2,789
Views
18
CrossRef citations to date
0
Altmetric
Review

An overview of rational design of mRNA-based therapeutics and vaccines

ORCID Icon & ORCID Icon
Pages 1307-1317 | Received 21 Dec 2020, Accepted 25 May 2021, Published online: 19 Jul 2021

References

  • Wang F, Zuroske T, Watts JK. RNA therapeutics on the rise. Nat Rev Drug Discov. 2020;19(7):441–442.
  • Wolff JA, Malone RW, Williams P, et al., Direct gene transfer into mouse muscle in vivo. Science. 247(4949): 1465–1468. 1990.
  • Burnett JC, Rossi JJ. RNA-based therapeutics: current progress and future prospects. Chem Biol. 2012;19(1):60–71.
  • Geall AJ, Mandl CW, Ulmer JB. RNA: the new revolution in nucleic acid vaccines. Semin Immunol. 2013;25(2):152–159.
  • Hajj KA, Whitehead KA. Tools for translation: non-viral materials for therapeutic mRNA delivery. Nat Rev Mater. 2017;2(10):17056.
  • Kallen KJ, Thess A. A development that may evolve into a revolution in medicine: mRNA as the basis for novel, nucleoside-based vaccines and drugs. Ther Adv Vaccines. 2014;2(1):10–31.
  • Kreiter S, Diken M, Selmi A, et al. Tumor vaccination using messenger RNA: prospects of a future therapy. Curr Opin Immunol. 2011;23(3):399–406.
  • Sahin U, Kariko K, Turecu O. mRNA-based therapeutics-developing a new class of drugs. Nat Rev Drug Discov. 2014;13:759–780.
  • Kariko K, Muramatsu H, Ludwig J, et al. Generating the optimal mRNA for therapy: HPLC purification eliminates immune activation and improves translation of nucleoside-modified, protein-encoding mRNA. Nucleic Acids Res. 2011;38(21):e142.
  • Youn H, Chung JK. Modified mRNA as an alternative to plasmid DNA (pDNA) for transcript replacement and vaccination therapy. Expert Opin Biol Ther. 2015;15(9):1337–1348.
  • Steichen C, Luce E, Maluenda J, et al. Messenger RNA versus retrovirus-based induced pluripotent stem cell reprogramming strategies: analysis of genomic integrity. Stem Cells Tansl Med. 2014;3(6):686–691.
  • Nair SK, Boczkowski D, Morse M, et al., Induction of primary carcinoembryonic antigen (CEA)-specific cytotoxic T lymphocytes in vitro using human dendritic cells transfected with RNA. Nat Biotechnol. 16(4): 364–369. 1998.
  • Heiser A, Coleman D, Dannull J, et al., Autologous dendritic cells transfected with prostate-specific antigen RNA stimulate CTL responses against metastatic prostate tumors. J Clin Invest. 109(3): 409–417. 2002.
  • Weide B, Carralot JP, Reese A, et al. Results of the first phase I/II clinical vaccination trial with direct injection of mRNA. J Immunother. 2008;31(2):180–188.
  • Rittig SM, Haemtschel M, Weimer KJ, et al. Intradermal vaccinations with RNA coding for TAA generate CD8+ and CD4+ immune responses and induce clinical benefit in vaccinated patients. Mol Ther. 2011;19(5):990–999.
  • Van Gulck E, Vlieghe E, Vekemans M, et al. mRNA-based dendritic cell vaccination induces potent antiviral T-cell responses in HIV-1-infected patients. AIDS. 2012;26(4):F1–12.
  • Maus MV, Haas AR, Beatty GL, et al. T cells expressing chimeric antigen receptors can cause anaphylaxis in humans. Cancer Immunol Res. 2013;1(1):26–31.
  • Wilgenhof S, Corthals J, Heirman C, et al. Phase II study of autologous monocyte-derived mRNA electroporated dendritic cells (TriMixDC-MEL) plus ipilimumab in patients with pretreated advanced melanoma. J Clin Oncol. 2016;34(12):1330–1338.
  • Bahl K, Senn JJ, Yuzhakov O, et al. Preclinical and clinical demonstration of immunogenicity by mRNA vaccines against H10N8 and H7N9 influenza viruses. Mol Ther. 2017;25(6):1316–1327.
  • Leal L, Guardo AC, Moron-Lopez S, et al. Phase I clinical trial of an intranodally administered mRNA-based therapeutic vaccine against HIV-1 infection. AIDS. 2018;32(17):2533–2545.
