857
Views
16
CrossRef citations to date
0
Altmetric
Review

Applications of fluorine to the construction of bioisosteric elements for the purposes of novel drug discovery

Pages 1261-1286 | Received 27 Jan 2021, Accepted 19 May 2021, Published online: 10 Jun 2021

References

  • Gribble GW. Naturally occurring organofluorines. The Handbook of Environmental Chemistry, (Springer-verlag). 2002;3:121–136.
  • Fried J, Sabo EF. Synthesis of 17α-Hydroxycorticostereone and its 9α-Halo Derfivatives from 11-Epi-17α-Hydroxycorticostereone. J Am Chem Soc. 1953;75:2273–2274.
  • Fried J, Sabo EF. 9α-fluoro derivatives of cortisone and hydrocortisone. J Am Chem Soc. 1954;76:1455–1456.
  • Heidelberger C, Chaudhuri NK, Danneberg P, et al. Fluorinated pyrimidines, a new class of tumor-inhibitory compounds. Nature. 1957;179:663–666.
  • Gillis EP, Eastman KJ, Hill MD, et al. Applications of fluorine in medicinal chemistry. J Med Chem. 2015 Jul 22;58:8315–8359.
  • Purser S, Moore PR, Swallow S, et al. Fluorine in medicinal chemistry. Chem Soc Rev. 2008;37:320–330.
  • Hagmann WK. The many roles for fluorine in medicinal chemistry. J Med Chem. 2008;51:4359–4369.
  • Kirk KL. Selective fluorination in drug design and development: an overview of biochemical rationales. Curr Top Med Chem. 2006;6:1447–1456.
  • Sun S, Adejare A. Fluorinated molecules as drugs and imaging agents in the CNS. Curr Top Med Chem. 2006;6:1457–1464.
  • O’Hagan D. Understanding organofluorine chemistry. An introduction to the C-F bond. Chem Soc Rev. 2008;37:308–319.
  • Upadhyay C, Chaudhary M, De Oliveira RN, et al. Fluorinated scaffolds for antimalarial drug discovery. Expert Opin Drug Disc. 2020 Mar 21;15(6):705–718. .
  • Bohm HJ, Banner D, Bendels S, et al. Fluorine in medicinal chemistry. ChemBioChem. 2004;5:637–643. .
  • Müller K, Faeh C, Diederich F. Fluorine in pharmaceuticals: looking beyond intuition. Science. 2007;317:1881–1886.
  • Filler R, Saha R. Fluorine in medicinal chemistry: a century of progress and a 60-year retrospective of selected highlights. Future Med Chem. 2009;1:777–791. .
  • Meanwell NA. Fluorine and fluorinated motifs in the design and application of bioisosteres for drug design. J Med Chem. 2018 Feb 5;61:5822–5880. .
  • Smart BE. Fluorine substituent effects (on bioactivity). J Fluorine Chem. 2001;109:3–11.
  • Bondi A. Van der waals volumes and radii. J Phys Chem. 1964;68:441–451.
  • Schlosser M, Michel M. About the “physiological size” of fluorine substituents: comparison of sensorially active compounds with fluorine and methyl substituted analogues. Tetrahedron. 1996;52:99–108.
  • Landry ML, Crawford JJ. LogD contributions of substituents commonly used in medicinal chemistry. ACS Med Chem Lett. 2020 Dec 11;11:72–76. .
  • Morgenthaler M, Schweizer E, Hoffmann-Röder A, et al. Predicting properties and tuning physicochemical in lead optimization: amine basicities. ChemBioChem. 2007;2:1100–1115.
  • Rodrigues Silva D, Daré J, Freitas MP. Conformational preferences of fluorine-containing agrochemicals and their implications for lipophilicity prediction. Beilstein J Org Chem. 2020 Oct 5;16:2469–2476. .
  • Dunitz JD. Organic fluorine: odd man out. ChemBioChem. 2004;5:614–621.
  • Fischer F, Schweizer WB, Diederich F. Molecular torsion balances: evidence for favorable orthogonal dipolar interactions between organic fluorine and amide groups. Angew Chem Int Ed. 2007;46:8270–8273.
  • Paulini R, Müller K, Diederich F. Orthogonal multipolar interactions in structural chemistry and biology. Angew Chem Int Ed. 2005;44:1788–1805.
  • DiMagno SG, Sun H. The strength of weak interactions: aromatic fluorine in drug design. Curr Top Med Chem. 2006;6:1473–1482.
  • Mehta G, Sen S. Probing fluorine interactions in a polyhydroxylated environment: conservation of a C–F···H–C recognition motif in presence of O–H···O hydrogen bonds. Eur J Org Chem. 2010;2010:3387–3394.
  • Richardson P. Fluorination methods for drug discovery and development. Exp Opin Drug Disc. 2016 Aug 30;11(10):983–999.
  • Murphy CD, Sanford G. Recent advances in fluorination techniques and their anticipated impact on drug metabolism and toxicity. Exp Opin Drug Metabol Tox. 2015 Mar 2;11(4):589–599. .
  • Champagne PA, Desroches J, Hamel JD, et al. Monofluorination of Organic Compounds: 10 Years of Innovation. Chem Rev. 2015;115:9073–9174.
  • Campbell M, Ritter T. Modern carbon-fluorine bond forming reactions for aryl-fluoride synthesis. Chem Rev. 2015;115:612–633.
  • Liang T, Neumann C, Ritter T. Introduction of Fluorine and Fluorine-Containing Functional Groups. Angew Chem Int Ed. 2013;52:8214–8264.
  • Furuya T, Kuttruff CA, Ritter T. Carbon-fluorine bond formation. Curr Opin Drug Disc. 2008;11:803–819.
  • Kirk KL. Fluorination in medicinal chemistry: methods, strategies, and recent developments. Org Process Res Dev. 2008;12:305–321.
  • Kirsch P. Modern fluoroorganic chemistry: synthesis, reactivity, applications. Weinheim, Germany: Wiley-VCH; 2004.
  • Furuya T, Klein JEMN, Ritter T. C-F bond formation for the synthesis of aryl fluorides. Synthesis. 2010;42:1804–1821.
  • Shimizu M, Hiyama T. Modern synthetic methods for fluorine-substituted target molecules. Angew Chem Int Ed. 2005;44:214–231.
  • Gerstenberger MRC, Haas A. Methods of fluorination in organic chemistry. Angew Chem Int Ed. 1981;20:647–667.
