262
Views
15
CrossRef citations to date
0
Altmetric
Review

Disentangling the fibrous microenvironment: designer culture models for improved drug discovery

, , ORCID Icon & ORCID Icon
Pages 159-171 | Received 15 Jul 2020, Accepted 09 Sep 2020, Published online: 29 Sep 2020

References

  • Prasad V, Mailankody S. Research and development spending to bring a single cancer drug to market and revenues after approval. JAMA Intern Med. 2017;177(11):1569–1575.
  • Takebe T, Imai R, Ono S. The current status of drug discovery and development as originated in United States Academia: the influence of industrial and academic collaboration on drug discovery and development. Clin Transl Sci. 2018;11(6):597–606.
  • Beachley VZ, Wolf MT, Sadtler K, et al. Tissue matrix arrays for high-throughput screening and systems analysis of cell function. Nat Methods. 2015;12(12):1197–1204.
  • Kojima T, Moraes C, Cavnar SP, et al. Surface-templated hydrogel patterns prompt matrix-dependent migration of breast cancer cells towards chemokine-secreting cells. Acta Biomater. 2015;13:68–77.
  • Jena MK, Janjanam J. Role of extracellular matrix in breast cancer development: a brief update. F1000Res. 2018;7: 274-274.
  • Muncie JM, Weaver VM. Chapter one - the physical and biochemical properties of the extracellular matrix regulate cell fate. In: editors Litscher ES, Wassarman PM. Current topics in developmental biology. Cambridge, MA: Academic Press; 2018. Vol. 130. 1–37.
  • Lu P, Weaver VM, Werb Z. The extracellular matrix: A dynamic niche in cancer progression. J Cell Biol. 2012;196(4):395–406.
  • Theocharis AD, Skandalis SS, Gialeli C, et al. Extracellular matrix structure. Extracell Matrix ECM ECM- Mater Ther Tools Targets Cancer Treat. 2016;97:4–27.
  • Baker BM, Chen CS. Deconstructing the third dimension – how 3D culture microenvironments alter cellular cues. J Cell Sci. 2012;125:3015–3024.
  • Acerbi I, Cassereau L, Dean I, et al. Human breast cancer invasion and aggression correlates with ECM stiffening and immune cell infiltration. Integr Biol Quant Biosci Nano Macro. 2015;7(10):1120–1134.
  • Rockey DC, Bell PD, Hill JA. Fibrosis — a common pathway to organ injury and failure. N Engl J Med. 2015;372(12):1138–1149.
  • Peters AE, Akhtar R, Comerford EJ, et al. The effect of ageing and osteoarthritis on the mechanical properties of cartilage and bone in the human knee joint. Sci Rep. 2018;8(1):5931.
  • Fong ELS, Harrington DA, Farach-Carson MC, et al. Heralding a new paradigm in 3D tumor modeling. Biomaterials. 2016;108:197–213.
  • Fallica B, Maffei JS, Villa S, et al. Alteration of cellular behavior and response to pi3k pathway inhibition by culture in 3D collagen gels. Plos One. 2012;7(10):e48024.
  • Carvalho MR, Lima D, Reis RL, et al. Anti-cancer drug validation: the contribution of tissue engineered models. Stem Cell Rev Rep. Published online 2017;1–17. DOI: https://doi.org/10.1007/s12015-017-9720-x.
  • Lovitt CJ, Shelper TB, Avery VM. Miniaturized three-dimensional cancer model for drug evaluation. ASSAY Drug Dev Technol. 2013;11(7):435–448.
  • Lovitt CJ, Shelper TB, Avery VM. Evaluation of chemotherapeutics in a three-dimensional breast cancer model. J Cancer Res Clin Oncol. 2015;141(5):951–959.
  • Davidson MD, Burdick JA, Wells RG. Engineered biomaterial platforms to study fibrosis. Adv Healthc Mater. 2020;9(8):1901682.
  • Tasdemir N, Bossart EA, Li Z, et al. Comprehensive phenotypic characterization of human invasive lobular carcinoma cell lines in 2D and 3D cultures. Cancer Res. 2018;78(21):6209.
  • Miermont A, Lee SWL, Adriani G, et al. Quantitative screening of the effects of hyper-osmotic stress on cancer cells cultured in 2- or 3-dimensional settings. Sci Rep. 2019;9(1):13782.
  • Edmondson R, Broglie JJ, Adcock AF, et al. Three-dimensional cell culture systems and their applications in drug discovery and cell-based biosensors. ASSAY Drug Dev Technol. 2014;12(4):207–218.
  • Bischel LL, Sung KE, Jiménez-Torres JA, et al. The importance of being a lumen. Faseb J. 2014;28(11):4583–4590.