  • de Jong W, Leal L, Buyze J, et al. Therapeutic vaccine in chronically HIV-1-infected patients: a randomized, double-blind, placebo-controlled phase IIa trial with HTI-TriMix. Vaccines (Basel). 2019;7(4):209.
  • Papachristofilou A, Hipp MM, Klinkhardt U, et al. Phase Ib evaluation of a self-adjuvanted protamine formulated mRNA-based active cancer immunotherapy, BI1361849 (CV9202), combined with local radiation treatment in patients with stage IV non-small cell lung cancer. J Immunother Cancer. 2019;7(1):38.
  • Jackson LA, Anderson EJ, Rouphael NG, et al. An mRNA vaccine against SARS-CoV-2 – preliminary report. N Engl J Med. 2020;383(20):1920–1931.
  • Trepotec Z, Lichteneggeer E, Plank C, et al. Delivery of mRNA therapeutics for the treatment of hepatic diseases. Mol Ther. 2019;27(4):794–802.
  • Magadum A, Kaur K, Zangi L. mRNA-based protein replacement therapy for the heart. Mol Ther. 2019;27(4):785–793.
  • Warren L, Lin C. mRNA-based genetic reprogramming. Mol Ther. 2019;27(4):729–734.
  • Schlake T, Thran M, Fiedler K, et al. mRNA: a novel avenue to antibody therapy? Mol Ther. 2019;27(4):773–784.
  • Restifo NP, Ying H, Hwang L, et al. The promise of nucleic acid vaccines. Gene Ther. 2000;7(2):89–92.
  • Kutzler MA, Weiner DB. DNA vaccines: ready for prime time? Nat Rev Genet. 2008;9(10):776–788.
  • Pardi N, Hogan MJ, Porter FW, et al., mRNA vaccines – a new era in vaccinology. Nat Rev Drug Discov. 17(4): 261–279. 2018.
  • Alexopoulou L, Holt AC, Medzhitov R, et al. Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature. 2001;413(6857):732–738.
  • Kato H, Takeuchi O, Sato S, et al. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature. 2006;441(7089):101–105.
  • Nallagatla SR, Hwang J, Toroney R, et al. 5ʹ-triphosphate-dependent activation of PKR by RNAs with short stem-loops. Science. 2007;318(5855):1455–1458.
  • Anderson BR, Muramatsu H, Nallagatla SR, et al. Incorporation of pseudouridine into mRNA enhances translation by diminishing PKR activation. Nucleic Acids Res. 2010;38(17):5884–5892.
  • Kariko K, Buckstein M, Ni H, et al. Suppression of RNA recognition of toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity. 2005;23(2):165–175.
  • Kariko K, Muramatsu H, Welsh FA, et al. Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability. Mol Ther. 2008;16:183301840.
  • Warren L, Manos PD, Ahfeldt T, et al. Highly efficient reprogramming to pluropotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell. 2010;7(5):618–630.
  • Song J, Yi C. Chemical modifications to RNA: a new layer of gene expression regulation. ACS Chem Biol. 2017;12(2):316–325.
  • Mauer J, Luo X, Blanjoie A, et al. Reversible methylation of m(6)Am in the 5ʹ cap controls mRNA stability. Nature. 2017;541(7637):371–375.
  • Wadhwa A, Aljabbari A, Lokras A, et al. Opportunities and challenges in the delivery of mRNA-based vaccines. Pharmaceutics. 2020;12(2):102.
  • Ramanathan A, Robb GB, Chan SH. mRNA capping: biological functions and applications. Nucleic Acids Res. 2016;44(16):7511–7526.
  • Jemielity J, Fowler T, Zuberek J, et al. Novel “anti-reverse” cap analogs with superior translational properties. RNA. 2003;9(9):1108–1122.
  • Kuhn AN, Diken M, Kreiter S, et al. Phosphorothioate cap analogs increase stability and translational efficiency of RNA vaccines in immate dendritic cells and induce superior immune responses in vivo. Gene Ther. 2010;17(8):961–971.
  • Stepinski J, Waddell C, Stolarski R, et al. Synthesis and properties of mRNAs containing the novel “anti-reverse” cap analogs 7-methyl(3ʹ-O-methyl)GpppG and 7-methyl(3ʹ-deoxy)GpppG. RNA. 2001;7(10):1486–1495.
  • Muttach F, Muthmann N, Rentmeister A. Synthetic mRNA capping. Beilstein J Org Chem. 2017;13:2819–2832.
  • Zohra FT, Chowdhury EH, Tada S, et al. Effective delivery with enhanced translational activity synergistically accelerates mRNA-based transfection. Biochem Biophys Res Comm. 2007;358(1):373–378.