  • Wang J, Sánchez-Roselló M, Aceňa JL, et al. Fluorine in pharmaceutical industry: fluorine-containing drugs introduced to the market in the last decade (2001-2011). Chem Rev. 2014;114:2432–2506.
  • Harsanyi A, Sandford G. Organofluorine chemistry: applications, sources and sustainability. Green Chem. 2015;17:2081–2086. .
  • Moir M, Danon JJ, Reekie TA, et al. An overview of late-stage functionalization in today’s drug discovery. Exp Opin Drug Disc. 2019 Aug 14;14(11):1137–1149. .
  • Sladojevich F, Arlow S, Tang P, et al. Late-stage deoxyfluorination of alcohols with phenofluor. J Am Chem Soc. 2013;135:2470–2473.
  • Campbell M, Ritter T. Late-stage fluorination: from fundamentals to application. Org Process Res Dev. 2014;18:474–480.
  • Neumann CN, Ritter T. Late-stage fluorination: fancy novelty or useful tool? Angew Chem Int Ed. 2015;54:3216–3221.
  • Postigo A. Late stage fluorination of bioactive molecules and biologically relevant substrates. Amsterdam, Netherlands: Elsevier; 2018.
  • Szpera R, Moseley DFJ, Smith LB, et al. The fluorination of C-H bonds: developments and perspectives. Angew Chem Int Ed. 2019;58:14824–14848. .
  • Inoue M, Sumii Y, Shibata N. Contribution of organofluorine compounds to pharmaceuticals. ACS Omega. 2020 Apr 22;5:10633–10640. .
  • Zhou Y, Wang J, Gu Z, et al. Next generation of fluorine-containing pharmaceuticals, compounds currently in phase II-III clinical trials of major pharmaceutical companies: new structural trends and therapeutic areas. Chem Rev. 2016;116:7193–7214.
  • New Drugs at FDA: CDER’s New Molecular Entities and New Therapeutic Biological Products. FDA. Washington DC: FDA Center for drug evaluation and research, 2020. [cited 2021 Jan 18th]. Available at www.fed.gov/drugs/development-approval-process-drugs/new-drugs-fda-cders-new-molecular-entities-and-new-therapeutic-biological-products.
  • Meanwell NA. Synopsis of some recent tactical applicatons of bioisosteres in drug design. J Med Chem. 2011 Mar 17;54:2529–2591.
  • Meanwell NA. The influence of bioisosteres in drug design: tactical applications to address developability problems. Top Med Chem. 2015;9:238–382.
  • Patani GA, LaVoie EJ. Bioisoserism: a rational approach in drug design. Chem Rev. 1996;96:3147–3176.
  • Brown N. Bioisosteres in medicinal chemistry. Weinheim: Wiley-VCH Verlag; 2012.
  • Lipinski CA. Bioisosterism in drug design. Annu Rep Med Chem. 1986;21:283–291.
  • Lima LM, Barreiro EJ. Bioisosterism: a useful strategy for molecular modification and drug design. Curr Med Chem. 2005;12:23–49.
  • Olesen PH. The use of bioisosteric groups in lead optimization. Curr Opin Drug Discovery Dev. 2001;4:471–478.
  • Lie JJ. Medicinal chemistry for practitioners. Ch 4. Bioisosteres. 2020:225-306. (Wiley).
  • Lima LM, Barreiro EJ. Beyond bioisosterism: new concepts in drug discovery. Compr Med Chem III. 2017;1: 186–210. (Elsevier).
  • Langdon SR, Ertl P, Brown N. Bioisosteric replacement and scaffold hopping in lead generation and optimization. Mol Inf. 2010;29:366–385.
  • Langmuir I. Isomorphism, isosterism and covalence. J Am Chem Soc. 1919;41:1543–1559.
  • Grimm HG. Structure and size of the non-metallic hydrides. Zeitsc Elektrochem. 1925;31:474–480.
  • Grimm HG. The system of chemical compounds from the viewpoint of atom research, several problems of experimental research. Part I Naturwissenschaften. 1929;17:535–540.
  • Grimm HG. The system of chemical compounds from the viewpoint of atom research, several problems of experimental research. Part II Naturwissenschaften. 1929;17:557–564.
  • Erlenmeyer H, Leo M. Über Pseudoatome. Helv Chim Acta. 1932;15:1171–1186.
  • Erlenmeyer H, Berger E. Studies on the significance of structure of antigens for the production and the specificity of antibodies. Biochem Z. 1932;252:22–36.
  • Erlenmeyer H, Berger E, Leo M. Relationship between the structure of antigens and the specificity of antibodies. Helv Chim Acta. 1933;16:733–738.
  • Erlenmeyer H. Les composes isostères et le problème de la resemblance en chimie. Bull Soc Chim Biol. 1948;30:792–805.
  • Friedman HL. Influence of isosteric replacements on biological activity. Symposium on chemical-biological correlation. Natl Res Council Publ. 1951;206: 295–362. (Washington DC).
  • Thornber CW. Isosterism and molecular modification in drug design. Chem Soc Rev. 1979;8:563–580.
  • Burger A. Isosterism and bioisosterism in drug design. Progress Drug Res. 1991;37:288–362.
  • Martin YC. A practitioner’s perspective of the role of quantitative structure-activity analysis in medicinal chemistry. J Med Chem. 1981;24:229–237.
  • Papadatos G, Brown N. In silico applications of bioisosterism in contemporary medicinal chemistry. J Chem Info Model. 2013;3:339–354.
  • Chenoweth MB, McCarthy LB. On the mechanism of the pharmacophoric effect of halogenation. Pharmacol Rev. 1063;15:673–707.
  • Goldman P. The carbon-fluorine bond in compounds of biological interest. Science. 1969;164:1123–1130.
  • Shanu-Wilson J, Evans L, Wrigley S, et al. Biotransformation: impact and application of metabolism in drug discovery. ACS Med Chem Lett. 2020 Aug 28;11:2087–2107.
  • Xing L, Keefer C, Brown MF. Fluorine multipolar interaction: toward elucidating its energetics in binding recognition. J Fluorine Chem. 2017 Dec 3;198:47–53.
  • Obst U, Gramlich V, Diederich F, et al. Design of novel, nonpeptidic thrombin inhibitors and structure of a thrombin–inhibitor complex. Angew Chem Int Ed. 1995 Sept 1;34:1739–1742.