  • Jiménez-Torres JA, Peery SL, Sung KE, et al. LumeNEXT: a practical method to pattern luminal structures in ECM gels. Adv Healthc Mater. 2016;5(2):198–204.
  • Baker BM, Trappmann B, Stapleton SC, et al. Microfluidics embedded within extracellular matrix to define vascular architectures and pattern diffusive gradients. Lab Chip. 2013;13(16):3246–3252.
  • Nelson CM, VanDuijn MM, Inman JL, et al. Tissue geometry determines sites of mammary branching morphogenesis in organotypic cultures. Science. 2006;314(5797):298–300.
  • Piotrowski-Daspit AS, Nelson CM. Engineering three-dimensional epithelial tissues embedded within extracellular matrix. J Vis Exp. 2016;(113):e54283. DOI:https://doi.org/10.3791/54283.
  • Pampaloni F, Stelzer E, Masotti A. Three-dimensional tissue models for drug discovery and toxicology. Recent Pat Biotechnol. 2009;3(2):103–117.
  • Peck Y, Wang D-A. Three-dimensionally engineered biomimetic tissue models for in vitro drug evaluation: delivery, efficacy and toxicity. Expert Opin Drug Deliv. 2013;10(3):369–383.
  • Kim D-H, Lipke EA, Kim P, et al. Nanoscale cues regulate the structure and function of macroscopic cardiac tissue constructs. Proc Natl Acad Sci. 2010;107(2):565.
  • Brightman AO, Rajwa BP, Sturgis JE, et al. Time-lapse confocal reflection microscopy of collagen fibrillogenesis and extracellular matrix assembly in vitro. Biopolymers. 2000;54(3):222–234.
  • Gillette BM, Jensen JA, Tang B, et al. In situ collagen assembly for integrating microfabricated three-dimensional cell-seeded matrices. Nat Mater. 2008;7(8):636–640.
  • Wolf K, Alexander S, Schacht V, et al. Collagen-based cell migration models in vitro and in vivo. Imaging Cell Dev Biol. 2009;20(8):931–941.
  • Matera DL, Wang WY, Smith MR, et al. Fiber density modulates cell spreading in 3D interstitial matrix mimetics. ACS Biomater Sci Eng. Published online 2019 May 22. DOI:https://doi.org/10.1021/acsbiomaterials.9b00141.
  • Provenzano PP, Inman DR, Eliceiri KW, et al. Collagen density promotes mammary tumor initiation and progression. BMC Med. 2008;6: 11-11.
  • Yang Y, Motte S, Kaufman LJ. Pore size variable type I collagen gels and their interaction with glioma cells. Biomaterials. 2010;31(21):5678–5688.
  • Velez DO, Ranamukhaarachchi SK, Kumar A, et al. 3D collagen architecture regulates cell adhesion through degradability, thereby controlling metabolic and oxidative stress. Integr Biol. 2019;11(5):221–234.
  • Velez DO, Tsui B, Goshia T, et al. 3D collagen architecture induces a conserved migratory and transcriptional response linked to vasculogenic mimicry. Nat Commun. 2017;8(1):1651.
  • Ranamukhaarachchi SK, Modi RN, Han A, et al. Macromolecular crowding tunes 3D collagen architecture and cell morphogenesis. Biomater Sci. 2019;7(2):618–633.
  • Berger AJ, Linsmeier KM, Kreeger PK, et al. Decoupling the effects of stiffness and fiber density on cellular behaviors via an interpenetrating network of gelatin-methacrylate and collagen. Biomaterials. 2017;141:125–135.
  • Baker BM, Trappmann B, Wang WY, et al. Cell-mediated fibre recruitment drives extracellular matrix mechanosensing in engineered fibrillar microenvironments. Nat Mater. 2015;14(12):1262–1268.
  • Rose JC, Gehlen DB, Haraszti T, et al. Biofunctionalized aligned microgels provide 3D cell guidance to mimic complex tissue matrices. Biomaterials. 2018;163:128–141.
  • Han W, Chen S, Yuan W, et al. Oriented collagen fibers direct tumor cell intravasation. Proc Natl Acad Sci. 2016;113(40):11208.
  • Nerger BA, Brun PT, Nelson CM. Marangoni flows drive the alignment of fibrillar cell-laden hydrogels. Sci Adv. 2020;6(24):eaaz7748.
  • Zeng Y-N, Kang Y-L, Rau L-R, et al. Construction of cell-containing, anisotropic, three-dimensional collagen fibril scaffolds using external vibration and their influence on smooth muscle cell phenotype modulation. Biomed Mater. 2017;12(4):045019.
  • Unadkat HV, Hulsman M, Cornelissen K, et al. An algorithm-based topographical biomaterials library to instruct cell fate. Proc Natl Acad Sci. 2011;108(40):16565.
