301
Views
2
CrossRef citations to date
0
Altmetric
Review

Understanding collagen interactions and their targeted regulation by novel drugs

ORCID Icon & ORCID Icon
Pages 1239-1260 | Received 23 Jan 2021, Accepted 19 May 2021, Published online: 01 Jun 2021

References

  • Ricard-Blum S. The collagen family. Cold Spring Harb Perspect Biol. 2011;3(1):a004978.
  • Chowdhury SR, Mh Busra MF, Lokanathan Y, et al. Collagen Type I: a versatile biomaterial. Adv Exp Med Biol. 2018;1077:389–414.
  • Zhao Z, Li Y, Wang M, et al. Mechanotransduction pathways in the regulation of cartilage chondrocyte homoeostasis. J Cell Mol Med. 2020;24(10):5408–5419.
  • Gelse K, Pöschl E, Aigner T. Collagens–structure, function, and biosynthesis. Adv Drug Deliv Rev. 2003;55(12):1531–1546.
  • Ricard-Blum S, Ruggiero F. The collagen superfamily: from the extracellular matrix to the cell membrane. Pathol Biol. 2005;53(7):430–442.
  • Gaar J, Naffac R, Brimble M. Enzymatic and non-enzymatic crosslinks found in collagen and elastin and their chemical synthesis. Org Chem Front. 2020;7(18):2789.
  • Ricard-Blum S, Ballut L. Matricryptins from collagens and proteoglycans. Front Biosci. 2011;16(1):674–697.
  • Hohenester E, Engel J. Domain structure and organisation in extracellular matrix proteins. Matrix Biol. 2002;21:115–128.
  • Chiquet M, Birk DE, Bönnemann CG, et al. Collagen XII: protecting bone and muscle integrity by organizing collagen fibrils. Int J Biochem Cell Biol. 2014;53:51–54.
  • Watanabe M, Natsuga K, Shinkuma S, et al. Epidermal aspects of type VII collagen: implications for dystrophic epidermolysis bullosa and epidermolysis bullosa acquisita. J Dermatol. 2018;45(5):515–521.
  • Bella J, Hulmes DJS. Fibrillar Collagens. In: editors, Parry D, Squire J. Fibrous proteins: structures and mechanisms. subcellular biochemistry. Vol. 82. Cham: Springer; 2017.
  • Hulmes DJS, Adams J. Roles of the procollagen C-propeptides in health and disease. Essays Biochem. 2019;63(3):313–323.
  • Eyre DR, Weis MA. Bone collagen: new clues to its mineralization mechanism from recessive osteogenesis imperfecta. Calcif Tissue Int. 2013;93(4):338–347.
  • Gallorini M, Krifka S, Widbiller M, et al. Distinguished properties of cells isolated from the dentin-pulp interface. Ann Anat. 2021;234:151628.
  • Tiku ML, Madhan B. Preserving the longevity of long-lived type II collagen and its implication for cartilage therapeutics. Ageing Res Rev. 2016;28:62–71.
  • Kuivaniemi H, Tromp G. Type III collagen (COL3A1): gene and protein structure, tissue distribution, and associated diseases. Gene. 2019;707:151–171.
  • Oliva F, Gallorini M, Antonetti Lamorgese Passeri C, et al. Conjugation with methylsulfonylmethane improves hyaluronic acid anti-inflammatory activity in a hydrogen peroxide-exposed tenocyte culture in vitro model. Int J Mol Sci. 2020;21(21):7956.
  • Mak KM, Png CY, Lee DJ. Type V Collagen in Health, Disease, and Fibrosis. Anat Rec (Hoboken). 2016;299(5):613–629.
  • Janeczko Ł, Janeczko M, Chrzanowski R, et al. The role of polymorphisms of genes encoding collagen IX and XI in lumbar disc disease. Neurol Neurochir Pol. 2014;48(1):60–62.
  • Wang W, Olson D, Liang G, et al. Collagen XXIV (Col24α1) promotes osteoblastic differentiation and mineralization through TGF-β/Smads signaling pathway. Int J Biol Sci. 2012;8(10):1310–1322.
  • Misawa K, Kanazawa T, Imai A, et al. Prognostic value of type XXII and XXIV collagen mRNA expression in head and neck cancer patients. Mol Clin Oncol. 2014 Mar;2(2):285–291.