  • Obst U, Banner DW, Weber F, et al. Molecular recognition at the thrombin active site: structure-based design and synthesis of potent and selective thrombin inhibitors and the X-ray crystal structures of two thrombin-inhibitor complexes. Chem Biol. 1997 Apr 4;4:287–295.
  • Schärer K, Morgenthaler M, Seiler P, et al. Enantiomerically pure thrombin inhibitors for exploring the molecular‐recognition features of the oxyanion hole. Helv Chim Acta. 2004 Oct 21;87:2517–2538.
  • Obst U, Betschmann P, Lerner C, et al. Synthesis of novel nonpeptidic thrombin inhibitors. Helv Chim Acta. 2000 May 4;83:855–909.
  • Betschmann P, Sahli S, Diederich F, et al. Structure‐based design of nonpeptidic thrombin inhibitors: exploring the D‐pocket and the oxyanion hole. Helv Chim Acta. 2002 May 29;85:1210–1245.
  • Olsen JA, Banner DW, Seiler P, et al. A Fluorine Scan of Thrombin Inhibitors to Map the Fluorophilicity/Fluorophobicity of an Enzyme Active Site: evidence for C-F⋅⋅⋅C-O Interactions. Angew Chem Int Ed. 2003 Jun 5;42:2507–2511.
  • Olsen JA, Banner DW, Seiler P, et al. Fluorine interactions at the thrombin active site: protein backbone fragments H-Cα-C-O comprise a favorable C-F environment and interactions of C-F with electrophiles. ChemBioChem. 2004 Apr 28;5:666–675.
  • Paulini R, Müller K, Diederich F. Orthogonal multipolar interactions in structural chemistry and biology. Angew Chem Int Ed. 2005 Mar 8;44:1788–1805.
  • Hof F, Scotfield DM, Schweizer WB, et al. A weak attractive interaction between organic fluorine and an amide group. Angew Chem Int Ed. 2004 Sept 22;43:5056–5059.
  • Olsen J, Seiler P, Wagner B, et al. A fluorine scan of the phenylamidinium needle of tricyclic thrombin inhibitors: effects of fluorine substitution on pKa and binding affinity and evidence for intermolecular C–F⋯CN interactions. Org Biomol Chem. 2004 Apr 14;2:1339–1352.
  • Schweizer E, Hoffmann-Röder A, Diederich F, et al. A fluorine scan at the catalytic center of thrombin: c-F, C-OH and C-OMe Bioisosterism and Fluorine Effects on pKa and logD Values. Chem Med Chem. 2006 Apr 20;1:611–621. .
  • Earl J, Kirkpatrick P. Fresh from the pipeline: ezetimibe. Nat Rev Drug Discovery. 2003;2(2):97–98.
  • Darkes MJM, Poole RM, Goa KL. Ezetimibe. Am J Cardiovasc Drugs. 2003;3(1):67–76.
  • Bruckert E. New lipid-modifying therapies. Expert Opin Invest Drugs. 2003;12(3):325–335.
  • Gylling H, Miettinen TA. Combination therapy with statins. Curr Opin Invest Drugs. 2002;3(9):1318–1323.
  • Gupta EK, Ito MK. Ezetimibe: the first in a novel class of selective cholesterol-absorption inhibitors. Heart Dis. 2002;4(6):399–409.
  • Bays H. Ezetimibe. Expert Opin Invest Drugs. 2002;11(11):1587–1604.
  • Meng CQ. Ezetimibe schering plough. Curr Opin Invest Drugs. 2002;3(3):427–432.
  • Sliskovic DR, Picard JA, Krause BR. ACAT inhibitors: the search for a novel and effective treatment of hypercholesterolemia and atherosclerosis. Prog Med Chem. 2002;3:121–171.
  • Clader JW, Berger JG, Burrier RE, et al. Substituted (1,2-diarylethyl)amide acyl CoA: cholesterol acyltransferase inhibitors: effect of polar groups on in vitro and in vivo activity. J Med Chem. 1995;38:1600–1607.
  • Vaccaro W, Amore C, Berger J, et al. Inhibitors of Acyl CoA: cholesterol Acyltransferase. J Med Chem. 1996;39:1704–1719.
  • Sliskovic DR, White AD. Therapeutic potential of ACAT inhibitors as lipid lowering and anti-artherosclerotic agents. Trends Pharmacol Sci. 1991;323:1289–1298.
  • Burnett DA, Caplen MA, Davies HR, et al. 2-azetidinones as inhibitors of cholesterol absorption. J Med Chem. 1994;37:1733–1736.
  • Clader JW, Burnett DA, Caplen MA, et al. 2-azetidinone cholesterol absorption inhibitors: structure-activity relationships on the heterocyclic nucleus. J Med Chem. 1996;39:3684–3693.
  • Burnett DA. β-lactam cholesterol absorption inhibitors. Curr Med Chem. 2004;11(14):1873–1888.
  • Clader JW. Ezetimibe and other azetidinone cholesterol absorption inhibitors. Curr Top Med Chem. 2005;5(3):243–256.
  • Dugar S, Clader JW, Chan T-M, et al. Substituted 2-azaspiro[5.3]nonan-1-ones as potent chlolesterol absorption inhibitors. defining a binding conformation of SCH 46461. J Med Chem. 1995;38:4875–4877.
  • Van Heek M, France CF, Compton DS, et al. In vivo metabolism-based discovery of a potent cholesterol absorption inhibitor, SCH 58235, in the rat and rhesus monkey through identification of the active metabolites of SCH 48461. J Pharmacol Exp Ther. 1997;283:157–163.
  • McKittrick BA, Na K, Dugar S, et al. Stereoselective synthesis and biological activity of cis-azetidinones as cholesterol absorption inhibitors. Bioorg Med Chem Lett. 1996 Aug 20;6:1947–1950.
  • Dugar S, Yumibe N, Clader JW, et al. Metabolism and structure-activity data-based design. Discovery of (-) SCH 53079. An analog of the potent cholesterol absorption inhibitor (-) SCH 48461. Bioorg Med Chem Lett. 1996;6:1271–1274.
  • Kirkup MP, Rizvi R, Shankar B, et al. (-) SCH 57939: synthesis and pharmacological properties of a potent, metabolically stable cholesterol absorption inhibitor. Bioorg Med Chem Lett. 1996;6:2069–2072.
  • McKittrick BA, Ma K, Huie K, et al. Synthesis of C3 heteroatom-substituted azetidinones that display potent cholesterol absorption inhibitory activity. J Med Chem. 1998;41:752–759.
