326
Views
5
CrossRef citations to date
0
Altmetric
Review

Modeling heart failure in animal models for novel drug discovery and development

&
Pages 355-363 | Received 01 Nov 2018, Accepted 11 Feb 2019, Published online: 12 Mar 2019

References

  • Heidenreich PA, Albert NM, Allen LA, et al. Forecasting the impact of heart failure in the United States: a policy statement from the American Heart Association. Circ Heart Fail. 2013 May;6(3):606–619.
  • Milani-Nejad N, Janssen PM. Small and large animal models in cardiac contraction research: advantages and disadvantages. Pharmacol Ther. 2014 Mar;141(3):235–249.
  • Braunwald E. Heart failure. JACC Heart Fail. 2013 Feb;1(1):1–20.
  • Chung JH, Martin BL, Canan BD, et al. Etiology-dependent impairment of relaxation kinetics in right ventricular end-stage failing human myocardium. J Mol Cell Cardiol. 2018;121:81–93.
  • Libby P. Murine “model” monotheism: an iconoclast at the altar of mouse. Circ Res. 2015 Nov 6; 117(11):921–925.
  • Kim SM, Mizel D, Qin Y, et al. Blood pressure, heart rate and tubuloglomerular feedback in A1AR-deficient mice with different genetic backgrounds. Acta Physiol (Oxf). 2015 Jan;213(1):259–267.
  • Avila JJ, Kim SK, Massett MP. Differences in exercise capacity and responses to training in 24 inbred mouse strains. Front Physiol. 2017;8:974.
  • Stull LB, Hiranandani N, Kelley MA, et al. Murine strain differences in contractile function are temperature- and frequency-dependent. Pflugers Arch. 2006 Jan;6:1–6.
  • Kass DA, Hare JM, Georgakopoulos D, et al. Murine cardiac function: a cautionary tail. Circ Res. 1998;82(4):519–522.
  • Georgakopoulos D, Kass D. Minimal force-frequency modulation of inotropy and relaxation of in situ murine heart. J Physiol. 2001 Jul 15; 534(Pt.2):535–545.
  • Bers DM. Cardiac excitation-contraction coupling. Nature. 2002;415(6868):198–205.
  • Bers DM. Excitation-contraction coupling and cardiac contractile force. Dordrecht, The Netherlands: Kluwer Academic Publishers; 2001.
  • Monasky MM, Janssen PML. The positive force-frequency relationship is maintained in absence of sarcoplasmic reticulum function in rabbit, but not in rat myocardium. J Comp Physiol B. 2009 May;179(4):469–479.
  • Chung JH, Canan BD, Whitson BA, et al. Force-frequency relationship and early relaxation kinetics are preserved upon sarcoplasmic blockade in human myocardium. Physiol Rep. 2018 Oct;6(20):e13898.
  • Janssen PM, Biesiadecki BJ, Ziolo MT, et al. The need for speed: mice, men, and myocardial kinetic reserve. Circ Res. 2016 Jul 22;119(3):418–421.
  • Lompre AM, Mercadier JJ, Wisnewsky C, et al. Species- and age-dependent changes in the relative amounts of cardiac myosin isoenzymes in mammals. Dev Biol. 1981 Jun;84(2):286–290.
  • Mulieri LA, Hasenfuss G, Leavitt B, et al. Altered myocardial force-frequency relation in human heart failure. Circulation. 1992;85(5):1743–1750.
  • Billman GE, Nishijima Y, Belevych AE, et al. Effects of dietary omega-3 fatty acids on ventricular function in dogs with healed myocardial infarctions: in vivo and in vitro studies. Am J Physiol Heart Circ Physiol. 2010 Apr;298(4):H1219–28.
  • Varian KD, Kijtawornrat A, Gupta SC, et al. Impairment of diastolic function by lack of frequency-dependent myofilament desensitization rabbit right ventricular hypertrophy. Circ Heart Fail. 2009 Sep;2(5):472–481.
  • Layland J, Kentish JC. Positive force- and [Ca2+]i-frequency relationships in rat ventricular trabeculae at physiological frequencies. Am J Physiol Heart Circ Physiol. 1999;276(1 Pt 2):H9–H18.
  • Stull LB, Leppo M, Marban E, et al. Physiological determinants of contractile force generation and calcium handling in mouse myocardium. J Mol Cell Cardiol. 2002;34(xx):1367–1376.
  • deAlmeida AC, van Oort RJ, Wehrens XH. Transverse aortic constriction in mice. J Vis Exp. 2010 38.
  • Siri FM, Nordin C, Factor SM, et al. Compensatory hypertrophy and failure in gradual pressure-overloaded guinea pig heart. Am J Physiol. 1989 Sep;257(3 Pt 2):H1016–24.