  • Sato K, Yomogida K, Wada T, et al. Type XXVI collagen, a new member of the collagen family, is specifically expressed in the testis and ovary. J Biol Chem. 2002;277(40):37678–37684.
  • Hjorten R, Hansen U, Underwood RA, et al. Type XXVII collagen at the transition of cartilage to bone during skeletogenesis. Bone. 2007;41(4):535–542.
  • Liu S, Yu X, Xu Q, et al. Support of positive association in family-based genetic analysis between COL27A1 and Tourette syndrome. Sci Rep. 2015;5(1):12687.
  • Gebauer JM, Kobbe B, Paulsson M, et al. Structure, evolution and expression of collagen XXVIII: lessons from the zebrafish. Matrix Biol. 2016;49:106–119.
  • Ivanova VP, Krivchenko AI. A current viewpoint on structure and evolution of collagens. II. The fibril-associated collagens with interrupted triple helices. Zh Evol Biokhim Fiziol. 2014;50(4):245–254.
  • Olsen BR. Collagen IX. Int J Biochem Cell Biol. 1997;29(4):555–558.
  • Dong R, Wu YY, Fang L, et al. Research status of correlation between type IX collagen gene and musculoskeletal diseases. Zhongguo Gu Shang. 2019;32(1):92–96.
  • Luo Y, Sinkeviciute D, He Y, et al. The minor collagens in articular cartilage. Protein Cell. 2017;8(8):560–572.
  • Schönborn K, Willenborg S, Schulz JN, et al. Role of collagen XII in skin homeostasis and repair. Matrix Biol. 2020;94:57–76.
  • Grässel S, Bauer RJ. Collagen XVI in health and disease. Matrix Biol. 2013;32(2):64–73.
  • Miyamoto-Mikami E, Kumagai H, Kikuchi N, et al. eQTL variants in COL22A1 are associated with muscle injury in athletes. Physiol Genomics. 2020 Dec 1;52(12):588–589.
  • Oudart JB, Monboisse JC, Maquart FX, et al. Type XIX collagen: a new partner in the interactions between tumor cells and their microenvironment. Matrix Biol. 2017;57-58:169–177.
  • Zhang L, Nie L, Cai SY, et al. Role of a macrophage receptor with collagenous structure (MARCO) in regulating monocyte/macrophage functions in ayu, Plecoglossus altivelis. Fish Shellfish Immunol. 2018;74:141–151.
  • Gatseva A, Sin YY, Brezzo G, et al. Basement membrane collagens and disease mechanisms. Essays Biochem. 2019;63(3):297–312.
  • Pozzi A, Yurchenco PD, Iozzo RV. The nature and biology of basement membranes. Matrix Biol. 2017;57-58:1–11.
  • Gawron K. Endoplasmic reticulum stress in chondrodysplasias caused by mutations in collagen types II and X. Cell Stress Chaperones. 2016;21(6):943–958.
  • Heikkinen A, Tu H, Pihlajaniemi T. Collagen XIII: a type II transmembrane protein with relevance to musculoskeletal tissues, microvessels and inflammation. Int J Biochem Cell Biol. 2012;44(5):714–717.
  • Velasco-de Andrés M, Casadó-Llombart S, Català C, et al. Soluble CD5 and CD6: lymphocytic class i scavenger receptors as immunotherapeutic agents. Cells. 2020;9(12):2589.
  • Kisling A, Lust RM, Katwa LC. What is the role of peptide fragments of collagen I and IV in health and disease? Life Sci. 2019;228:30–34.
  • An B, Lin YS, Brodsky B. Collagen interactions: drug design and delivery. Adv Drug Deliv Rev. 2016;97:69–84.
  • Sorushanova A, Delgado LM, Wu Z, et al. The collagen suprafamily: from biosynthesis to advanced biomaterial development. Adv Mater. 2019;31(1):e1801651.
  • Karna E, Szoka L, Huynh TYL, et al. Proline-dependent regulation of collagen metabolism. Cell Mol Life Sci. 2020;77(10):1911–1918.
  • Sprangers S, Everts V. Molecular pathways of cell-mediated degradation of fibrillar collagen. Matrix Biol. 2019;75-76:190–200.
