256
Views
8
CrossRef citations to date
0
Altmetric
Special Report

Developments in drug design strategies for bromodomain protein inhibitors to target Plasmodium falciparum parasites

, , &
Pages 415-425 | Received 02 Jul 2019, Accepted 10 Dec 2019, Published online: 23 Dec 2019

  • Bozdech Z, Llinas M, Pulliam BL, et al. The transcriptome of the intraerythrocytic developmental cycle of Plasmodium falciparum. PLoS Biol. 2003;1:85–100.
  • Reid AJ, Talman AM, Bennett HM, et al. Single-cell RNA-seq reveals hidden transcriptional variation in malaria parasites. Elife. 2018;7:e33105.
  • Yeoh LM, Goodman CD, Mollard V, et al. Comparative transcriptomics of female and male gametocytes in Plasmodium berghei and the evolution of sex in alveolates. BMC Genomics. 2017;18:734.
  • Vivax Sporozoite C. Transcriptome and histone epigenome of Plasmodium vivax salivary-gland sporozoites point to tight regulatory control and mechanisms for liver-stage differentiation in relapsing malaria. Int J Parasitol. 2019;49:501–513.
  • Gural N, Mancio-Silva L, Miller AB, et al. In vitro culture, drug sensitivity, and transcriptome of Plasmodium Vivax hypnozoites. Cell Host Microbe. 2018;23(395–406):e4.
  • Lopez-Barragan MJ, Lemieux J, Quinones M, et al. Directional gene expression and antisense transcripts in sexual and asexual stages of Plasmodium falciparum. BMC Genomics. 2011;12:587.
  • Salcedo-Amaya AM, van Driel MA, Alako BT, et al. Dynamic histone H3 epigenome marking during the intraerythrocytic cycle of Plasmodium falciparum. Proc Natl Acad Sci U S A. 2009;106:9655–9660.
  • Talbert PB, Ahmad K, Almouzni G, et al. A unified phylogeny-based nomenclature for histone variants. Epigenetics Chromatin. 2012;5:7.
  • Gupta AP, Bozdech Z. Epigenetic landscapes underlining global patterns of gene expression in the human malaria parasite, Plasmodium falciparum. Int J Parasitol. 2017;47:399–407.
  • Ay F, Bunnik EM, Varoquaux N, et al. Multiple dimensions of epigenetic gene regulation in the malaria parasite Plasmodium falciparum: gene regulation via histone modifications, nucleosome positioning and nuclear architecture in P. falciparum. Bioessays. 2015;37:182–194.
  • Duffy MF, Selvarajah SA, Josling GA, et al. The role of chromatin in Plasmodium gene expression. Cell Microbiol. 2012;14:819–828.
  • Duffy MF, Selvarajah SA, Josling GA, et al. Epigenetic regulation of the Plasmodium falciparum genome. Brief Funct Genomics. 2014;13:203–216.
  • Cui L, Miao J. Chromatin-mediated epigenetic regulation in the malaria parasite Plasmodium falciparum. Eukaryot Cell. 2010;9:1138–1149.
  • Darkin-Rattray SJ, Gurnett AM, Myers RW, et al. Apicidin: a novel antiprotozoal agent that inhibits parasite histone deacetylase. Proc Natl Acad Sci U S A. 1996;93:13143–13147.
  • Duraisingh MT, Voss TS, Marty AJ, et al. Heterochromatin silencing and locus repositioning linked to regulation of virulence genes in Plasmodium falciparum. Cell. 2005;121:13–24.
  • Bougdour A, Maubon D, Baldacci P, et al. Drug inhibition of HDAC3 and epigenetic control of differentiation in Apicomplexa parasites. J Exp Med. 2009;206:953–966.
  • Andrews KT, Walduck A, Kelso MJ, et al. Anti-malarial effect of histone deacetylation inhibitors and mammalian tumour cytodifferentiating agents. Int J Parasitol. 2000;30:761–768.
  • Chen Y, Lopez-Sanchez M, Savoy DN, et al. A series of potent and selective, triazolylphenyl-based histone deacetylases inhibitors with activity against pancreatic cancer cells and Plasmodium falciparum. J Med Chem. 2008;51:3437–3448.
  • Patil V, Guerrant W, Chen PC, et al. Antimalarial and antileishmanial activities of histone deacetylase inhibitors with triazole-linked cap group. Bioorg Med Chem. 2010;18:415–425.
  • Strobl JS, Cassell M, Mitchell SM, et al. Scriptaid and suberoylanilide hydroxamic acid are histone deacetylase inhibitors with potent anti-Toxoplasma gondii activity in vitro. J Parasitol. 2007;93:694–700.