  • Gupta SC, Varian KD, Bal NC, et al. Pulmonary artery banding alters the expression of Ca2+ transport proteins in the right atrium in rabbits. Am J Physiol Heart Circ Physiol. 2009 Apr 17.
  • Kleaveland JP, Kussmaul WG, Vinciguerra T, et al. Volume overload hypertrophy in a closed-chest model of mitral regurgitation. Am J Physiol. 1988 Jun;254(6 Pt 2):H1034–41.
  • Barrick CJ, Dong A, Waikel R, et al. Parent-of-origin effects on cardiac response to pressure overload in mice. Am J Physiol Heart Circ Physiol. 2009 Sep;297(3):H1003–9.
  • Juneau C, Calderone A, Rouleau JL. Myocardial beta-adrenergic and mechanical properties in pacing-induced heart failure in dogs. Am J Physiol. 1992 May;262(5 Pt 2):H1458–67.
  • O’Rourke B, Kass DA, Tomaselli GF, et al. Mechanisms of altered excitation-contraction coupling in canine tachycardia-induced heart failure, I: experimental studies. Circ Res. 1999;84(5):562–570.
  • Cheng CP, Igarashi Y, Little WC. Mechanism of augmented rate of left ventricular filling during exercise. Circ Res. 1992 Jan;70(1):9–19.
  • Hessel MH, Steendijk P, Den Adel B, et al. van der Laarse A. Characterization of right ventricular function after monocrotaline-induced pulmonary hypertension in the intact rat. Am J Physiol Heart Circ Physiol. 2006 Nov;291(5):H2424–30.
  • Lamberts RR, Caldenhoven E, Lansink M, et al. Preservation of diastolic function in monocrotaline-induced right ventricular hypertrophy in rats. Am J Physiol Heart Circ Physiol. 2007 Sep;293(3):H1869–76.
  • Grimm D, Elsner D, Schunkert H, et al. Development of heart failure following isoproterenol administration in the rat: role of the renin-angiotensin system. Cardiovasc Res. 1998 Jan;37(1):91–100.
  • Wang JJ, Rau C, Avetisyan R, et al. Genetic dissection of cardiac remodeling in an isoproterenol-induced heart failure mouse model. PLoS Genet. 2016 Jul;12(7):e1006038.
  • Ichihara S, Senbonmatsu T, Price E Jr., et al. Angiotensin II type 2 receptor is essential for left ventricular hypertrophy and cardiac fibrosis in chronic angiotensin II-induced hypertension. Circulation. 2001 Jul 17;104(3):346–351.
  • Daemen MJ, Lombardi DM, Bosman FT, et al. Angiotensin II induces smooth muscle cell proliferation in the normal and injured rat arterial wall. Circ Res. 1991 Feb;68(2):450–456.
  • Baker KM, Booz GW, Dostal DE. Cardiac actions of angiotensin II: role of an intracardiac renin-angiotensin system. Annu Rev Physiol. 1992;54:227–241.
  • Oikawa Y, Maehara K, Saito T, et al. Attenuation of angiotensin II-mediated coronary vasoconstriction and vasodilatory action of angiotensin-converting enzyme inhibitor in pacing-induced heart failure in dogs. J Am Coll Cardiol. 2001 Oct;38(4):1188–1194.
  • Elnakish MT, Moldovan L, Khan M, et al. Myocardial Rac1 exhibits partial involvement in thyroxin-induced cardiomyocyte hypertrophy and its inhibition is not sufficient to improve cardiac dysfunction or contractile abnormalities in mouse papillary muscles. J Cardiovasc Pharmacol. 2013 Jun;61(6):536–544.
  • Elnakish MT, Schultz EJ, Gearinger RL, et al. Differential involvement of various sources of reactive oxygen species in thyroxin-induced hemodynamic changes and contractile dysfunction of the heart and diaphragm muscles. Free Radic Biol Med. 2015;83:252–261.
  • Repas SJ, Saad NS, Janssen PML, et al. Memantine, an NMDA receptor antagonist, prevents thyroxin-induced hypertension, but not cardiac remodeling. J Cardiovasc Pharmacol. 2017 Nov;70(5):305–313.
  • Saad NS, Repas SJ, Floyd K, et al. Recovery following thyroxine treatment withdrawal, but not propylthiouracil, averts in vivo and ex vivo thyroxine-provoked cardiac complications in adult FVB/N mice. Biomed Res Int. 2017;2017:6071031.
  • Hubner NS, Merkle A, Jung B, et al. Analysis of left ventricular function of the mouse heart during experimentally induced hyperthyroidism and recovery. NMR Biomed. 2015 Jan;28(1):116–123.