  • Myllyharju J. Prolyl 4-hydroxylases, key enzymes in the synthesis of collagens and regulation of the response to hypoxia, and their roles as treatment targets. Ann Med. 2008;40(6):402–417.
  • Szarka A, Lőrincz T. The role of ascorbate in protein folding. Protoplasma. 2014;251(3):489–497.
  • Oliva F, Maffulli N, Gissi C, et al. Combined ascorbic acid and T3 produce better healing compared to bone marrow mesenchymal stem cells in an Achilles tendon injury rat model: a proof of concept study. J Orthop Surg Res. 2019;14(1):54.
  • Maione-Silva L, De Castro EG, Nascimento TL, et al. Ascorbic acid encapsulated into negatively charged liposomes exhibits increased skin permeation, retention and enhances collagen synthesis by fibroblasts. Sci Rep. 2019;9(1):522.
  • Gallorini M, Di Carlo R, Pilato S, et al. Liposomes embedded with differentiating factors as a new strategy for enhancing DPSC osteogenic commitment. Eur Cells Mater. 2021;41:108–120.
  • Baker ZN, Cobine PA, Leary SC. The mitochondrion: a central architect of copper homeostasis. Metallomics. 2017 Nov 15;9(11):1501–1512.
  • Jimi S, Sato K, Kimura M, et al. G-CSF administration accelerates cutaneous wound healing accompanied with increased Pro-Hyp production in db/db mice. J Clin Res Dermatol. 2017;4(2):1–9.
  • Asai TT, Oikawa F, Yoshikawa K, et al. Food-derived collagen peptides, prolyl-hydroxyproline (Pro-Hyp), and hydroxyprolyl-glycine (Hyp-Gly) enhance growth of primary cultured mouse skin fibroblast using fetal bovine serum free from hydroxyprolyl peptide. Int J Mol Sci. 2020;21:229.
  • Berrino E, Carradori S, Angeli A, et al. Dual carbonic anhydrase IX/XII inhibitors and carbon monoxide releasing molecules modulate LPS-mediated inflammation in mouse macrophages. Antioxidants. 2021;10(1):1–24.
  • Gallorini M, Berardi AC, Ricci A, et al. Dual acting CORMs and carbonic anhydrase inhibitors as potential anti-inflammatory compounds on human tendon-derived cells. Biomedicines. 2021;9(2):1–18.
  • Novitskiy G, Potter JJ, Rennie-Tankersley L, et al. Identification of a novel NF-kappa B-binding site with regulation of the murine alpha2(I) collagen promoter. J Biol Chem. 2004;279(15):15639–15644.
  • Aro E, Khatri R, Gerard-O’Riley R, et al. Hypoxia-inducible factor-1 (HIF-1) but not HIF-2 is essential for hypoxic induction of collagen prolyl 4-hydroxylases in primary newborn mouse epiphyseal growth plate chondrocytes. J Biol Chem. 2012;287(44):37134–37144.
  • Stegen S, Laperre K, Eelen G, et al. HIF-1α metabolically controls collagen synthesis and modification in chondrocytes. Nature. 2019;565(7740):511–515.
  • Leitinger B, Hohenester E. Mammalian collagen receptors. Matrix Biol. 2007;26(3):146–155.
  • Moreno-Layseca P, Icha J, Hamidi H, et al. Integrin trafficking in cells and tissues. Nat Cell Biol. 2019;21(2):122–132.
  • Michael M, Parsons M. New perspectives on integrin-dependent adhesions. Curr Opin Cell Biol. 2020;63:31–37.
  • Zeltz C, Gullberg D. The integrin-collagen connection - a glue for tissue repair? J Cell Sci. 2016;129(6):1284.
  • Di Nisio C, De Colli M, Di Giacomo V, et al. A dual role for β1 integrin in an in vitro Streptococcus mitis/human gingival fibroblasts co-culture model in response to TEGDMA. Int Endod J. 2015;48(9):839–849.
  • Chowdhury TT, Appleby RN, Salter DM, et al. Integrin-mediated mechanotransduction in IL-1β stimulated chondrocytes. Biomech Model Mechanobiol. 2006;5(2–3):192–201.