  • Dhalluin C, Carlson JE, Zeng L, et al. Structure and ligand of a histone acetyltransferase bromodomain. Nature. 1999;399:491–496.
  • Filippakopoulos P, Picaud S, Mangos M, et al. Histone recognition and large-scale structural analysis of the human bromodomain family. Cell. 2012;149:214–231.
  • Andrieu G, Belkina AC, Denis GV. Clinical trials for BET inhibitors run ahead of the science. Drug Discov Today Technol. 2016;19:45–50.
  • Denis GV. Bromodomain motifs and “scaffolding”? Front Biosci. 2001;6:D1065–8.
  • Wernimont A, Edwards A. In situ proteolysis to generate crystals for structure determination: an update. PloS One. 2009;4:e5094–e5094.
  • Schrodinger LLC. The PyMOL molecular graphics system. Version 1.8. 2015.
  • Burley SK, Berman HM, Bhikadiya C, et al. RCSB protein data bank: biological macromolecular structures enabling research and education in fundamental biology, biomedicine, biotechnology and energy. Nucleic Acids Res. 2019;47:D464–d474.
  • Filippakopoulos P, Qi J, Picaud S, et al. Selective inhibition of BET bromodomains. Nature. 2010;468:1067–1073.
  • Ferri E, Petosa C, McKenna CE. Bromodomains: structure, function and pharmacology of inhibition. Biochem Pharmacol. 2016;106:1–18.
  • Jung M, Gelato KA, Fernandez-Montalvan A, et al. Targeting BET bromodomains for cancer treatment. Epigenomics. 2015;7:487–501.
  • Chung C-W, Tough DF. Bromodomains: a new target class for small molecule drug discovery. Drug Discov Today Ther Strateg. 2012;9:e111–e120.
  • Runcie AC, Zengerle M, Chan KH, et al. Optimization of a “bump-and-hole” approach to allele-selective BET bromodomain inhibition. Chem Sci. 2018;9:2452–2468.
  • Boi M, Gaudio E, Bonetti P, et al. The BET Bromodomain Inhibitor OTX015 affects pathogenetic pathways in preclinical B-cell tumor models and synergizes with targeted drugs. Clin Cancer Res. 2015;21:1628–1638.
  • Jeffers V, Yang C, Huang S, et al. 2017. Bromodomains in protozoan parasites: evolution, function, and opportunities for drug development. Microbiol Mol Biol Rev. 81:e00047–e16.
  • Toenhake TC, Fraschka S, Vijayabaskar M, et al. Chromatin accessibility-based characterization of the gene regulatory network underlying Plasmodium falciparum blood-stage development. Cell Host Microbe. 2018;23:557–569.e9.
  • Hui DFM, Josling G, Tallant C, et al. Plasmodium bromodomain PfBDP4. A Target Enabling Package (TEP). 2016.
  • Wernimont AK, Loppnau P, Knapp S, et al. Crystal Structure of PF3D7_1475600, a bromodomain from Plasmodium Falciparum.
  • Hou CFD, Loppnau P, Dong A, et al. Structural Genomics Consortium (SGC). Bromodomain of PF3D7_1475600 from Plasmodium falciparum complexed with peptide H4K5ac.
  • Fan Q, An L, Cui L. Plasmodium falciparum histone acetyltransferase, a yeast GCN5 homologue involved in chromatin remodeling. Eukaryot Cell. 2004;3:264–276.
  • Xiao B, Yin S, Hu Y, et al. Epigenetic editing by CRISPR/dCas9 in Plasmodium falciparum. Proc Natl Acad Sci U S A. 2019;116:255–260.
  • Cui L, Miao J, Cui L. Cytotoxic effect of curcumin on malaria parasite Plasmodium falciparum: inhibition of histone acetylation and generation of reactive oxygen species. Antimicrob Agents Chemother. 2007;51:488–494.
  • Ravish I, Raghav N. Curcumin as inhibitor of mammalian Cathepsin B, Cathepsin H, acid phosphatase and alkaline phosphatase: a correlation with pharmacological activities. Med Chem Res. 2014;23:2847–2855.
  • Banerjee S, Ji C, Mayfield JE, et al. Ancient drug curcumin impedes 26S proteasome activity by direct inhibition of dual-specificity tyrosine-regulated kinase 2. Proc Natl Acad Sci U S A. 2018;115:8155–8160.