  • Kocmik I, Piecyk K, Rudzinska M, et al. Modified ARCA analogs providing enhanced translational properties of capped mRNAs. Cell Cycle. 2018;17(13):1624–1636.
  • Strenkowska M, Kowalska J, Lukaszewicz M, et al. Towards mRNA with superior translational activity: synthesis and properties of ARCA tetraphosphates with single phosphorothioate modifications. New J Chem. 2010;34(5):993–1007.
  • Sikorksi PJ, Warminski M, Kubacka D, et al. The identity and methylation status of the first transcribed nucleotide in eukaryotic mRNA 5ʹ cap modulates protein expression in living cells. Nucleic Acids Res. 2020;48(3):1604–1626.
  • Dimitrova DG, Teysset L, Carre C. RNA 2ʹ-O-methylation (Nm) modification in human diseases. Genes (Basel). 2019;10(2):117.
  • Picard-Jean F, Brand C, Tremblay-Letourneau M, et al. 2ʹ-O-methylation of the mRNA cap protects RNAs from decapping and degradation by DXO. PLoS One. 2018;13(3):e0193804.
  • Devarkar SC, Wang C, Miller MT, et al. Structural basis for m7G recognition and 2ʹ-O-methyl discrimination in capped RNAs by the innate immune receptor RIG-I. Proc Natl Acad Sci USA. 2016;113(3):596–601.
  • Vaidyanathan S, Azizian KT, Haque A, et al. Uridine depletion and chemical modification increase Cas9 mRNA activity and reduce immunogenicity without HPLC purification. Mol Ther Nucleic Acids. 2018;12:530–542.
  • McCaffrey AP. RNA epitranscriptome: role of the 5ʹ Cap. Genet Eng Biotechnol News. 2019;39:59–61.
  • Thess A, Grund S, Mui BL, et al. Sequence-engineered mRNA without chemical nucleoside modifications enables an effective protein therapy in large animals. Mol Ther. 2015;23(9):1456–1464.
  • Sharp PM, Li WH. The codon adaptation index – a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res. 1987;15(3):1281–1295.
  • Qian W, Yang JR, Pearson NM, et al. Balanced codon usage optimizes eukaryotic translational efficiency. PLoS Genet. 2012;8(3):e1002603.
  • Saunders R, Deane CM. Synonymous codon usage influences the local protein structure observed. Nucleic Acids Res. 2010;38(19):6719–6728.
  • Plotkin JB, Kudla G. Synonymouc but not the same: the causes and consequences of codoon bias. Nat Rev Genet. 2011;12(1):32–42.
  • Fath S, Bauer AP, Liss M, et al., Multiparameter RNA and codon optimization: a standardized tool to assess and enhance autologous mammalian gene expression. PLoS One. 6(3): e17596. 2011.
  • Gustafsson C, Govindarajan S, Minshull J. Codon bias and heterologous protein expression. Trends Biotechnol. 2004;22(7):346–353.
  • Linares-Fernandez S, Lacroix C, Exposito JY, et al. Tailoring mRNA vaccine to balance innate/adapative immune response. Trends Mol Med. 2020;26(3):311–323.
  • Angov E, Hillier CJ, Kincaid RL, et al. Heterologous protein expression is enhanced by harmonizing the codon usage frequencies of the target gene with those of the expression host. PLoS One. 2008;3(5):e2189.
  • Bali V, Bebok Z. Decoding mechanisms by which silent codon changes influence protein biogenesis and function. Int J Biochem Cell Biol. 2015;64:58–74.
  • Hinnebusch AG, Ivanov IP, Sonenberg N. Translational control by 5ʹ-untranslated regions of eukaryotic mRNAs. Science. 2016;352(6292):1413–1416.
  • Sonenberg N, Hinnebusch AG. Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell. 2009;136(4):731–745.
  • Haizel SA, Bhardwaj U, Gonzalez RL Jr, et al. 5ʹUTR recruitment of the translation initiation factor eIF4GI or DAP5 drives cap-independent translation of a subset of human mRNAs. J Biol Chem. 2020;295(33):11693–11706.
  • Svitkin YV, Pause A, Haghighat A, et al. The requirement for eukaryotic initiation factor 4A (elF4A) in translation is in direct proportion to the degree of mRNA5ʹ secondary structure. RNA. 2001;7(3):382–394.
  • Barreau C, Paillard L, Osborne HB. AU-rich elements and associated factors: are there unifying principles? Nucleic Acids Res. 2005;33(22):22.