  • Rosenblum SB, Huynh T, Afonso A, et al. Discovery of 1-(4-fluorophenyl)-(3R)-[3-(4-fluorophenyl)-(3S)-hydroxypropyl]-(4S)-(4-hydroxyphenyl)-2-azetidinone (SCH 58235): a designed, potent, orally available active inhibitor of cholesterol absorption. J Med Chem. 1998;41(6):973–980.
  • Kosoglou T, Statkevich P, Johnson-Levonas AO, et al. Ezetimibe: a review of its metabolism, pharmacokinetics and drug interactions. Clin Pharmacokinet. 2005;44(5):467–494. Top of Form.
  • Clader JW. The discovery of ezetimibe: a view from outside the receptor. J Med Chem. 2004;47(1):1–9. .
  • Bec G, Meyer B, Gerard MA, et al. Thermodynamics of HIV-1 reverse transcriptase in action elucidates the mechanism of action on non-nucleoside inhibitors. J Am Chem Soc. 2013;135:9743–9752.
  • Zhan P, Chen X, Li D, et al. HIV-1 NNRTIs: structural diversity, pharmacophore similarity and implications for drug design. Med Res Rev. 2013;33(Suppl 1):E1–72.
  • Namasivayam V, Vanangamudi M, Kramer MG, et al. The journey of HIV-1 non-nucleoside reverse transcriptase inhibitors (NNRTIs) from lab to clinic. J Med Chem. 2019;62:4851–4883.
  • Beyrer C, Pozniak A. HIV drug resistance – an emerging threat to epidemic control. N Engl J Med. 2017;377:1605–1607.
  • Wensing AM, Calvez V, Gunthard HF, et al. 2017 update of the drug resistance mutations in HIV-1. Top HIV Med. 2017;24:132–133.
  • Zhan P, Pannecouque C, De Clercq E, et al. Anti-HIV drug discovery and development: current innovations and future trends. J Med Chem. 2016;59:2849–2878.
  • Kang D, Fang Z, Li Z, et al. Design, synthesis and evaluation of thiophene[3,2-d]pyrimidine derivatives as HIV-1 non-nucleoside reverse transcriptase inhibitors with significantly improved drug resistance profiles. J Med Chem. 2016;59:7991–8007.
  • Kang D, Fang Z, Huang B, et al. Structure-based optimization of thiophene[3,2-d]pyrimidine derivatives as potent HIV-1 non-nucleoside reverse transcriptase inhibitors with improved potency against resistance-associated variants. J Med Chem. 2017;60:4424–4443.
  • Kang D, Zhang H, Wang Z, et al. Identification of dihydrofuro[3,4-d]pyrimidine derivatives as novel HIV-1 non-nucleoside reverse transcriptase inhibitors with promising antiviral activities and desirable physicochemical properties. J Med Chem. 2019;62:1484–1501.
  • Kang D, Zhao T, Wang Z, et al. Discovery of piperidine-substituted thiazolo[5,4-d]pyrimidine derivatives as potent and orally bioavailable HIV-1 non-nucleoside reverse transcriptase inhibitors. Commun Chem. 2019 Jun 28;2:74.
  • Sanguinetti MC, Tristani-Firouzi M. HERG potassium channels and cardiac arrhythmia. Nature. 2006;440:463–469.
  • Shamovsky I, Connolly S, David L, et al. Overcoming undesirable HERG potency of chemokine receptor antagonists using baseline liophilicity relationships. J Med Chem. 2008;51:1162–1178.
  • Mitcheson JS, Chen J, Lin M, et al. A structural basis for drug-induced long QT syndrome. Proc Natl Acad Sci USA. 2000;97:12329–12333.
  • Carvalho JF, Louvel J, Doornbos ML, et al. Strategies to reduce HERG K+ channel blockade. Exploring heteroaromaticity and rigidity in novel pyridine analogues of dofetilide. J Med Chem. 2013;56:2828–2840.
  • Kang D, Arnold E, Liu X, et al. Discovery and characterization of fluorine-substituted diarypyrimidine derivatives as novel HIV-1 NNRTIs with highly improved resistance profiles and low activity for the hERG ion channel. J Med Chem. 2020 Jan 14;63:1298–1312.
  • Jiang X, Yu J, Zhou Z, et al. Molecular design opportunities presented by solvent-exposed regions of target proteins. Med Res Rev. 2019;39:2194–2238.
  • Das K, Bauman JD, Clark AD, et al. High-resolution structures of HIV-1 reverse transcriptase/TMC278 complexes: strategic flexibility explains potency against resistance mutations. Proc Natl Acad Sci UDA. 2008;105:1466–1471.
  • Bartlett R, Stokes L, Sluyter R. The P2X7 receptor channel: recent developments and the use of P2X7 antagonists in models of disease. Pharmacol Rev. 2014;66:638–675.
  • Gunosewoyo H, Coster M, Kassiou M. Molecular probes for the P2X7 receptor studies. Curr Med Chem. 2007;14:1505–1523.
  • Park J-H, Kim Y-C. P2X7 receptor antagonists: a patent review (2010-2015). Expert Opin Ther Pat. 2017;25:257–267.
  • Furber M, Alcaraz L, Bent JE, et al. Discovery of potent and selective adamantane-based small-molecule P2X7 receptor antagonists/interleukin-1β inhibitors. J Med Chem. 2007;50:5882–5885.
  • Wilkinson SM, Gunosewoyo H, Barron ML, et al. The first CNS-active carborane: a novel P2X7 receptor antagonist with antidepressant activity. ACS Chem Neurosci. 2014;5:335–339.
  • Keystone EC, Wang MM, Layton M, et al. Clinical evaluation of the efficacy of the P2X7 purinergic receptor antagonist AZD9056 on the signs and symptoms of rheumatoid arthritis in patients with active disease despite treatment with methotrexate or sulphasalazine. Ann Rheum Dis. 2012;71:1630–1635.
  • Baxter A, Bent J, Bowers K, et al. Hit-to-Lead studies: the discovery of potent adamantane amide P2X7 receptor antagonists. Bioorg Med Chem Lett. 2003;13:4047–4050.
  • Guile SD, Alcaraz L, Birkinshaw TN, et al. Antagonists of the P2X7 receptor. from lead identification to drug development. J Med Chem. 2009;52:3123–3141.