  • Yin H, Guo Q, Li X, et al. Curcumin suppresses IL-1beta secretion and prevents inflammation through inhibition of the NLRP3 inflammasome. J Immunol. 2018;200:2835–2846.
  • Chen F, Mackey AJ, Stoeckert CJ Jr, et al. OrthoMCL-DB: querying a comprehensive multi-species collection of ortholog groups. Nucleic Acids Res. 2006;34:D363–D368.
  • Aurrecoechea C, Brestelli J, Brunk BP, et al. PlasmoDB: a functional genomic database for malaria parasites. Nucleic Acids Res. 2008;37:D539–D543.
  • Eddy SR. Profile hidden Markov models. Bioinformatics. 1998;14:755–763.
  • Sievers F, Wilm A, Dineen D, et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol. 2011;7:539.
  • Waterhouse AM, Procter JB, Martin DMA, Clamp M, Barton GJ. Jalview Version. 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics. 2009;25:1189–1191.
  • Guindon S, Dufayard J-F, Lefort V, et al. Methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol. 2010;59:307–321.
  • Rambaut A FigTree, version 1.4.3.2009. [cited 2019 Aug 1]. Available from: http://tree.bio.ed.ac.uk/software/figtree/
  • Team TI. Inkscape, version 0.92.4. [cited 2019 Aug 1]. Available from: http://www.inkscape.org.2004.
  • Josling GA, Petter M, Oehring SC, et al. A Plasmodium falciparum bromodomain protein regulates invasion gene expression. Cell Host Microbe. 2015;17:741–751.
  • Santos J, Josling G, Ross P, et al. Red blood cell invasion by the malaria parasite is coordinated by the PfAP2-I transcription factor. Cell Host Microbe. 2017;21:731–741.e10.
  • Callebaut I, Prat K, Meurice E, et al. Prediction of the general transcription factors associated with RNA polymerase II in Plasmodium falciparum: conserved features and differences relative to other eukaryotes. BMC Genomics. 2005;6:100.
  • Sidik S, Huet D, Ganesan S, et al. A genome-wide CRISPR screen in toxoplasma identifies essential apicomplexan genes. Cell. 2016;166:1423–1435.e12.
  • Schwach F, Bushell E, Gomes A, et al. PlasmoGEM, a database supporting a community resource for large-scale experimental genetics in malaria parasites. Nucleic Acids Res. 2015;43:D1176–D1182.
  • Zhang M, Wang C, Otto TD, et al. Uncovering the essential genes of the human malaria parasite Plasmodium falciparum by saturation mutagenesis. Science. 2018;360:eaap7847.
  • Katsuno K, Burrows J, Duncan K, et al. Hit and lead criteria in drug discovery for infectious diseases of the developing world. Nat Rev Drug Discov. 2015;14:751–758.
  • Gamo F-J, Sanz L, Vidal J, et al. Thousands of chemical starting points for antimalarial lead identification. Nature. 2010;465:305–310.
  • Guiguemde WA, Shelat A, Bouck D, et al. Chemical genetics of Plasmodium falciparum. Nature. 2010;465:311–315.
  • Meister S, Plouffe D, Kuhen K, et al. Imaging of Plasmodium liver stages to drive next-generation antimalarial drug discovery. Science. 2011;334:1372–1377.
  • Spangenberg T, Burrows JN, Kowalczyk P, et al. The open access malaria box: a drug discovery catalyst for neglected diseases. Plos One. 2013;8:e62906.
  • Cowell AN, Istvan ES, Lukens AK, et al. Mapping the malaria parasite druggable genome by using in vitro evolution and chemogenomics. Science (New York, NY). 2017;359:191–199.
  • Alonso V, Ritagliati C, Cribb P, et al. Overexpression of bromodomain factor 3 in Trypanosoma cruzi (TcBDF3) affects differentiation of the parasite and protects it against bromodomain inhibitors. Febs J. 2016;283:2051–2066.
  • Niesen FH, Berglund H, Vedadi M. The use of differential scanning fluorimetry to detect ligand interactions that promote protein stability. Nat Protoc. 2007;2:2212–2221.
  • Koshland DE. Application of a theory of enzyme specificity to protein synthesis. Proceedings of the National academy of sciences of the United States of America.1958;44:98–104.
  • Galdeano C, Ciulli A. Selectivity on-target of bromodomain chemical probes by structure-guided medicinal chemistry and chemical biology. Future Med Chem. 2016;8:1655–1680.
  • Clark PGK, Vieira LCC, Tallant C, et al. LP99: discovery and synthesis of the first selective BRD7/9 bromodomain inhibitor. Angew Chem. 2015;54:6217–6221.