  • Bazan-Socha S, Zuk J, Plutecka H, et al. Collagen receptors α(1)β(1) and α(2)β(1) integrins are involved in transmigration of peripheral blood eosinophils, but not mononuclear cells through human microvascular endothelial cells monolayer. J Physiol Pharmacol. 2012;63(4):373–379.
  • Borza CM, Chen X, Mathew S, et al. Integrin α1β1 promotes caveolin-1 dephosphorylation by activating T cell protein-tyrosine phosphatase. J Biol Chem. 2010;285(51):40114–40124.
  • Bourgot I, Primac I, Louis T, et al. Reciprocal interplay between fibrillar collagens and collagen-binding integrins: implications in cancer progression and metastasis. Front Oncol. 2020;10:1488.
  • Chong K, Kwon WK, Kim JH, et al. Inflammation by activated macrophage-like THP-1 cells increases human dura mater cell adhesion with alteration of integrin α2β1 and matrix metalloproteinase. J Orthop Res. 2019;37(3):706–716.
  • Milojkovic Kerklaan B, Slater S, Flynn M, et al. A phase I, dose escalation, pharmacodynamic, pharmacokinetic, and food-effect study of α2 integrin inhibitor E7820 in patients with advanced solid tumors. Invest New Drugs. 2016;34(3):329–337.
  • Lundgren-Åkerlund E, Aszòdi A. Integrin α10β1: a collagen receptor critical in skeletal development. Adv Exp Med Biol. 2014;819:61–71.
  • Engel BE, Welsh E, Emmons MF, et al. Expression of integrin alpha 10 is transcriptionally activated by pRb in mouse osteoblasts and is downregulated in multiple solid tumors. Cell Death Dis. 2013;4(11):e938.
  • Kaltz N, Ringe J, Holzwarth C, et al. Novel markers of mesenchymal stem cells defined by genome-wide gene expression analysis of stromal cells from different sources. Exp Cell Res. 2010;316(16):2609–2617.
  • Barczyk MM, Lu N, Popova SN, et al. α11β1 integrin-mediated MMP-13-dependent collagen lattice contraction by fibroblasts: evidence for integrin-coordinated collagen proteolysis. J Cell Physiol. 2013;228(5):1108–1119.
  • Erusappan P, Alam J, Lu N, et al. Integrin α11 cytoplasmic tail is required for FAK activation to initiate 3D cell invasion and ERK-mediated cell proliferation. Sci Rep. 2019;9(1):15283.
  • Romaine A, Sørensen IW, Zeltz C, et al. Overexpression of integrin α11 induces cardiac fibrosis in mice. Acta Physiol (Oxf). 2018;222(2):e12932.
  • Dallas SL, Chen Q, Sivakumar P. Dynamics of assembly and reorganization of extracellular matrix proteins. Curr Top Dev Biol. 2006;75:1–24.
  • Dudvarski Stanković N, Bicker F, Keller S, et al. EGFL7 enhances surface expression of integrin α5β1 to promote angiogenesis in malignant brain tumors. EMBO Mol Med. 2018;10(9):e8420.
  • Levine RM, Kokkoli E. Dual-ligand α5β1 and α6β4 integrin targeting enhances gene delivery and selectivity to cancer cells. J Control Release. 2017;251:24–36.
  • Alday-Parejo B, Stupp R, Rüegg C. Are integrins still practicable targets for anti-cancer therapy? Cancers (Basel). 2019;11(7):978.
  • Orgel JPRO, Madhurapantula RS. A structural prospective for collagen receptors such as DDR and their binding of the collagen fibril. Biochim Biophys Acta Mol Cell Res. 2019;1866(11):118478.
  • Auguste P, Leitinger B, Liard C, et al. Meeting report - first discoidin domain receptors meeting. J Cell Sci. 2020;133(4):jcs243824.
  • Kothiwale S, Borza CM, Lowe EW Jr, et al. Discoidin domain receptor 1 (DDR1) kinase as target for structure-based drug discovery. Drug Discov Today. 2015;20(2):255–261.
  • Bhadriraju K, Chung KH, Spurlin TA, et al. The relative roles of collagen adhesive receptor DDR2 activation and matrix stiffness on the downregulation of focal adhesion kinase in vascular smooth muscle cells. Biomaterials. 2009;30(35):6687–6694.