  • Barniol-Xicota M, Kwak S-H, Lee S-D, et al. Escape from adamantane: scaffold optimization of novel P2X7 antagonists featuring complex polycycles. Bioorg Med Chem Lett. 2017;27:759–763.
  • Wilkinson SM, Barron ML, Kassoiu M, et al. Pharmacological evaluation of novel bioisosteres of an adamantyl benzamide P2X7 receptor antagonist. ACS Chem Neurosci. 2017 Aug 25;8:2374–2380.
  • Jasys VJ, Lombardo F, Appleton TA, et al. Preparation of fluoroadamantane acids and amines: impact of bridgehead fluorine substitution on the solution- and solid-state properties of functionalized adamantanes. J Am Chem Soc. 2000;122:466–473.
  • Zafrani Y, Saphier S, Gershonov E. Utilizing the CF2H moiety as a H-bond-donating group in drug discovery. Future Med Chem. 2020 Feb 6;12(5):361–365.
  • Levi N, Amir D, Gershonov E, et al. Recent progress on the Synthesis of CF2H-containing derivatives. Synthesis. 2019 Sept 30;51:4549–4567.
  • Huchet QA, Kuhn B, Wagner B, et al. Fluorination patterning: a study of structural motifs that impact physicochemical properties of relevance to drug discovery. J Med Chem. 2015 Nov 2;58:9041–9060.
  • Huchet QA, Trapp N, Kuhn B, et al. Partially fluorinated alkoxy groups – conformational adaptors to changing environments. J Fluorine Chem. 2017 Feb 8;198:34–46.
  • Erickson JA, McLoughlin JI. Hydrogen bond donor properties of the difluoromethyl group. J Org Chem. 1995;60(6):1626–1631.
  • Sessler CD, Rahm M, Becker S, et al. CF2H, a hydrogen bond donor. J Am Chem Soc. 2017 Jun 2;139(27):9325–9332.
  • Zafrani Y, Yeffet D, Sod-Moriah G, et al. Difluoromethyl bioisostere: examining the “lipophilic hydrogen bond donor” concept. J Med Chem. 2017 Jan 4;60:797–804.
  • Abraham MH, Abraham RJ, Byrne J, et al. NMR method for the determination of solute hydrogen bond acidity. J Org Chem. 2006;71:3389–3394.
  • Abraham MH, Abraham RJ, Acree WE, et al. An NMR method for the quantitative assessment of intramolecular hydrogen bonding; application to physicochemical, environmental and biochemical properties. J Org Chem. 2014;79:11075–11083.
  • Zafrani Y, Sod-Moriah G, Yeffet D, et al. CF2H, a functional group-dependent hydrogen-bond donor: is it a more or less lipophilic bioisostere of OH, SH and CH3? J Med Chem. 2019 May 15;62:5628–5637.
  • Butcher RA, Fujita M, Schroeder FC, et al. Small-molecule pheromones that control dauer development in Caenorhabditis elegans. Nat Chem Biol. 2007;3:420–422.
  • Patton JB, Bonne-Année S, Deckman J, et al. Methylprednisolone acetate induces, and ∆7-dafachronic acid suppresses, Strongyloides stercoralis hyperinfection in NSG mice. Proc Natl Acad Sci USA. 2018;115:204–209.
  • Wang Z, Schaffer NE, Kliewer SA, et al. Nuclear receptors: emerging drug targets for parasitic diseases. J Clin Invest. 2017;127:1165–1171.
  • Wang Z, Zhou XE, Motola DL, et al. Identification of the nuclear receptor DAF-12 as a therapeutic target in parasitic nematodes. Proc Natl Acad Sci USA. 2009;106:9138–9143.
  • Motola DL, Cummins CL, Rottiers V, et al. Identification of ligands for DAF-12 that govern dauer formation and reproduction in C. elegans. Cell. 2006;124:1209–1223.
  • Dansey MV, Alvarez LD, Samaja G, et al. Synthetic DAF-12 modulators with potential use in controlling the nematode life cycle. Biochem J. 2015;465:175–184.
  • Rodriguez CR, Del Fueyo MC, Burton G, et al. Synthesis and biological activity of fluorinated analogues of the DAF-12 receptor antagonist 24-hydroxy-4-cholen-3-one. Steroids. 2019 Aug 7;151:108469.
  • Yang H, Rudge DG, Koos J, et al. mTOR kinase structure, mechanism and regulation. Nature. 2013;497:213–223.
  • Shimobayashi M, Hall MN. Making new contacts: the mTOR network in metabolism and signaling crosstalk. Nat Rev Mol Cell Biol. 2014;15:155–162.
  • Saxton RA, Sabatini DM. mTOR signaling in growth, metabolism and disease. Cell. 2017;168:960–976.
  • Laplante M, Sabatini DM. mTOR signaling in growth control and disease. Cell. 2012;149:274–293.
  • Jacob S, Nair AB. A review on therapeutic drug monitoring of the mTOR class of immunosuppressants: everolimus and sirolimus. Drugs Ther Perpect. 2017;33:290–301.
  • Arachchige Don AS, Zheng XFS. Recent clinical trials of mTOR-targeted cancer therapies. Rev Recent Clin Trials. 2011;6:24–35.
  • Shor B, Gibbons JJ, Abraham RT, et al. Targeting mTOR globally in cancer: thinking beyond rapamycin. Cell Cycle. 2009;8:3831–3837.
  • Benjamin D, Colombi M, Moroni C, et al. Rapamycin passes the torch: a new generation of mTOR inhibitors. Nat Rev Drug Discovery. 2011;10:868–880.
  • Beaufils F, Cmiljanovic N, Cmiljanovic V, et al. 5-(4,6-dimorpholino-1,3,5-triazin-2-yl)-4-(trifluoromethyl)pyridine-2-amine (PQR309), a potent, brain-penetrant, orally bioavailable, pan-class I PI3K/mTOR inhibitor as a clinical candidate in oncology. J Med Chem. 2017;60:7524–7538.
  • Rageot D, Bohnacker T, Malone A, et al. Discovery and Preclinical Characterization of 5-[4,6-Bis({3-oxa-8-azabicyclo[3.2.1]octan-8-yl})-1,3,5-triazin-2-yl]-4-(difluoromethyl)pyridine-2-amine (PQR620), a Highly Potent and Selective mTORC1/2 Inhibitor for Cancer and Neurological Disorders. J Med Chem. 2018 Oct 25;61(22):10084–10105.