  • Janssen PM, Stull LB, Leppo MK, et al. Selective contractile dysfunction of left, not right, ventricular myocardium in the SHHF rat. Am J Physiol Heart Circ Physiol. 2003;284(3):H772–8.
  • Li Z, Bing OH, Long X, et al. Increased cardiomyocyte apoptosis during the transition to heart failure in the spontaneously hypertensive rat. Am J Physiol. 1997 May;272(5 Pt 2):H2313–9.
  • Mitchell GF, Pfeffer JM, Pfeffer MA. The transition to failure in the spontaneously hypertensive rat. Am J Hypertens. 1997 May;10(5 Pt 2):120s–26s.
  • Langenickel TH, Buttgereit J, Pagel-Langenickel I, et al. Cardiac hypertrophy in transgenic rats expressing a dominant-negative mutant of the natriuretic peptide receptor B. Proc Natl Acad Sci U S A. 2006 Mar 21;103(12):4735–4740.
  • Elnakish MT, Hassanain HH, Janssen PM. Vascular remodeling-associated hypertension leads to left ventricular hypertrophy and contractile dysfunction in profilin-1 transgenic mice. J Cardiovasc Pharmacol. 2012 Dec;60(6):544–552.
  • Heusch G. Myocardial Ischemia: lack of coronary blood flow or myocardial oxygen supply/demand imbalance? Circ Res. 2016 Jul 8;119(2):194–196.
  • Tanai E, Frantz S. Pathophysiology of heart failure. Compr Physiol. 2015 Dec 15;6(1):187–214.
  • Redfield MM. Epidemiology and pathophysiology of heart failure. Curr Cardiol Rep. 2000 May;2(3):179–180.
  • Feldman AM, Li YY, McTiernan CF. Matrix metalloproteinases in pathophysiology and treatment of heart failure. Lancet. 2001 Mar 3;357(9257):654–655.
  • McTiernan CF, Feldman AM. The role of tumor necrosis factor alpha in the pathophysiology of congestive heart failure. Curr Cardiol Rep. 2000 May;2(3):189–197.
  • Monnet E, Chachques JC. Animal models of heart failure: what is new? Ann Thorac Surg. 2005 Apr;79(4):1445–1453.
  • Ou L, Li W, Liu Y, et al. Animal models of cardiac disease and stem cell therapy. Open Cardiovasc Med J. 2010 Nov;26(4):231–239.
  • Wayman NS, McDonald MC, Chatterjee PK, et al. Models of coronary artery occlusion and reperfusion for the discovery of novel antiischemic and antiinflammatory drugs for the heart. Methods Mol Biol. 2003;225:199–208.
  • Gao XM, Dart AM, Dewar E, et al. Serial echocardiographic assessment of left ventricular dimensions and function after myocardial infarction in mice. Cardiovasc Res. 2000 Jan 14;45(2):330–338.
  • Iwanaga K, Takano H, Ohtsuka M, et al. Effects of G-CSF on cardiac remodeling after acute myocardial infarction in swine. Biochem Biophys Res Commun. 2004 Dec 24;325(4):1353–1359.
  • Shettigar V, Zhang B, Little SC, et al. Rationally engineered Troponin C modulates in vivo cardiac function and performance in health and disease. Nat Commun. 2016;7:10794.
  • Klocke R, Tian W, Kuhlmann MT, et al. Surgical animal models of heart failure related to coronary heart disease. Cardiovasc Res. 2007 Apr 1;74(1):29–38.
  • Hood WB Jr., McCarthy B, Lown B. Myocardial infarction following coronary ligation in dogs. Hemodynamic effects of isoproterenol and acetylstrophanthidin. Circ Res. 1967 Aug;21(2):191–199.
  • Michael LH, Entman ML, Hartley CJ, et al. Myocardial ischemia and reperfusion: a murine model. Am J Physiol. 1995 Dec;269(6 Pt 2):H2147–54.
  • Sabbah HN, Stein PD, Kono T, et al. A canine model of chronic heart failure produced by multiple sequential coronary microembolizations. Am J Physiol. 1991 Apr;260(4 Pt 2):H1379–84.
  • Suzuki M, Asano H, Tanaka H, et al. Development and evaluation of a new canine myocardial infarction model using a closed-chest injection of thrombogenic material. Jpn Circ J. 1999 Nov;63(11):900–905.
  • Gengo PJ, Sabbah HN, Steffen RP, et al. Myocardial beta adrenoceptor and voltage sensitive calcium channel changes in a canine model of chronic heart failure. J Mol Cell Cardiol. 1992 Nov;24(11):1361–1369.