  • Gao Y, Zhou J, Li J. Discoidin domain receptors orchestrate cancer progression: a focus on cancer therapies. Cancer Sci. 2021;112(3):962–969.
  • Mu N, Gu JT, Huang TL, et al. Blockade of discoidin domain receptor 2 as a strategy for reducing inflammation and joint destruction in rheumatoid arthritis via altered interleukin-15 and Dkk-1 signaling in fibroblast-like synoviocytes. Arthritis Rheumatol. 2020;72(6):943–956.
  • Laronha H, Caldeira J. Structure and function of human matrix metalloproteinases. Cells. 2020;9(5):1076.
  • Mittal R, Patel AP, Debs LH, et al. Intricate functions of matrix metalloproteinases in physiological and pathological conditions. J Cell Physiol. 2016;231(12):2599–2621.
  • Zhang T, Wang XF, Wang ZC, et al. Current potential therapeutic strategies targeting the TGF-β/Smad signaling pathway to attenuate keloid and hypertrophic scar formation. Biomed Pharmacother. 2020;129:110287.
  • Lodyga M, Hinz B. TGF-β1 - A truly transforming growth factor in fibrosis and immunity. Semin Cell Dev Biol. 2020;101:123–139.
  • Ito S, Nagata K. Roles of the endoplasmic reticulum-resident, collagen-specific molecular chaperone Hsp47 in vertebrate cells and human disease. J Biol Chem. 2019;294(6):2133–2141.
  • Bellaye PS, Burgy O, Bonniaud P, et al. HSP47: a potential target for fibrotic diseases and implications for therapy. Expert Opin Ther Targets. 2021;25(1):49–62.
  • Sulic AM, Kurppa K, Rauhavirta T, et al. Transglutaminase as a therapeutic target for celiac disease. Expert Opin Ther Targets. 2015;19(3):335–348.
  • González-González L, Alonso J. Periostin: a matricellular protein with multiple functions in cancer development and progression. Front Oncol. 2018;8:225.
  • Gong Z, Chen M, Ren Q, et al. Fibronectin-targeted dual-acting micelles for combination therapy of metastatic breast cancer. Signal Transduct Target Ther. 2020;5(1):12.
  • Ma J, Gao S, Xie X, et al. SPARC inhibits breast cancer bone metastasis and may be a clinical therapeutic target. Oncol Lett. 2017;14(5):5876–5882.
  • Gorres KL, Raines RT. Prolyl-4-hydroxylase. Critical Reviews in Biochemistry and Molecular Biology. 2010;45(2):106–124.
  • Bretscher LE, Jenkins CL, Taylor KM, et al. Conformational stability of collagen relies on a stereoelectronic effect. J Am Chem Soc. 2001;123(4):777–778.
  • Hanauske-Abel HM. Prolyl 4-hydroxylase, a target enzyme for drug development. Design of suppressive agents and the in vitro effects of inhibitors and proinhibitors. J Hepatol. 1991;13:S8–S16.
  • Gilkes DM, Chaturvedi P, Bajpai S, et al. Collagen prolyl hydroxylases are essential for breast cancer metastasis. Cancer Res. 2013;73(11):3285–3296.
  • Günzler V, Brocks D, Henke S, et al. Syncatalytic inactivation of prolyl 4-hydroxylase by peptides containing the unphysiologic amino acid 5-oxaproline. J Biol Chem. 1988;263(36):19498–19504.
  • Vasta JD, Raines RT. Collagen prolyl 4-hydroxylase as a therapeutic target. J Med Chem. 2018;61(23):10403–10411.
  • Hales NJ, Beattie JF. Novel inhibitors of prolyl 4-hydroxylase. 5. The intriguing structure-activity relationships seen with 2,2′-bipyridine and its 5,5′-dicarboxylic acid derivatives. J Med Chem. 1993;36(24):3853–3858.
  • Franklin TJ, Morris WP, Edwards PN, et al. Inhibition of prolyl 4-hydroxylase in vitro and in vivo by members of a novel series of phenanthrolinones. Biochem J. 2001;353(2):333–338.
  • Vasta JD, Andersen KA, Deck KM, et al. Selective inhibition of collagen prolyl 4-hydroxylase in human cells. ACS Chem Biol. 2016;11(1):193–199.