  • Brandt C, Hillmann P, Noack A, et al. The novel, catalytic mTORC1/2 inhibitor PQR620 and the PI3K/mTORC1/2 inhibitor PQR530 effectively cross the blood-brain barrier and increase seizure threshold in a mouse model of chronic epilepsy. Neuropharmacol. 2018;140:107–120.
  • Altschul R, Hoffer A, Stephen JD. Influence of nicotinic acid on serum cholesterol in man. Arch Biochem. 1955;54:558–559.
  • Carlson LA. Nicotinic acid: the broad-spectrum lipid drug. A 50th anniversary review. J Int Med. 2005;258:94–114.
  • Canner PL, Berge KG, Wenger NK, et al. Fifteen-year mortality in Coronary Drug Project patients: long term benefit with niacin. J Am Coll Cardiol. 1986;8:1245–1255.
  • Goldsmith GA, Cordill S. The vasodilating effects of nicotinic acid (relation to metabolic rate and temperature). Am J Med Sci. 1943;205:204–208.
  • Dalton TA, Berry RS. Hepatotoxicity associated with sustained-release niacin. Am J Med. 1992;93:102–104.
  • Morgan JM, Capuzzi DM, Guyton JR, et al. Treatment effects of Niaspan, a controlled-release niacin, in patients with hypercholesterolemia: a placebo-controlled trial. J Cardiovasc Pharmacol Ther. 1996;1:195–202.
  • Lorenzen A, Stannek C, Lang H, et al. Characterization of a G protein-coupled receptor for nicotinic acid. Mol Pharmacol. 2001;59:349–357.
  • Wise A, Ford SM, Fraser NJ, et al. Molecular identification of high and low affinity receptors for nicotinic acid. J Biol Chem. 2003;278:9869–9874.
  • Carlson LA, Orö L. The effect of nicotinic acid on the plasma free fatty acids demonstration of a metabolic type of sympathicolysis. Acta Med Scand. 2009;172(6):641–645.
  • Carlson LA. Studies on the effects of nicotinic acid on catecholamine stimulated lipolysis in adipose tissue in vitro. Acta Med Scand. 1963;173:719–722.
  • Carlson LA, Hanngren A. Initial distribution in mice of 3H-labeled nicotinic acid studied with autoradiography. Life Sci. 1964;3:867–871.
  • Boatman PD, Richman JG, Semple G. Nicotinic acid receptor agonists. J Med Chem. 2008;51:7653–7662.
  • Imbriglio JE, Chang S, Liang R, et al. GPR109a agonists. Part 1: 5-Alkyl and 5-aryl-pyrazole-tetrazoles as agonists of human orphan G-protein coupled receptor GPR109a. Bioorg Med Chem Lett. 2009;19:2121–2124.
  • Boatman PD, Schrader TO, Kasem M, et al. Potent tricyclic pyrazole tetrazole agonists of the nicotinic acid receptor (GPR109a). Bioorg Med Chem Lett. 2010;20:2797–2800.
  • Imbriglio JE, Chang S, Liang R, et al. GPR109a agonists. Part 2: pyrazole-acids as agonists of the human orphan G-protein coupled receptor G109a. Bioorg Med Chem Lett. 2010;20:4472.
  • Qin J, Rao A, Chen X, et al. Discovery of a potent nicotinic acid receptor agonist for the treatment of dyslipidemia. ACS Med Chem Lett. 2011 Feb 10;11(2):171–176.
  • Hunter L. The C-F bond as a conformational tool in organic and biological chemistry. Beilstein J Org Chem. 2010;6:1–14. .
  • Zimmer LE, Sparr C, Gilmour R. Fluorine conformational effects in organocatalysis: an emerging strategy for molecular design. Angew Chem Int Ed. 2011;50:11860–11871.
  • Scheidt F, Selter P, Santschi N, et al. Emulating natural product conformation by cooperative, non-covalent fluorine interactions. Chem Eur J. 2017;23:6142–6149.
  • Thiehoff C, Rey YP, Gilmour R. The fluorine gauche effect: a brief history. Isr J Chem. 2017;57:92–100.
  • Aufiero M, Gilmour R. Informing molecular design by stereoelectronic theory: the fluorine gauche effect in catalysis. Acc Chem Res. 2018;51(7):1701–1710.
  • Thiehoff C, Holland MC, Daniliuc C, et al. Can acyclic conformational control be achieved via a sulfur-fluorine gauche effect? Chem Sci. 2015 Jun 1;6:3565–3571.
  • Thiehoff C, Schifferer L, Daniliuc CG, et al. The influence of electronic perturbations on the Sulfur–Fluorine Gauche Effect. J Fluorine Chem. 2016;186:121–126.
  • Santschi N, Thiehoff C, Holland MC. The sulfur–fluorine gauche effect in coinage-metal complexes: augmenting conformational equilibria by complexation. Organometallics. 2016;35:3040–3044.
  • Huchet QA, Kuhn B, Wagner B, et al. On the polarity of partially fluorinated methyl groups. J Fluorine Chem. 2013 Mar 13;52:119–128.
  • Müller K. Simple vector considerations to assess the polarity of partially fluorinated alkyl and alkoxy groups. Chimia (Aarau). 2014;68:356–362.
  • Molnár G, Thiehoff C, Holland MC, et al. Catalytic, Vicinal difluorination of olefins: creating a hybrid, chrial bioisostere of the trifluoromethyl and ethyl groups. ACS Catal. 2016;6:7167–7173.
  • Hara S, Nakahigashi J, Ishi-I K, et al. Difluorination of alkenes with iodotoluene difluoride. Synlett. 1998;1998:495–496.
  • Molnár IG, Gilmour R. Catalytic difluorination of olefins. J Am Chem Soc. 2016 Mar 15;138:5004–5007.
  • Banik SM, Medley JW, Jacobsen EN. Catalytic, diastereoselective 1,2-difluorination of alkenes. J Am Chem Soc. 2016;138:5000–5003.
  • Sarie JC, Thiehoff C, Mudd RJ, et al. Deconstructing the catalytic, vicinal difluorination of alkenes: hf-free synthesis and structural study of p-TolIF2. J Org Chem. 2017;82:11792–11798.
  • Scheidt F, Schäfer M, Sarie JC, et al. Enantioslective, catalytic vicinal difluorination of alkenes. Angew Chem Int Ed. 2018;57:16431–16435.
  • Haj MK, Banik SM, Jacobsen EN. Catalytic, enantioselective 1,2-difluorination of cinnamamides. Org Lett. 2019 Apr 9;21:4919–4923.
