Phys Chem A. 2013;117:2082–2092.
  • Narsinghani T, Sharma MC, Bhargav S. Synthesis, docking studies and antioxidant activity of some chalcone and aurone derivatives. Med Chem Res. 2013;22:4059–4068.
  • Niu G, Wang W, Li J, et al. A novel structural class of coumarin-chalcone fibrates as PPARα/γ agonists with potent antioxidant activities: design, synthesis, biological evaluation and molecular docking studies. Eur J Med Chem. 2017;138:212–220.
  • Cheng JH, Hung CF, Yang SC, et al. Synthesis and cytotoxic, anti-inflammatory, and anti-oxidant activities of 2′,5′-dialkoxylchalcones as cancer chemopreventive agents. Bioorg Med Chem. 2008;16:7270–7276.
  • El Sayed Aly MR, Abd El Razek Fodah HH, Saleh SY. Antiobesity, antioxidant and cytotoxicity activities of newly synthesized chalcone derivatives and their metal complexes. Eur J Med Chem. 2014;76:517–530.
  • Tajammal A, Batool M, Ramzan A, et al. Synthesis, antihyperglycemic activity and computational studies of antioxidant chalcones and flavanones derived from 2,5 dihydroxyacetophenone. J Mol Struct. 2017;1148:512–520.
  • Ahmad MR, Sastry VG, Bano N, et al. Synthesis of novel chalcone derivatives by conventional and microwave irradiation methods and their pharmacological activities. Arabian J Chem. 2016;9:S931–S935.
  • Rani A, Viljoen A, Sumanjit, et al. Microwave-assisted highly efficient route to 4-aminoquinoline-phthalimide conjugates: synthesis and anti-tubercular evaluation. ChemistrySelect. 2017;2:10782–10785.
  • World Health Organization (WHO). WHO Global Tuberculosis Report 2018. Geneve (Switzerland): WHO; 2018. Available from: http://www.who.int/tb/publications/global_report/en/
  • Revised National Tuberculosis Control Program. Training manual on intensified TB/HIV package. New Delhi: Ministry of Health and Family Welfare; 2017.
  • Lu X, Tang J, Cui S, et al. Pyrazolo[1,5-a]pyridine-3-carboxamide hybrids: design, synthesis and evaluation of anti-tubercular activity. Eur J Med Chem. 2017;125:41–48.
  • Chetty S, Ramesh M, Pillay AS, et al. Recent advancements in the development of anti-tuberculosis drugs. Bioorg Med Chem Lett. 2017;27:370–386.
  • Javaid A, Ahmad N, Khan A, et al. Applicability of the World Health Organization recommended new shorter regimen in a multidrug-resistant tuberculosis high burden country. Eur Respir J. 2017;49:1601967.
  • Schito M, Maeurer M, Kim P, et al. Translating the tuberculosis research agenda: much accomplished, but much more to be done. Clin Infect Dis. 2015;3:95–101.
  • WHO treatment guidelines for drug-resistant tuberculosis (2016 update). [cited 2019 Jan 14]. Available from: http://www.who.int/tb/areas-of-work/drug-resistant-tb/treatment/resources/en/
  • Garcia A, Bocanegra-Garcia V, Palma-Nicolas JP, et al. Recent advances in antitubercular natural products. Eur J Med Chem. 2012;49:1–23.
  • Ahmad I, Thakur JP, Chanda D, et al. Syntheses of lipophilic chalcones and their conformationally restricted analogues as antitubercular agents. Bioorg Med Chem Lett. 2013;23:1322–1325.
  • Solankee A, Kapadia K, Ciric A, et al. Synthesis of some new S-triazine based chalcones and their derivatives as potent antimicrobial agents. Eur J Med Chem. 2010;45:510–518.
  • Tran TD, Nguyen TT, Do TH, et al. Synthesis and antibacterial activity of some heterocyclic chalcone analogues alone and in combination with antibiotics. Molecules. 2012;17:6684–6696.
  • Fliur M, Veaceslav B, Serghei P, et al. Chalcone scaffold based antimycobacterial agents. Med Chem. 2014;4:487–493.
  • Sivakumar PM, Seenivasan SP, Kumar V, et al. Synthesis, antimycobacterial activity evaluation, and QSAR studies of chalcone derivatives. Bioorg Med Chem Lett. 2007;17:1695–1700.
  • Hans RH, Guantai EM, Lategan C, et al. Synthesis, antimalarial and antitubercular activity of acetylenic chalcones. Bioorg Med Chem Lett. 2010;20:942–944.
  • Chiaradia LD, Mascarello A, Purificacao M, et al. Synthetic chalcones as efficient inhibitors of Mycobacterium tuberculosis protein tyrosine phosphatase PtpA. Bioorg Med Chem Lett. 2008;18:6227–6230.
  • Kanokmedhakul S, Kanokmedhakul K, Phonkerd N, et al. Antimycobacterial anthraquinone-chromanone compound and diketopiperazine alkaloid from the fungus Chaetomium globosum KMITL-N0802. Planta Med. 2002;68:834–836.
  • Friis-Moller A, Chen M, Fuursted K, et al. In vitro antimycobacterial and antilegionella activity of licochalcone a from Chinese licorice roots. Planta Med. 2002;68:416–419.
  • Macaev F, Boldescu V, Pogrebnoi S, et al. Chalcone scaffold based antimycobacterial agents. Med chem. 2014;4:487–493.
  • Dobchev DA, Pillai GG, Karelson M. In silico machine learning methods in drug development. Curr Top Med Chem. 2014;14:1913–1922.
  • Caldwell GW. In silico tools used for compound selection during target-based drug discovery and development. Expert Opin Drug Discov. 2015;10:1913–1922.
  • Desai V, Desai S, Gaonkar SN, et al. Novel quinoxalinyl chalcone hybrid scaffolds as enoyl ACP reductase inhibitors: synthesis, molecular docking and biological evaluation. Bioorg Med Chem Lett. 2017;27:2174–2180.
  • Santivanez-Veliz M, Perez-Silanes S, Torres E, et al. Design and synthesis of novel quinoxaline derivatives as potential candidates for treatment of multidrug-resistant and latent tuberculosis. Bioorg Med Chem Lett. 2016;26:2188–2193.
  • Joshi SD, Dixit SR, Kirankumar MN, et al. Synthesis, antimycobacterial screening and ligand-based molecular docking studies on novel pyrrole derivatives bearing pyrazoline, isoxazole and phenyl thiourea moieties. Eur J Med Chem. 2016;107:133–152.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.