  • Majamaa K, Turpeenniemi-Hujanen TM, Latipää P, et al. I. Differences between collagen hydroxylases and 2-oxoglutarate dehydrogenase in their inhibition by structural analogues of 2- oxoglutarate. Biochem J. 1985;229(1):127–133.
  • Cunliffe CJ, Franklin TJ, Hales NJ, et al. Novel inhibitors of prolyl 4-hydroxylase. 3. Inhibition by the substrate analogue N-oxaloglycine and its derivatives. J Med Chem. 1992;35(14):2652–2658.
  • Wang J, Buss JL, Chen G, et al. The prolyl 4-hydroxylase inhibitor ethyl-3,4-dihydroxybenzoate generates effective iron deficiency in cultured cells. FEBS Lett. 2002;529(2–3):309–312.
  • Ko VH, Yu LJ, Dao DT, et al. Roxadustat (FG-4592) accelerates pulmonary growth, development, and function in a compensatory lung growth model. Angiogenesis. 2020;23(4):637–649.
  • Dowell RI, Hadley EM. Novel inhibitors of prolyl 4-hydroxylase. J Med Chem. 1992;35(5):800–804.
  • Dowell RI, Hales NH, Tucker H. Novel inhibitors of prolyl 4-hydroxylase. Part 4 pyridine-2-carboxylic acid analogues with alternative 2-substituents. Eur J Med Chem. 1993;28(6):513–516.
  • Anantharajan J, Koski MK, Kursula P, et al. The structural motifs for substrate binding and dimerization of the α subunit of collagen prolyl 4-hydroxylase. Structure. 2013;21(12):2107–2118.
  • Rapaka RS, Urry DW, Ryu RKN. et al. Collagen and elastin analogues: syntheses, hydoxylation, calcium binding, and coacervation properties of (Pro-Gly)n, (Gly-Pro-Gly)n, and (Pro-Pro-Gly-Gly)n. Ala J Med Sci. 1978;15(2):196–212.
  • Günzler V, Hanauske-Abel HM, Myllylä R, et al. Time-dependent inactivation of chick-embryo prolyl 4-hydroxylase by coumalic acid. Biochem J. 1987;242(1):163–169.
  • Günzler V, Hanauske-Abel HM, Myllylä R, et al. Syncatalytic inactivation of prolyl 4-hydroxylase by anthracyclines. Biochem J. 1988;251(2):365–372.
  • Sasaki T, Holeyfield KC, Uitto J. Doxorubicin-induced inhibition of prolyl hydroxylation during collagen biosynthesis in human skin fibroblast cultures. Relevance to imparied wound healing. J Clin Invest. 1987;80(6):1735–1741.
  • Wu M, Moon HS, Begley TP, et al. Mechanism-based inactivation of the human prolyl-4-hydroxylase by 5-oxaproline-containing peptides: evidence for a prolyl radical intermediate. J Am Chem Soc. 1999;121(3):587–588.
  • Karvonen K, Ala-Kokko L, Pihlajaniemi T, et al. Specific inactivation of prolyl 4-hydroxylase and inhibition of collagen synthesis by oxaproline-containing peptide in cultured human skin fibroblasts. J Biol Chem. 1990;265(15):8415–8419.
  • Wang S, Lee KH, Araujo NV, et al. Develop a high-throughput screening method to identify C-P4H1 (collagen prolyl 4-hydroxylase 1) inhibitors from FDA-approved chemicals. Int J Mol Sci. 2020;21(18):6613.
  • Shi R, Gao S, Smith AH, et al. Superoxide-induced Type I collagen secretion depends on prolyl 4-hydroxylases. Biochem Biophys Res Commun. 2020;529(4):1011–1017.
  • Vallet SD, Ricard-Blum S, Adams J. Lysyl oxidases: from enzyme activity to extracellular matrix cross-links. Essays Biochem. 2019;63(3):349–364.
  • Johnston KA, Lopez KM. Lysyl oxidase in cancer inhibition and metastasis. Cancer Lett. 2018;417:174–181.
  • Mac Sweeney A, Gil-Parrado S, Vinzenz D, et al. Structural basis for the substrate specificity of bone morphogenetic protein 1/tolloid-like metalloproteases. J Mol Biol. 2008;384(1):228–239.