  • Ray A, Lee O, Win Z, et al. Anisotropic forces from spatially constrained focal adhesions mediate contact guidance directed cell migration. Nat Commun. 2017;8(1):14923.
  • Kim SJ, Tatman PD, Song DH, et al. Nanotopographic cues and stiffness control of tendon-derived stem cells from diverse conditions. Int J Nanomedicine. 2018;13:7217–7227.
  • Doyle AD, Wang FW, Matsumoto K, et al. One-dimensional topography underlies three-dimensional fibrillar cell migration. J Cell Biol. 2009;184(4):481–490.
  • Dixon AR, Moraes C, Csete ME, et al. One-dimensional patterning of cells in silicone wells via compression-induced fracture. J Biomed Mater Res A. 2014;102(5):1361–1369.
  • Zhu X, Mills KL, Peters PR, et al. Fabrication of reconfigurable protein matrices by cracking. Nat Mater. 2005;4(5):403–406.
  • Wang WY, Pearson AT, Kutys ML, et al. Extracellular matrix alignment dictates the organization of focal adhesions and directs uniaxial cell migration. APL Bioeng. 2018;2(4): 046107.
  • Changede R, Cai H, Wind SJ, et al. Integrin nanoclusters can bridge thin matrix fibres to form cell–matrix adhesions. Nat Mater. 2019;18(12):1366–1375.
  • Xue N, Li X, Bertulli C, et al. Rapid patterning of 1-D collagenous topography as an ECM protein fibril platform for image cytometry. Plos One. 2014;9(4):e93590.
  • Moraes C, Kim BC, Zhu X, et al. Defined topologically-complex protein matrices to manipulate cell shape via three-dimensional fiber-like patterns. Lab Chip. 2014;14(13):2191–2201.
  • Chen CS, Mrksich M, Huang S, et al. Geometric control of cell life and death. Science. 1997;276(5317):1425.
  • Bellas E, Chen CS. Forms, forces, and stem cell fate. Cell Cycle Differ Dis. 2014;31:92–97.
  • Luxenburg C, Zaidel-Bar R. From cell shape to cell fate via the cytoskeleton — insights from the epidermis. Exp Cell Res. 2019;378(2):232–237.
  • Dickinson RB, Guido S, Tranquillo RT. Biased cell migration of fibroblasts exhibiting contact guidance in oriented collagen gels. Ann Biomed Eng. 1994;22(4):342–356.
  • Weaver VM, Lelièvre S, Lakins JN, et al. β4 integrin-dependent formation of polarized three-dimensional architecture confers resistance to apoptosis in normal and malignant mammary epithelium. Cancer Cell. 2002;2(3):205–216.
  • Rubashkin M, Cassereau L, Bainer R, et al. Force engages vinculin and promotes tumor progression by enhancing PI3-kinase activation of phosphatidylinositol (3,4,5)-triphosphate. Cancer Res. 2014;74(17):4597–4611.
  • Lee J, Abdeen AA, Zhang D, et al. Directing stem cell fate on hydrogel substrates by controlling cell geometry, matrix mechanics and adhesion ligand composition. Biomaterials. 2013;34(33):8140–8148.
  • Gomez EW, Chen QK, Gjorevski N, et al. Tissue geometry patterns epithelial-mesenchymal transition via intercellular mechanotransduction. J Cell Biochem. 2010;110(1):44–51.
  • Boghaert E, Gleghorn JP, Lee K, et al. Host epithelial geometry regulates breast cancer cell invasiveness. Proc Natl Acad Sci U S A. 2012;109(48):19632–19637.
  • Lee J, Abdeen AA, Wycislo KL, et al. Interfacial geometry dictates cancer cell tumorigenicity. Nat Mater. 2016;15(8):856–862.
  • Schutgens F, Clevers H. Human organoids: tools for understanding biology and treating diseases. Annu Rev Pathol Mech Dis. 2020;15(1):211–234.
  • Haider S, Meinhardt G, Saleh L, et al. Self-renewing trophoblast organoids recapitulate the developmental program of the early human placenta. Stem Cell Rep. 2018;11(2):537–551.
  • Wang Z, Lang B, Qu Y, et al. Single-cell patterning technology for biological applications. Biomicrofluidics. 2019;13(6):061502.
  • Jing P, Wu J, Liu GW, et al. Photonic crystal optical tweezers with high efficiency for live biological samples and viability characterization. Sci Rep. 2016;6(1):19924.
  • Jing P, Liu Y, Keeler EG, et al. Optical tweezers system for live stem cell organization at the single-cell level. Biomed Opt Express. 2018;9(2):771–779.
  • Zhao L, Mok S, Moraes C. Micropocket hydrogel devices for all-in-one formation, assembly, and analysis of aggregate-based tissues. Biofabrication. 2019;11(4):045013.