  • Sharma S, Mathur AG, Pradhan S, et al. Fingolimod (FTY720): first approved oral therapy for multiple sclerosis. J Pharmacol Pharmacother. 2011;2:49–51.
  • Compston A, Coles A. Multiple sclerosis. Lancet. 2008;372:1502–1517.
  • Grebenciucova E, Reder AT, Bernard JT. Immunologic mechanisms of fingolimod and the role of immunosenescence in the risk of cryptococcal infection: a case report and review of literature. Mult Scler Relat Disord. 2016;9:158–162.
  • Raffel J, Wakerley B, Nicholas R. Multiple sclerosis. Medicine (Baltimore). 2016 Jul 29;44:537–541.
  • Brinkmann V, Billich A, Baumruker T. Fingolimod (FTY720): discovery and development of an oral drug to treat multiple sclerosis. Nat Rev Drug Discovery. 2010;9:883–897.
  • Mulakayala N, Rao P, Iqbal J, et al. Synthesis of novel therapeutic agents for the treatment of multiple sclerosis: a brief overview. Eur J Med Chem. 2013;60:170–186.
  • Kim S, Lee H, Lee M, et al. Efficient synthesis of the immunosuppressive agent FTY720. Synthesis. 2006;2006:753–755.
  • Strader CR, Pearce CJ, Oberlies NH. Fingolimod (FTY720): a recently approved multiple sclerosis drug based on a fungal secondary metabolite. J Nat Prod. 2011;74:900–907.
  • Scott LJ. Fingolimod. CNS Drugs. 2011;25:673–698.
  • Erdeljac N, Kehr G, Ahlqvist M, et al. Exploring physicochemical space via a bioisostere of the trifluoroethyl and ethyl groups (BITE): attenuating liophilicity in fluorinated analogues of Gilenya® for multiple sclerosis. Chem Commun. 2018 Sept 7;54:12002–12005.
  • Richon VM. Cancer Biology: mechanism of Antitumour Action of Vorinostat (suberoylanilide hydroxamic acid), a novel histone deacetylase inhibitor. Br J Cancer. 2006;95:S1–S6.
  • Mottamal M, Zheng S, Huang TL, et al. Deacetylase inhibitors in clinical studies as templates for new anticancer agents. Molecules. 2015;20:3898–3941.
  • Marks PA, Xu W-S. Histone deacetylase inhibitors: potential in cancer therapy. J Cell Biochem. 2009;107:600–608.
  • Biel M, Wascholowski V, Giannis A. Epigenetics-An Epicenter of Gene Regulation: histones and Histone-Modifying Enzymes. Angew Chem Int Ed. 2005;44:3186–3216.
  • Holbert MA, Marmorstein R. Structure and activity of enzymes that remove histone modifications. Curr Opin Struct Biol. 2005;15:673–680.
  • New M, Olzscha H, La Thangue NB. HDAC inhibitor-based therapies: can we interpret the code? Mol Oncol. 2012;6:637–656.
  • Yoo CB, Jones PA. Epigenetic therapy of cancer: past, present and future. Nat Rev Drug Discovery. 2006;5:37–50.
  • Barneda-Zahonera B, Parra M. Histone deacetylases and cancer. Mol Oncol. 2012;6:579–589.
  • Walton JW, Cross JM, Reidel T, et al. Perfluorinated HDAC inhibitors as selective anticancer agents. Org Biomol Chem. 2017;15:9186–9190.
  • Erdeljac N, Bussmann K, Schöler A, et al. Fluorinated Analogues of the Histone Deacetylase Inhibitor Vorinostat (Zolinza): validation of a Chiral Hybrid Bioisostere, BITE. ACS Med Chem Lett. 2019 Jul 19;10:1336–1340.
  • Kalin JH, Bergman JA. Development and therapeutic implications of selective histone deacetylase 6 inhibitors. J Med Chem. 2013;56:6297–6313.
  • Porter NJ, Osko JD, Diedrich D, et al. Histone deacetylase 6-selective inhibitors and the influence of capping groups on hydroxamate-zinc denticity. J Med Chem. 2018;61:8054–8060.
  • Bhatia S, Krieger V, Groll M, et al. Discovery of the first-in-class dual histone deacetylase-proteasome inhibitor. J Med Chem. 2018;61:10299–10309.
  • Marson CM, Matthews CJ, Atkinson SJ, et al. Potent and selective inhibitors of histone deacetylase-3 containing chiral oxazoline capping groups and N-92-aminophenyl)-benzamide binding unit. J Med Chem. 2015;58:6803–6818.
  • Mikami K, Itoh Y, Yamanaka M. Fluorinated carbonyl and olefinic compounds: basic character and asymmetric catalytic reactions. Chem Rev. 2004 Dec 19;104:1–16.
  • Ma J-A, Cahard D. Asymmetric fluorination, trifluoromethylation, and perfluoroalkylation reactions. Chem Rev. 2004 Oct 29;104:6119–6146.
  • Tur F, Saá JM. Direct, catalytic enantioselective nitroaldol (henry) reaction of trifluoromethyl ketones: an asymmetric entry to α-trifluoromethyl-substituted quaternary carbons. Org Lett. 2007 Nov 3;9:5079–5082.
  • Leroux F. Atropisomerism, biphenyls, and fluorine: a comparison of rotational barriers and twist angles. ChemBioChem. 2005;5:644–649.
  • Jagodzinska M, Huguenot F, Candiani G, et al. Assessing the bioisosterism of the trifluoromethyl group with a protease probe. ChemMedChem. 2009;4:49–51. .
  • Agrawal A, Romero-Perez D, Jacobsen JA, et al. Zinc-Binding groups modulate selective inhibition of MMPs. ChemMedChem. 2008;3:812–820.
  • Tochowicz A, Maskos K, Huber R, et al. Crystal structures of MMP-9 complexes with five inhibitors: contribution of the flexible Arg424 sidechain to selectivity. J Mol Biol. 2007 Aug 24;371:989–1006.
  • Rowsell S, Hawtin P, Minshull CA, et al. Crystal structure of human MMP9 in complex with a reverse hydroxamate inhibitor. J Mol Biol. 2002 May 24;319:171–181.
  • Brandstetter H, Grams F, Glitz D, et al. The 1.8-A crystal structure of a matrix metalloproteinase 8-barbiturate inhibitor complex reveals a previously unobserved mechanism for collagenase substrate recognition. J Biol Chem. 2001 May 18;276:17405–17412.