  • Gupta RC, Shimoyama H, Tanimura M, et al. SR Ca(2+)-ATPase activity and expression in ventricular myocardium of dogs with heart failure. Am J Physiol. 1997 Jul;273(1 Pt 2):H12–8.
  • Sabbah HN, Shimoyama H, Kono T, et al. Effects of long-term monotherapy with enalapril, metoprolol, and digoxin on the progression of left ventricular dysfunction and dilation in dogs with reduced ejection fraction. Circulation. 1994 Jun;89(6):2852–2859.
  • Dixon JA, Spinale FG. Large animal models of heart failure: a critical link in the translation of basic science to clinical practice. Circ Heart Fail. 2009 May;2(3):262–271.
  • St Louis JD, Hughes GC, Kypson AP, et al. An experimental model of chronic myocardial hibernation. Ann Thorac Surg. 2000 May;69(5):1351–1357.
  • Harada K, Grossman W, Friedman M, et al. Basic fibroblast growth factor improves myocardial function in chronically ischemic porcine hearts. J Clin Invest. 1994 Aug;94(2):623–630.
  • Roth DM, White FC, Mathieu-Costello O, et al. Effects of left circumflex Ameroid constrictor placement on adrenergic innervation of myocardium. Am J Physiol. 1987 Dec;253(6 Pt 2):H1425–34.
  • Patterson RE, Kirk ES. Analysis of coronary collateral structure, function, and ischemic border zones in pigs. Am J Physiol. 1983 Jan;244(1):H23–31.
  • van Den Bos EJ, Mees BM, de Waard MC, et al. A novel model of cryoinjury-induced myocardial infarction in the mouse: a comparison with coronary artery ligation. Am J Physiol Heart Circ Physiol. 2005 Sep;289(3):H1291–300.
  • Gonzalez-Rosa JM, Mercader N. Cryoinjury as a myocardial infarction model for the study of cardiac regeneration in the zebrafish. Nat Protoc. 2012 Mar 29;7(4):782–788.
  • Yang Y, de Gervai PD, Sun J, et al. Dynamic manganese-enhanced magnetic resonance imaging can detect chronic cryoinjury-induced infarction in pig hearts in vivo. Contrast Media Mol Imaging. 2011 Nov-Dec;6(6):426–436.
  • Biesiadecki BJ, Davis JP, Ziolo MT, et al. Tri-modal regulation of cardiac muscle relaxation; intracellular calcium decline, thin filament deactivation, and cross-bridge cycling kinetics. Biophys Rev. 2014;6:273–289.
  • Houser SR, Margulies KB, Murphy AM, et al. Animal models of heart failure: a scientific statement from the American heart association. Circ Res. 2012 Jun 22;111(1):131–150.
  • Hasenfuss G, Mulieri LA, Leavitt BJ, et al. Alteration of contractile function and excitation-contraction coupling in dilated cardiomyopathy. Circ Res. 1992;70(6):1225–1232.
  • Gwathmey JK, Slawsky MT, Hajjar RJ, et al. Role of intracellular calcium handling in force-interval relationships of human ventricular myocardium. J Clin Invest. 1990;85(5):1599–1613.
  • Rossman EI, Petre RE, Chaudhary KW, et al. Abnormal frequency-dependent responses represent the pathophysiologic signature of contractile failure in human myocardium. J Mol Cell Cardiol. 2004 Jan;36(1):33–42.
  • Canan BD, Haizlip KM, Xu Y, et al. Effect of exercise training and myocardial infarction on force development and contractile kinetics in isolated canine myocardium. J Appl Physiol (1985). 2016 Jan;120(8):817–824.
  • Delfin DA, Xu Y, Peterson JM, et al. Improvement of cardiac contractile function by peptide-based inhibition of NF-kappaB in the utrophin/dystrophin-deficient murine model of muscular dystrophy. J Transl Med. 2011;9:68.
  • Janssen PML, Hiranandani N, Mays TA, et al. Utrophin deficiency worsens cardiac contractile dysfunction present in dystrophin-deficient mdx mice. Am J Physiol Heart Circ Physiol. 2005;289(15):H2373–78.
  • Janssen PML, Canan BD, Kilic A, et al. Human myocardium has a robust alpha1a-subtype adrenergic receptor inotropic response. J Cardiovasc Pharmacol. 2018 May 25;72(3):136–142.
  • Elnakish MT, Canan BD, Kilic A, et al. Effects of zacopride, a moderate IK1 channel agonist, on triggered arrhythmia and contractility in human ventricular myocardium. Pharmacol Res. 2017 Jan;115:309–318.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.