  • Gudjonsson T, Rønnov-Jessen L, Villadsen R, et al. Normal and tumor-derived myoepithelial cells differ in their ability to interact with luminal breast epithelial cells for polarity and basement membrane deposition. J Cell Sci. 2002;115(Pt 1):39–50.
  • Tung Y-C, Hsiao AY, Allen SG, et al. High-throughput 3D spheroid culture and drug testing using a 384 hanging drop array. Analyst. 2011;136(3):473–478.
  • Han C, Takayama S, Park J. Formation and manipulation of cell spheroids using a density adjusted PEG/DEX aqueous two phase system. Sci Rep. 2015;5(1):11891.
  • Horman SR, To J, Orth AP. An HTS-compatible 3D colony formation assay to identify tumor-specific chemotherapeutics. J Biomol Screen. 2013;18(10):1298–1308.
  • Ekert JE, Johnson K, Strake B, et al. Three-dimensional lung tumor microenvironment modulates therapeutic compound responsiveness in vitro – implication for drug development. Plos One. 2014;9(3):e92248.
  • Brandenberg N, Hoehnel S, Kuttler F, et al. High-throughput automated organoid culture via stem-cell aggregation in microcavity arrays. Nat Biomed Eng. Published online 2020. DOI:https://doi.org/10.1038/s41551-020-0565-2.
  • Bischel LL, Beebe DJ, Sung KE. Microfluidic model of ductal carcinoma in situ with 3D, organotypic structure. BMC Cancer. 2015;15:12.
  • Bischel LL, Lee S-H, Beebe DJ. A Practical Method for patterning lumens through ECM hydrogels via viscous finger patterning. J Lab Autom. 2012;17(2): 96–103.
  • Xie R, Korolj A, Liu C, et al. h-FIBER: microfluidic topographical hollow fiber for studies of glomerular filtration barrier. ACS Cent Sci. 2020;6(6):903–912.
  • Ayad NME, Kaushik S, Weaver VM. Tissue mechanics, an important regulator of development and disease. Philos Trans R Soc B Biol Sci. 2019;374(1779):20180215.
  • Guimarães CF, Gasperini L, Marques AP, et al. The stiffness of living tissues and its implications for tissue engineering. Nat Rev Mater. 2020;5(5):351–370.
  • Anlaş AA, Nelson CM. Tissue mechanics regulates form, function, and dysfunction. Cell Dyn. 2018;54:98–105.
  • Chang TT, Thakar D, Weaver VM. Force-dependent breaching of the basement membrane. Basement Membr Health Dis. 2017;57-58:178–189.
  • Engler A, Bacakova L, Newman C, et al. Substrate compliance versus ligand density in cell on gel responses. Biophys J. 2004;86(1):617–628.
  • Engler AJ, Sen S, Sweeney HL, et al. Matrix elasticity directs stem cell lineage specification. Cell. 2006;126(4):677–689.
  • Chaudhuri O. Viscoelastic hydrogels for 3D cell culture. Biomater Sci. 2017;5(8):1480–1490.
  • Huang D, Huang Y, Xiao Y, et al. Viscoelasticity in natural tissues and engineered scaffolds for tissue reconstruction. Acta Biomater. 2019;97:74–92.
  • Mueller S, Sandrin L. Liver stiffness: a novel parameter for the diagnosis of liver disease. Hepatic Med Evid Res. 2010;2:49–67.
  • Reiter R, Freise C, Jöhrens K, et al. Wideband MRE and static mechanical indentation of human liver specimen: sensitivity of viscoelastic constants to the alteration of tissue structure in hepatic fibrosis. J Biomech. 2014;47(7):1665–1674.
  • Feldmann A, Langlois C, Dewailly M, et al. Shear wave elastography (SWE): an analysis of breast lesion characterization in 83 breast lesions. Ultrasound Med Biol. 2015;41(10):2594–2604.
  • Dobruch-Sobczak K, Nowicki A. Role of shear wave sonoelastography in differentiation between focal breast lesions. Ultrasound Med Biol. 2015;41(2):366–374.
  • Denisin AK, Pruitt BL. Tuning the range of polyacrylamide gel stiffness for mechanobiology applications. ACS Appl Mater Interfaces. 2016;8(34):21893–21902.
  • Nghe P, Boulineau S, Gude S, et al. Microfabricated polyacrylamide devices for the controlled culture of growing cells and developing organisms. Plos One. 2013;8(9):e75537.
  • Chandrasekaran A, Kouthouridis S, Lee W, et al. Magnetic microboats for floating, stiffness tunable, air–liquid interface epithelial cultures. Lab Chip. 2019;19(17):2786–2798.
  • Beningo KA, Dembo M, Wang Y. Responses of fibroblasts to anchorage of dorsal extracellular matrix receptors. Proc Natl Acad Sci. 2004;101(52):18024.