  • Lesiak M, Augusciak-Duma A, Szydlo A, et al. Specific inhibition of procollagen C-endopeptidase activity by synthetic peptide with conservative sequence found in chordin. Acta Biochim Pol. 2008;55(2):297–305.
  • Talantikite M, Lécorché P, Beau F, et al. Inhibitors of BMP-1/tolloid-like proteinases: efficacy, selectivity and cellular toxicity. FEBS Open Bio. 2018;8(12):2011–2021.
  • Pischon N, Babakhanlou-Chase H, Darbois L, et al. A procollagen C-proteinase inhibitor diminishes collagen and lysyl oxidase processing but not collagen cross-linking in osteoblastic cultures. J Cell Physiol. 2005;203(1):111–117.
  • Clemetson KJ, Clemetson JM. Collagen receptors as potential targets for novel anti-platelet agents. Curr Pharm Des. 2007;13(26):2673–2683.
  • Zheng Y, Leftheris K. Insights into protein-ligand interactions in integrin complexes: advances in structure determinations. J Med Chem. 2020;63(11):5675–5696.
  • Xia W, Springer TA. Metal ion and ligand binding of integrin α5β1. Proc Natl Acad Sci USA. 2014;111(50):17863–17868.
  • Mas-Moruno C, Rechenmacher F, Kessler H. Cilengitide: the first anti-angiogenic small molecule drug candidate. Design, synthesis and clinical evaluation. Anti Cancer Agents Med Chem. 2010;10(10):753–768.
  • Ritzenthaler JD, Zhang M, Torres-Gonzalez E, et al. The integrin inhibitor cilengitide and bleomycin-induced pulmonary fibrosis: cilengitide and bleomycin-induced pulmonary fibrosis. Lung. 2020;198(6):947–955.
  • Salemi Z, Azizi R, Fallahian F, et al. Integrin α2β1 inhibition attenuates prostate cancer cell proliferation by cell cycle arrest, promoting apoptosis and reducing epithelial-mesenchymal transition. J Cell Physiol. 2021;236(7):4954–4965.
  • Eble JA, McDougall M, Orriss GL, et al. Dramatic and concerted conformational changes enable rhodocetin to block α2β1 integrin selectively. PLoS Biol. 2017;15:e2001492–e2001517.
  • Tang ELH, Tan NH, Fung SY, et al. Comparative proteomes, immunoreactivities and neutralization of procoagulant activities of calloselasma rhodostoma (Malayan pit viper) venoms from four regions in Southeast Asia. Toxicon. 2019;169:91–102.
  • Miller MW, Basra S, Kulp DW, et al. Small-molecule inhibitors of integrin α2β1 that prevent pathological thrombus formation via an allosteric mechanism. Proc Natl Acad Sci USA. 2009;106(3):719–724.
  • Nissinen L, Koivunen J, Käpylä J, et al. Novel α2β1 integrin inhibitors reveal that integrin binding to collagen under shear stress conditions does not require receptor preactivation. J Biol Chem. 2012;287(53):44694–44702.
  • Reger De Moura C, Prunotto M, Sohail A, et al. Discoidin domain receptors in melanoma: potential therapeutic targets to overcome MAPK inhibitor resistance. Front Oncol. 2020;10:1748.
  • Zhu D, Huang H, Pinkas DM, et al. 2-Amino-2,3-dihydro-1H-indene-5-carboxamide-based discoidin domain receptor 1 (DDR1) inhibitors: design, synthesis, and in Vivo antipancreatic cancer efficacy. J Med Chem. 2019;62(16):7431–7444.
  • Guo J, Zhang Z, Ding K. A patent review of discoidin domain receptor 1 (DDR1) modulators (2014-present). Expert Opin Ther Pat. 2020;30(5):341–350.
  • Weidle UH, Birzele F, Tiefenthaler G. Potential of protein-based anti-metastatic therapy with serpins and inter α-Trypsin inhibitors. Cancer Genomics Proteomics. 2018;15(4):225–238.
  • Sheibani N, Wang S, Darjatmoko SR, et al. Novel anti-angiogenic PEDF-derived small peptides mitigate choroidal neovascularization. Exp Eye Res. 2019;188:107798.