  • Bamborough P, Chung C-W. Fragments in bromodomain drug discovery. MedChemComm. 2015;6:1587–1604.
  • Dutra LA, Heidenreich D, Silva GDBd, et al. Dietary compound resveratrol is a Pan-BET bromodomain inhibitor. Nutrients. 2017;9:1172.
  • Jiang F, Wei Q, Li H, et al. Discovery of novel small molecule induced selective degradation of the bromodomain and extra-terminal (BET) bromodomain protein BRD4 and BRD2 with cellular potencies. Bioorg Med Chem. 2019;115181.
  • Yasgar A, Jadhav A, Simeonov A, et al. AlphaScreen-based assays: ultra-high-throughput screening for small-molecule inhibitors of challenging enzymes and protein-protein interactions. Methods Mol Biol. 2016;1439:77–98.
  • Jung M, Philpott M, Müller S, et al. Affinity map of bromodomain protein 4 (BRD4) interactions with the histone H4 tail and the small molecule inhibitor JQ1. J Biol Chem. 2014;289:9304–9319.
  • Zou LJ, Xiang QP, Xue XQ, et al. Y08197 is a novel and selective CBP/EP300 bromodomain inhibitor for the treatment of prostate cancer. Acta Pharmacol Sin. 2019;40:1436–1447.
  • Wu Q, Heidenreich D, Zhou S, et al. A chemical toolbox for the study of bromodomains and epigenetic signaling. Nat Commun. 2019;10:1915.
  • Sun Z, Zhang H, Chen Z, et al. Discovery of novel BRD4 inhibitors by high-throughput screening, crystallography, and cell-based assays. Bioorg Med Chem Lett. 2017;27:2003–2009.
  • Lolli G, Caflisch A. High-throughput fragment docking into the BAZ2B bromodomain: efficient in silico screening for X-ray crystallography. ACS Chem Biol. 2016;11:800–807.
  • Hoffer L, Renaud JP, Horvath D. Fragment-based drug design: computational & experimental state of the art. Comb Chem High Throughput Screen. 2011;14:500–520.
  • Harner MJ, Frank AO, Fesik SW. Fragment-based drug discovery using NMR spectroscopy. J Biomol NMR. 2013;56:65–75.
  • Jennings LE, Measures AR, Wilson BG, et al. Phenotypic screening and fragment-based approaches to the discovery of small-molecule bromodomain ligands. Future Med Chem. 2014;6:179–204.
  • Kirberger SE, Ycas PD, Johnson JA, et al. Selectivity, ligand deconstruction, and cellular activity analysis of a BPTF bromodomain inhibitor. Org Biomol Chem. 2019;17:2020–2027.
  • Perell GT, Mishra NK, Sudhamalla B, et al. Specific acetylation patterns of H2A.Z form transient interactions with the BPTF bromodomain. Biochem. 2017;56:4607–4615.
  • Yang SY. Pharmacophore modeling and applications in drug discovery: challenges and recent advances. Drug Discov Today. 2010;15:444–450.
  • PDB ID: 4PY6Fonseca M, Tallant C, Hutchinson A, et al., Structural Genomics Consortium (SGC). Crystal Structure of bromodomain of PFA0510w from Plasmodium falciparum.
  • Chua MJ, Robaa D, Skinner-Adams TS, et al. Activity of bromodomain protein inhibitors/binders against asexual-stage Plasmodium falciparum parasites. Int J Parasitol Drugs Drug Resist. 2018;8:189–193.
  • PDB ID: 4QNSFonseca M, Tallant C, Knapp S, et al. Structural Genomics Consortium (SGC). Crystal structure of bromodomain from Plasmodium falciparum GCN5, PF3D7_0823300.
  • PDB ID: 3FKM Wernimont AK, Amaya MF, Lam A, et al., Structural Genomics Consortium (SGC). Plasmodium falciparum bromodomain-containing protein PF10_0328.
  • Hammitzsch A, Tallant C, Fedorov O, et al. CBP30, a selective CBP/p300 bromodomain inhibitor, suppresses human Th17 responses. Proc Natl Acad Sci U S A. 2015;112:10768–10773.
  • Picaud S, Leonards K, Lambert JP, et al. Promiscuous targeting of bromodomains by bromosporine identifies BET proteins as master regulators of primary transcription response in leukemia. Sci Adv. 2016;2:e1600760.
  • Fedorov O, Lingard H, Wells C, et al. [1,2,4]triazolo[4,3-a]phthalazines: inhibitors of diverse bromodomains. J Med Chem. 2014;57:462–476.