  • Ballester-Beltrán J, Lebourg M, Rico P, et al. Dorsal and ventral stimuli in cell–material interactions: effect on cell morphology. Biointerphases. 2012;7(1):39.
  • Fischer RS, Myers KA, Gardel ML, et al. Stiffness-controlled three-dimensional extracellular matrices for high-resolution imaging of cell behavior. Nat Protoc. 2012;7(11):2056–2066.
  • Ehrbar M, Sala A, Lienemann P, et al. Elucidating the role of matrix stiffness in 3D cell migration and remodeling. Biophys J. 2011;100(2):284–293.
  • Bott K, Upton Z, Schrobback K, et al. The effect of matrix characteristics on fibroblast proliferation in 3D gels. Biomaterials. 2010;31(32):8454–8464.
  • Rosales AM, Rodell CB, Chen MH, et al. Reversible control of network properties in azobenzene-containing hyaluronic acid-based hydrogels. Bioconjug Chem. 2018;29(4):905–913.
  • Chiu Y-C, Cheng M-H, Engel H, et al. The role of pore size on vascularization and tissue remodeling in PEG hydrogels. Biomaterials. 2011;32(26):6045–6051.
  • Gill BJ, Gibbons DL, Roudsari LC, et al. A synthetic matrix with independently tunable biochemistry and mechanical properties to study epithelial morphogenesis and EMT in a lung adenocarcinoma model. Cancer Res. 2012;72(22):6013.
  • Babaie E, Bhaduri SB. Fabrication aspects of porous biomaterials in orthopedic applications: a review. ACS Biomater Sci Eng. 2018;4(1):1–39.
  • Xiao S, Zhao T, Wang J, et al. Gelatin methacrylate (GelMA)-based hydrogels for cell transplantation: an effective strategy for tissue engineering. Stem Cell Rev Rep. 2019;15(5):664–679.
  • Nichol JW, Koshy ST, Bae H, et al. Cell-laden microengineered gelatin methacrylate hydrogels. Biomaterials. 2010;31(21):5536–5544.
  • Lin C-H, Su JJ-M, Lee S-Y, et al. Stiffness modification of photopolymerizable gelatin-methacrylate hydrogels influences endothelial differentiation of human mesenchymal stem cells. J Tissue Eng Regen Med. 2018;12(10):2099–2111.
  • Shen Y-I, Abaci HE, Krupski Y, et al. Hyaluronic acid hydrogel stiffness and oxygen tension affect cancer cell fate and endothelial sprouting. Biomater Sci. 2014;2(5):655–665.
  • Suo A, Xu W, Wang Y, et al. Dual-degradable and injectable hyaluronic acid hydrogel mimicking extracellular matrix for 3D culture of breast cancer MCF-7 cells. Carbohydr Polym. 2019;211:336–348.
  • Gwon K, Kim E, Tae G. Heparin-hyaluronic acid hydrogel in support of cellular activities of 3D encapsulated adipose derived stem cells. Acta Biomater. 2017;49:284–295.
  • Chaudhuri O, Koshy ST, Branco da Cunha C, et al. Extracellular matrix stiffness and composition jointly regulate the induction of malignant phenotypes in mammary epithelium. Nat Mater. 2014;13(10):970–978.
  • Reynolds DS, Bougher KM, Letendre JH, et al. Mechanical confinement via a PEG/Collagen interpenetrating network inhibits behavior characteristic of malignant cells in the triple negative breast cancer cell line MDA.MB.231. Acta Biomater. 2018;77:85–95.
  • Cao H, Lee MKH, Yang H, et al. Mechanoregulation of cancer-associated fibroblast phenotype in three-dimensional interpenetrating hydrogel networks. Langmuir. Published online 2018 Nov 27. DOI:https://doi.org/10.1021/acs.langmuir.8b02649.
  • Ledo AM, Vining KH, Alonso MJ, et al. Extracellular matrix mechanics regulate transfection and SOX9-directed differentiation of mesenchymal stem cells. Acta Biomater. 2020;110:153–163.
  • Ulrich TA, Jain A, Tanner K, et al. Probing cellular mechanobiology in three-dimensional culture with collagen–agarose matrices. Biomaterials. 2010;31(7):1875–1884.
  • Paszek MJ, Zahir N, Johnson KR, et al. Tensional homeostasis and the malignant phenotype. Cancer Cell. 2005;8(3):241–254.
  • Levental KR, Yu H, Kass L, et al. Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell. 2009;139(5):891–906.
  • Lee KY, Mooney DJ. Hydrogels for tissue engineering. Chem Rev. 2001;101(7):1869–1880.
  • Trappmann B, Gautrot JE, Connelly JT, et al. Extracellular-matrix tethering regulates stem-cell fate. Nat Mater. 2012;11(7):642–649.