  • Sheibani N, Zaitoun IS, Wang S, et al. Inhibition of retinal neovascularization by a PEDF-derived nonapeptide in newborn mice subjected to oxygen-induced ischemic retinopathy. Exp Eye Res. 2020;195:108030.
  • Fu Q, Sun Y, Tao Y, et al. Involvement of the JAK-STAT pathway in collagen regulation of decidual NK cells. Am J Reprod Immunol. 2017;78(6):e12769.
  • Schuhmann MK, Kraft P, Bieber M, et al. Targeting platelet GPVI Plus rt-PA administration but Not α2β1-mediated collagen binding protects against ischemic brain damage in mice. Int J Mol Sci. 2019;20(8):2019.
  • Renaud L, Lebozec K, Voors-Pette C, et al. Population Pharmacokinetic/Pharmacodynamic modeling of Glenzocimab (ACT017) a glycoprotein VI inhibitor of collagen-induced platelet aggregation. J Clin Pharmacol. 2020;60(9):1198–1208.
  • Ahmed MU, Kaneva V, Loyau S, et al. Pharmacological blockade of glycoprotein VI promotes thrombus disaggregation in the absence of Thrombin. Arterioscler Thromb Vasc Biol. 2020;40(9):2127–2142.
  • Tsutsui H, Okimura K, Udagawa S, et al. Urea derivatives and use thereof. WO2017038870 (A1); 2017.
  • Nishio Y, Yamamoto M, Kubota Y, et al. Urea derivatives and use thereof. WO2017038871 (A1); 2017.
  • Nishio Y, Kubota Y, Yamamoto M, et al. Urea derivatives and use thereof. WO2017038873 (A1); 2017.
  • Yoshimori A, Asawa Y, Kawasaki E, et al. Design and synthesis of DDR1 inhibitors with a desired pharmacophore using deep generative models. ChemMedChem. 2021;16(6):955–958.
  • Brekken RA, Ding K, Ren XM, et al. Small-molecule inhibitors targeting discoidin domain receptor 1 and uses thereof. WO2016064970 (A1); 2016.
  • Murata T, Hara S, Niizuma S, et al. Quinazolinone and isoquinolinone derivative. WO2015060373 (A1); 2015.
  • Chen C, Deng J, Yu X, et al. Identification of novel inhibitors of DDR1 against idiopathic pulmonary fibrosis by integrative transcriptome meta-analysis, computational and experimental screening. Mol Biosyst. 2016;12(5):1540–1551.
  • Buettelmann B, Kocer B, Kuhn B, et al. Triaza-spirodecanones as DDR1 inhibitors. WO 2017005583 (A1); 2017.
  • Buettelmann B, Kocer B, Kuhn B, et al. Spiroindolinones as DDR1 inhibitors. WO 2017137334 (A1); 2017.
  • Zhavoronkov A, Ivanenkov YA, Aliper A, et al. Deep learning enables rapid identification of potent DDR1 kinase inhibitors. Nat Biotechnol. 2019;37(9):1038–1040.
  • Young DA, Barter MJ, Wilkinson DJ. Recent advances in understanding the regulation of metalloproteinases. F1000Res. 2019 Feb 18;8:1–11
  • Shimoda M, Ohtsuka T, Okada Y, et al. Stromal metalloproteinases: crucial contributors to the tumor microenvironment. Pathol Int. 2021;71(1):1–14.
  • Xie XW, Wan RZ, Liu ZP. Recent research advances in selective matrix metalloproteinase-13 inhibitors as anti-osteoarthritis agents. ChemMedChem. 2017;12(15):1157–1168.
  • De Moraes IQS, Do Nascimento TG, Da Silva AT, et al. Inhibition of matrix metalloproteinases: a troubleshooting for dentin adhesion. Restor Dent Endod. 2020;45(3):e31.
  • San Antonio JD, Jacenko O, Fertala A, et al. Collagen structure-function mapping informs applications for regenerative medicine. Bioengineering (Basel). 2020;8(1):3.
  • Hastings JF, Skhinas JN, Fey D, et al. The extracellular matrix as a key regulator of intracellular signalling networks. Br J Pharmacol. 2019;176(1):82–92.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.