  • Moustakim M, Clark PG, Trulli L, et al. Discovery of a PCAF bromodomain chemical probe. Angew Chem Int Ed Engl. 2017;56:827–831.
  • Islam K. The bump-and-hole tactic: expanding the scope of chemical genetics. Cell Chem Biol. 2018;25:1171–1184.
  • Ghorbal M, Gorman M, Macpherson CR, et al. Genome editing in the human malaria parasite Plasmodium falciparum using the CRISPR-Cas9 system. Nat Biotechnol. 2014;32:819.
  • Zhang C, Xiao B, Jiang Y, et al. Efficient editing of malaria parasite genome using the CRISPR/Cas9 system. mBio. 2014;5:e01414.
  • Baragana B, Hallyburton I, Lee MC, et al. A novel multiple-stage antimalarial agent that inhibits protein synthesis. Nature. 2015;522:315–520.
  • Weidner T, Lucantoni L, Nasereddin A, et al. Antiplasmodial dihetarylthioethers target the coenzyme A synthesis pathway in Plasmodium falciparum erythrocytic stages. Malar J. 2017;16:192.
  • Rine J, Hansen W, Hardeman E, et al. Targeted selection of recombinant clones through gene dosage effects. Proc Natl Acad Sci U S A. 1983;80:6750–6754.
  • Sleebs BE, Lopaticki S, Marapana DS, et al. Inhibition of Plasmepsin V activity demonstrates its essential role in protein export, PfEMP1 display, and survival of malaria parasites. PLoS Biol. 2014;12:e1001897.
  • Flannery EL, Fidock DA, Winzeler EA. Using genetic methods to define the targets of compounds with antimalarial activity. J Med Chem. 2013;56:7761–7771.
  • Ariey F, Witkowski B, Amaratunga C, et al. A molecular marker of artemisinin-resistant Plasmodium falciparum malaria. Nature. 2014;505:50–55.
  • Xie SC, Gillett DL, Spillman NJ, et al. Target validation and identification of novel boronate inhibitors of the Plasmodium falciparum proteasome. J Med Chem. 2018;61:10053–10066.
  • Gisselberg JE, Herrera Z, Orchard LM, et al. Specific Inhibition of the bifunctional farnesyl/geranylgeranyl diphosphate synthase in malaria parasites via a new small-molecule binding site. Cell Chem Biol. 2018;25:185–193.e5.
  • Tuntland T, Ethell B, Kosaka T, et al. Implementation of pharmacokinetic and pharmacodynamic strategies in early research phases of drug discovery and development at novartis institute of biomedical research. Front Pharmacol. 2014;5:174.
  • Chung TDY, Terry DB, Smith LH. In vitro and in vivo assessment of ADME and PK properties during lead selection and lead optimization - guidelines, benchmarks and rules of thumb. In: Sittampalam GS, Grossman A, Brimacombe K, et al., editors. Assay guidance manual. Bethesda (MD): Eli Lilly & Company and the National Center for Advancing Translational Sciences; 2004. p. 1169.
  • Durham TB, Wiley MR. Target engagement measures in preclinical drug discovery: theory, methods, and case studies. In: Bhattachar SN, Morrison JS, Mudra DR, et al., editors. Translating molecules into medicines: cross-functional integration at the drug discovery-development interface. Cham: Springer International Publishing; 2017. p. 41–80.
  • Alqahtani A, Choucair K, Ashraf M, et al. Bromodomain and extra-terminal motif inhibitors: a review of preclinical and clinical advances in cancer therapy. Future Sci OA. 2019;5:Fso372.
  • Lewin J, Soria JC, Stathis A, et al. Phase Ib trial with birabresib, a small-molecule inhibitor of bromodomain and extraterminal proteins, in patients with selected advanced solid tumors. J Clin Oncol. 2018;36:3007–3014.
  • Piha-Paul SA, Sachdev JC, Barve M, et al. First-in-human study of mivebresib (ABBV-075), an oral pan-inhibitor of bromodomain and extra terminal proteins, in patients with relapsed/refractory solid tumors. Clin Cancer Res. 2019;25:6309–6319.
  • Tarning J, Zongo I, Some FA, et al. Population pharmacokinetics and pharmacodynamics of piperaquine in children with uncomplicated falciparum malaria. Clin Pharmacol Ther. 2012;91:497–505.
  • White NJ. Pharmacokinetic and pharmacodynamic considerations in antimalarial dose optimization. Antimicrob Agents Chemother. 2013;57:5792–5807.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.