  • Wen JH, Vincent LG, Fuhrmann A, et al. Interplay of matrix stiffness and protein tethering in stem cell differentiation. Nat Mater. 2014;13(10):979–987.
  • Fu J, Wang Y-K, Yang MT, et al. Mechanical regulation of cell function with geometrically modulated elastomeric substrates. Nat Methods. 2010;7(9):733–736.
  • Breckenridge MT, Desai RA, Yang MT, et al. Substrates with engineered step changes in rigidity induce traction force polarity and durotaxis. Cell Mol Bioeng. 2014;7(1):26–34.
  • Davidson CD, Jayco DKP, Matera DL, et al. Myofibroblast activation in synthetic fibrous matrices composed of dextran vinyl sulfone. Acta Biomater. 2020;105:78–86.
  • Mabry KM, Lawrence RL, Anseth KS. Dynamic stiffening of poly(ethylene glycol)-based hydrogels to direct valvular interstitial cell phenotype in a three-dimensional environment. Biomaterials. 2015;49:47–56.
  • Taubenberger AV, Girardo S, Träber N, et al. 3D microenvironment stiffness regulates tumor spheroid growth and mechanics via p21 and ROCK. bioRxiv. Published online 2019 Jan 1;586784. DOI: https://doi.org/10.1101/586784.
  • Kostic A, Lynch CD, Sheetz MP. Differential matrix rigidity response in breast cancer cell lines correlates with the tissue tropism. Plos One. 2009;4(7):e6361.
  • Tilghman RW, Cowan CR, Mih JD, et al. Matrix rigidity regulates cancer cell growth and cellular phenotype. Plos One. 2010;5(9):e12905.
  • Nakamura. Changes in viscoelastic properties of articular cartilage in early stage of osteoarthritis, as determined by optical coherence tomography-based strain rate tomography. Published online 2019. https://www-ncbi-nlm-nih-gov.proxy3.library.mcgill.ca/pmc/articles/PMC6731561/
  • Fortis A, Kostopoulos V, Panagiotopoulos E, et al. Viscoelastic properties of cartilage-subchondral bone complex in osteoarthritis. J Med Eng Technol. 2004;28(5):223–226.
  • Wong B, Bae W, Gratz K, et al. Shear deformation kinematics during cartilage articulation: effect of lubrication, degeneration, and stress relaxation. Mol Cell Biomech. 2008;5(3):197‐206.
  • Perepelyuk M, Chin L, Cao X, et al. Normal and fibrotic rat livers demonstrate shear strain softening and compression stiffening: a model for soft tissue mechanics. Plos One. 2016;11(1):e0146588.
  • Corr DT, Gallant-Behm CL, Shrive NG, et al. Biomechanical behavior of scar tissue and uninjured skin in a porcine model. Wound Repair Regen. 2009;17(2):250–259.
  • Asbach P, Klatt D, Hamhaber U, et al. Assessment of liver viscoelasticity using multifrequency MR elastography. Magn Reson Med. 2008;60(2):373–379.
  • Baghban M, Mojra A. Early relaxation time assessment for characterization of breast tissue and diagnosis of breast tumors. J Mech Behav Biomed Mater. 2018;87:325–335.
  • Kumar V, Denis M, Gregory A, et al. Viscoelastic parameters as discriminators of breast masses: initial human study results. Plos One. 2018;13(10):e0205717.
  • Qiu Y, Sridhar M, Tsou JK, et al. Ultrasonic viscoelasticity imaging of nonpalpable breast tumors: preliminary results. Acad Radiol. 2008;15(12):1526–1533.
  • Sinkus R, Tanter M, Catheline S, et al. Imaging anisotropic and viscous properties of breast tissue by magnetic resonance-elastography. Magn Reson Med. 2005;53(2):372–387.
  • Sinkus R, Tanter M, Xydeas T, et al. Viscoelastic shear properties of in vivo breast lesions measured by MR elastography. Proc Seventh Int Conf Recent Adv MR Appl Porous Media. 2005;23(2):159–165.
  • Balleyguier C, Lakhdar AB, Dunant A, et al. Value of whole breast magnetic resonance elastography added to MRI for lesion characterization. NMR Biomed. 2018;31(1):e3795.
  • Nabavizadeh A, Bayat M, Kumar V, et al. Viscoelastic biomarker for differentiation of benign and malignant breast lesion in ultra- low frequency range. Sci Rep. 2019;9(1):5737.
  • Sinkus R, Siegmann K, Xydeas T, et al. MR elastography of breast lesions: understanding the solid/liquid duality can improve the specificity of contrast-enhanced MR mammography. Magn Reson Med. 2007;58(6):1135–1144.