  • Foley LH, Palermo R, Dunten P, et al. Novel 5,5-disubstitutedpyrimidine-2,4,6-triones as selective MMP inhibitors. Bioorg Med Chem Lett. 2001 Apr 23;11:969–972.
  • Dunten P, Kammlott U, Crowther R, et al. X-ray structure of a novel matrix metalloproteinase inhibitor complexed to stromelysin. Protein Sci. 2001 May 10;10:923–926.
  • Breyholz H-J, Schäfers M, Wagner S, et al. C-5-disubstituted barbiturates as potential molecular probes for noninvasive matrix metalloproteinase imaging. J Med Chem. 2005 May 5;48(9):3400–3409.
  • Sheppeck JE, Gilmore JL, Tebben A, et al. Hydantoins, triazolones, and imidazolones as selective non-hydroxamate inhibitors of tumor necrosis factor-alpha converting enzyme (TACE). Bioorg Med Chem Lett. 2007 May 15;17:2769–2774.
  • Kim S-H, Pudzianowski AT, Leavitt KJ, et al. Structure-based design of potent and selective inhibitors of collagenase-3 (MMP-13). Bioorg Med Chem Lett. 2005 Feb 15;15(4):1101–1106.
  • Erdeljac N, Thiehoff C, Gilmour R, et al. Validating the 1,2-difluoro motif as a hybrid bioisostere of CF3 and Et using matrix metalloproteinases as structural probes. J Med Chem. 2020 May 7;63:6225–6237.
  • Venkatesan N, Kim BH. Synthesis and enzyme inhibitory activities of novel peptide isosteres. Curr Med Chem. 2002;9(24):2243–2270.
  • Gante J. Peptidomimetics—tailored enzyme inhibitors. Angew Chem Int Ed. 1994 Sept 16;33(17):1699–1720.
  • Wipf P, Henninger TC, Geib SJ. Methyl- and (trifluoromethyl)alkene peptide isosteres: synthesis and evaluation of their potential as β-turn promoters and peptide mimetics. J Org Chem. 1998;63:6088–6089.
  • Drouin M, Paquin J-F. Recent progress in the racemic and enantioselective synthesis of monofluoroalkene-based dipeptide isosteres. Beilstein J Org Chem. 2017;13:2637–2658.
  • Drouin M, Hamel J-F, Paquin J-F. Synthesis of monofluoroalkenes: a leap forward. Synthesis. 2018 Jan 11;50:881–955.
  • Courve-Bonnaire S, Cahard D, Pannecoucke X. Chiral dipeptide mimics possessing a fluoroolefin moiety: a relevant tool for conformational and medicinal studies. Org Biomol Chem. 2007;5:1151–1157.
  • Nadon J-F, Rochon K, Grastilleur S, et al. Synthesis of Gly-Ψ[(Z)CF=CH]-Phe, a fluoroalkene dipeptide isostere, and its incorporation into a Leu-enkephalin peptidomimetic. ACS Chem Neurosci. 2017;8:40–49.
  • Sani M, Volonterio A, Zanda M. The trifluoroethyl amine function as peptide bond replacement. ChemMedChem. 2007;2:1693–1700. .
  • Volonterio A, Bellosta S, Bravin F, et al. Synthesis, structure and conformation of partially-modified retro- and retro-inverse Ψ-[NHCH-(CF3)]Gly peptides. Chem Eur J. 2003;9:4150–4522.
  • Molteni M, Volonterioa A, Zanda M. Stereocontrolled Synthesis of ψ[CH(CF3)NH]Gly-Peptides. Org Lett. 2003 Sept 18;5:3887–3890.
  • Volonterio A, Bravo P, Zanda M. Synthesis of Partially Modified Retro and Retroinverso ψ[NHCH(CF3)]-Peptides. Org Lett. 2000 May 27;2:1827–1830.
  • Molteni M, Pesenti C, Sani M, et al. Fluorinated peptidomimetics; synthesis, conformational and biological features. J Fluorine Chem. 2004;125:1735–1743.
  • Molteni M, Bellucci MC, Bigotti S, et al. Ψ[CH(CF3)NH]Gly-peptides: synthesis and conformation analysis. Org Biomol Chem. 2009;7:2286–2296.
  • Grabowska UB, Chambers TJ, Shiroo M. Recent developments in cathepsin K inhibitor design. Curr Opin Drug Discovery Dev. 2005;8:619–630.
  • Marquis RW. Inhibition of the Cysteine Protease Cathepsin K (EC 3.4.22.38). Ann Rep Med Chem. 2004;39:79–98.
  • Palmer JT, Bryant C, Wang D-X, et al. Design and Synthesis of Tri-Ring P3 Benzamide-Containing Aminonitriles as Potent, Selective, Orally Effective Inhibitors of Cathepsin K. J Med Chem. 2005 Oct 29;48(24):7520–7534.
  • Black WC, Bayly CI, Davis DE, et al. Trifluoroethylamines as amide isosteres in inhibitors of cathepsin K. Bioorg Med Chem Lett. 2005 Sept 9;15:4741–4744.
  • Isabel E, Mellon C, Boyd MJ, et al. Difluoroethylamines as an amide isostere in inhibitors of cathepsin K. Bioorg Med Chem Lett. 2011;21:920–923.
  • Falgueyret J-P, Desmarais S, Oballa R, et al. Lysosomotropism of Basic Cathepsin K Inhibitors Contributes to Increased Cellular Potencies against Off-Target Cathepsins and Reduced Functional Selectivity. J Med Chem. 2005 Oct 29;48(24):7535–7543.
  • Li CS, Deschenes D, Desmarais S, et al. Identification of a potent and selective non-basic cathepsin K inhibitor. Bioorg Med Chem Lett. 2006;16:1985–1989.
  • Gauthier JY, Chauret N, Cromlish W, et al. The discovery of odanacatib (MK-0822), a selective inhibitor of cathepsin K. Bioorg Med Chem Lett. 2008 Jan 15;18(3):923–928. .
  • Mullard A. Merck & Co. drops osteoporosis drug odanacatib. Nat Rev Drug Discovery. 2016;15:669.
  • Halperin SD, Kwon D, Holmes M, et al. Development of a direct photocatalytic C-H fluorination for the preparative synthesis of odanacatib. Org Lett. 2015 Oct 20;17:5200–5203.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.