  • Zhang H, Guo Y, Zhou Y, et al. Fluidity and elasticity form a concise set of viscoelastic biomarkers for breast cancer diagnosis based on Kelvin–Voigt fractional derivative modeling. Biomech Model Mechanobiol. Published online 2020 Apr 25. DOI:https://doi.org/10.1007/s10237-020-01330-7.
  • Du C, Hill RJ. Linear viscoelasticity of weakly cross-linked hydrogels. J Rheol. 2018;63(1):109–124.
  • Cameron AR, Frith JE, Cooper-White J. The influence of substrate creep on mesenchymal stem cell behaviour and phenotype. Biomaterials. 2011;32(26):5979–5993.
  • Cameron AR, Frith JE, Gomez GA, et al. The effect of time-dependent deformation of viscoelastic hydrogels on myogenic induction and Rac1 activity in mesenchymal stem cells. Biomaterials. 2014;35(6):1857–1868.
  • Mattei G, Cacopardo L, Ahluwalia A. Micro-mechanical viscoelastic properties of crosslinked hydrogels using the nano-epsilon dot method. Mater Basel Switz. 2017;10(8):889.
  • Mattei G, Cacopardo L, Ahluwalia AA. Engineering gels with time-evolving viscoelasticity. Mater Basel Switz. 2020;13(2):438.
  • Murrell M, Kamm R, Matsudaira P. Substrate viscosity enhances correlation in epithelial sheet movement. Biophys J. 2011;101(2):297–306.
  • Cacopardo L, Guazzelli N, Nossa R, et al. Engineering hydrogel viscoelasticity. J Mech Behav Biomed Mater. 2019;89:162–167.
  • Charrier EE, Pogoda K, Wells RG, et al. Control of cell morphology and differentiation by substrates with independently tunable elasticity and viscous dissipation. Nat Commun. 2018;9(1):449.
  • Charrier EE, Pogoda K, Li R, et al. A novel method to make viscoelastic polyacrylamide gels for cell culture and traction force microscopy. APL Bioeng. 2020;4(3):036104.
  • Marozas IA, Cooper-White JJ, Anseth KS. Photo-induced viscoelasticity in cytocompatible hydrogel substrates. New J Phys. 2019;21(4):045004.
  • Hui E, Gimeno KI, Guan G, et al. Spatiotemporal control of viscoelasticity in phototunable hyaluronic acid hydrogels. Biomacromolecules. 2019;20(11):4126–4134.
  • Li L, Eyckmans J, Chen CS. Designer biomaterials for mechanobiology. Nat Mater. 2017;16(12):1164–1168.
  • Bauer A, Gu L, Kwee B, et al. Hydrogel substrate stress-relaxation regulates the spreading and proliferation of mouse myoblasts. Acta Biomater. 2017;62:82–90.
  • Chaudhuri O, Gu L, Darnell M, et al. Substrate stress relaxation regulates cell spreading. Nat Commun. 2015;6(1):6365.
  • Chaudhuri O, Gu L, Klumpers D, et al. Hydrogels with tunable stress relaxation regulate stem cell fate and activity. Nat Mater. 2016;15(3):326–334.
  • Rodell CB, MacArthur Jr JW, Dorsey SM, et al. Shear-thinning supramolecular hydrogels with secondary autonomous covalent crosslinking to modulate viscoelastic properties in vivo. Adv Funct Mater. 2015;25(4):636–644.
  • Lou J, Stowers R, Nam S, et al. Stress relaxing hyaluronic acid-collagen hydrogels promote cell spreading, fiber remodeling, and focal adhesion formation in 3D cell culture. Biomaterials. 2018;154:213–222.
  • McKinnon DD, Domaille DW, Cha JN, et al. Biophysically defined and cytocompatible covalently adaptable networks as viscoelastic 3D cell culture systems. Adv Mater. 2014;26(6):865–872.
  • Brown TE, Carberry BJ, Worrell BT, et al. Photopolymerized dynamic hydrogels with tunable viscoelastic properties through thioester exchange. Biomaterials. 2018;178:496–503.
  • Nam S, Stowers R, Lou J, et al. Varying PEG density to control stress relaxation in alginate-PEG hydrogels for 3D cell culture studies. Biomaterials. 2019;200:15–24.
  • Vining KH, Stafford A, Mooney DJ. Sequential modes of crosslinking tune viscoelasticity of cell-instructive hydrogels. Biomaterials. 2019;188:187–197.
  • Wisdom KM, Adebowale K, Chang J, et al. Matrix mechanical plasticity regulates cancer cell migration through confining microenvironments. Nat Commun. 2018;9(1): 4144-4144. DOI:https://doi.org/10.1038/s41467-018-06641-z.
  • Kim J, Feng J, Jones CAR, et al. Stress-induced plasticity of dynamic collagen networks. Nat Commun. 2017;8(1):842.
  • Ban E, Franklin JM, Nam S, et al. Mechanisms of plastic deformation in collagen networks induced by cellular forces. Biophys J. 2018;114(2):450–461.
  • Liu AS, Wang H, Copeland CR, et al. Matrix viscoplasticity and its shielding by active mechanics in microtissue models: experiments and mathematical modeling. Sci Rep. 2016;6(1):33919.
  • Wisdom KM, Indana D, Chou P-E, et al. Covalent cross-linking of basement membrane-like matrices physically restricts invasive protrusions in breast cancer cells. Matrix Biology. 2020;85-86:94–111.
  • Cancer facts & figures. Published online 2020 [cited 2020 Jun 1]. https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/annual-cancer-facts-and-figures/2020/cancer-facts-and-figures-2020.pdf
  • Lin C-H, Pelissier FA, Zhang H, et al. Microenvironment rigidity modulates responses to the HER2 receptor tyrosine kinase inhibitor lapatinib via YAP and TAZ transcription factors. Luo K, ed. Mol Biol Cell. 2015;26(22):3946–3953.
  • Dhiman HK, Ray AR, Panda AK. Three-dimensional chitosan scaffold-based MCF-7 cell culture for the determination of the cytotoxicity of tamoxifen. Biomaterials. 2005;26(9):979–986.
  • Leung BM, Moraes C, Cavnar SP, et al. Microscale 3D collagen cell culture assays in conventional flat-bottom 384-well plates. J Lab Autom. 2014;20(2):138–145.
  • Ho WJ, Pham EA, Kim JW, et al. Incorporation of multicellular spheroids into 3-D polymeric scaffolds provides an improved tumor model for screening anticancer drugs. Cancer Sci. 2010;101(12):2637–2643.
  • Horning JL, Sahoo SK, Vijayaraghavalu S, et al. 3-D tumor model for in vitro evaluation of anticancer drugs. Mol Pharm. 2008;5(5):849–862.
  • Li J, Mooney DJ. Designing hydrogels for controlled drug delivery. Nat Rev Mater. 2016;1(12):16071.
  • Joyce MH, Lu C, James ER, et al. Phenotypic basis for matrix stiffness-dependent chemoresistance of breast cancer cells to doxorubicin. Front Oncol. 2018;8: 337-337.
  • Malandrino A, Trepat X, Kamm RD, et al. Dynamic filopodial forces induce accumulation, damage, and plastic remodeling of 3D extracellular matrices. PLOS Comput Biol. 2019;15(4):e1006684.
  • Lee W, Kalashnikov N, Mok S, et al. Dispersible hydrogel force sensors reveal patterns of solid mechanical stress in multicellular spheroid cultures. Nat Commun. 2019;10(1):144.
  • Campàs O, Mammoto T, Hasso S, et al. Quantifying cell-generated mechanical forces within living embryonic tissues. Nat Methods. 2014;11(2):183–189.
  • Mongera A, Rowghanian P, Gustafson HJ, et al. A fluid-to-solid jamming transition underlies vertebrate body axis elongation. Nature. 2018;561(7723):401–405.
  • Mohagheghian E, Luo J, Chen J, et al. Quantifying compressive forces between living cell layers and within tissues using elastic round microgels. Nat Commun. 2018;9(1):1878.
  • Mok S, Al Habyan S, Ledoux C, et al. Mapping cellular-scale internal stiffness in 3D tissues with smart material hydrogel probes. bioRxiv. Published online 2019 Jan 1;840736. DOI: https://doi.org/10.1101/840736.
  • Proestaki M, Ogren A, Burkel B, et al. Modulus of fibrous collagen at the length scale of a cell. Exp Mech. 2019;59(9):1323–1334.
  • Serwane F, Mongera A, Rowghanian P, et al. In vivo quantification of spatially varying mechanical properties in developing tissues. Nat Methods. 2017;14(2):181–186.
  • Li X, Zhang X, Zhao S, et al. Micro-scaffold array chip for upgrading cell-based high-throughput drug testing to 3D using benchtop equipment. Lab Chip. 2014;14(3):471–481.
  • Yan X, Zhou L, Wu Z, et al. High throughput scaffold-based 3D micro-tumor array for efficient drug screening and chemosensitivity testing. Organoids Ex Vivo Tissue -Chip Technol. 2019;198:167–179.
  • Moraes C, Simon AB, Putnam AJ, et al. Aqueous two-phase printing of cell-containing contractile collagen microgels. Biomaterials. 2013;34(37).
  • Gungor-Ozkerim PS, Inci I, Zhang YS, et al. Bioinks for 3D bioprinting: an overview. Biomater Sci. 2018;6(5):915–946.
  • Azizipour N, Avazpour R, Rosenzweig DH, et al. Evolution of biochip technology: a review from lab-on-a-chip to organ-on-a-chip. Micromachines. 2020;11:6.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.