  • Eberhardt W, Doller A, Akoolel S, et al. Modulation of mRNA stability as a novel therapeutic approach. Pharmacol Ther. 2007;114(1):56–73.
  • Wilkinson N, Pantopoulos K. The IRP/IPE system in vivo: insights from mouse models. Front Pharmacol. 2014;5:176.
  • Asrani KH, Farelli JD, Stahley MR, et al., Optimization of mRNA untranslated regions for improved expression of therapeutic mRNA. RNA Biol. 15(6): 756–762. 2018.
  • Yu S, Kim VN. A tale of non-canonical tails: gene regulation by post-transcriptional RNA tailing. Nat Rev Mol Cell Biol. 2020;21(9):542–556.
  • Tang TT, Passmore LA. Recognition of poly(A) RNA through its intrinsic helical structure. Cold Spring Harb Symp Quant Biol. 2019;84:21–30.
  • Elango N, Elango S, Shivshankar P, et al. Optimized transfection of mRNA transcribed from a d(A/T)100 tail-containing vector. Biochem Biophys Res Comm. 2005;330(3):958–966.
  • Peng J, Murray EL, Schoenberg DR. In vivo and in vitro analysis of poly(A) length effects on mRNA translation. Methods Mol Biol. 2008;419:215–230.
  • Oh S, Kessler JA. Design, assembly, production, and transfection of synthetic modified mRNA. Methods. 2018;133:29–43.
  • Sachs AB, Varani G. Eukaryotic translation initiation: there are (at least) two sides to every story. Nat Struct Biol. 2000;7(5):356–361.
  • Holtkamp S, Kreiter S, Selmi A, et al. Modification of antigen-encoding RNA increases stability, translational efficacy, and T-cell stimulatory capacity of dendritic cells. Blood. 2006;108(13):4009–4017.
  • Weissman D. mRNA transcript therapy. Expert Rev Vaccines. 2015;14(2):265–281.
  • Voet D, Voet JG. Biochemistry. 4th ed. New York: John Wiley & Sons; 2011.
  • Kariko K, Ni H, Capodici J, et al. mRNA is an endogenous ligand for Toll-like receptor 3. J Biol Chem. 2004;279(13):12542–12550.
  • Yamamoto A, Kormann M, Rosenecker J, et al., Current prospects for mRNA gene delivery. Eur J Pharm Biopharm. 71(3): 484–489. 2009.
  • Tews BA, Meyers G. Self-replicating RNA. Methods Mol Biol. 2017;1499:15–35.
  • Ying H, Zaks TZ, Wang RF, et al. Cancer therapy using a self-replicating RNA vaccine. Nat Med. 1999;5(7):823–827.
  • Bloom K, van den Berg F, Arbuthnot P. Self-amplifying RNA vaccines for infectious diseases. Gene Ther. 2020 Oct;22:1–13.
  • Lundstrom K. Self-replicating RNA viruses for RNA therapeutics. Molecules. 2018;23(12):3310.
  • Maruggi G, Zhang C, Li J, et al. mRNA as a transformative technology for vaccine development to control infectious diseases. Mol Ther. 2019;27(4):757–772.
  • Hyde JL, Chen R, Trobaugh DW, et al. The 5ʹ and 3ʹ ends of alphavirus RNAs – non-coding is not non-functional. Virus Res. 2015;206:99–107.
  • Toribio R, Diaz-Lopez I, Boskovic J, et al. An RNA trapping mechanism in Alphavirus mRNA promotes ribosome stalling and translation initiation. Nucleic Acids Res. 2016;44(9):4368–4380.
  • Hyde JL, Gardner CL, Kimura T, et al. A viral RNA structural element alters host recognition of nonself RNA. Science. 2014;343(6172):783–787.
  • Reynaud JM, Kim DY, Atasheva S, et al. IFIT1 differentially interferes with translation and replication of alphavirus genomes and promotes induction of type I interferon. PLoS Pathog. 2015;11(4):e1004863.
  • Trobaugh DW, Gardner CL, Sun C, et al. RNA viruses can hijack vertebrate microRNAs to suppress innate immunity. Nature. 2014;506(7487):245–248.
  • Li Y, Teague B, Zhang Y, et al. In vitro evolution of enhanced RNA replicons for immunotherapy. Sci Rep. 2019;9(1):6932.
  • Mc Cafferty S, De Temmerman J, Kitada T, et al. In vivo validation of a reversible small molecule-based switch for synthetic self-amplifying mRNA regulation. Mol Ther. 2020 Nov 11;20(S1525–0016):30608.
  • Utt A, Quirin T, Saul S, et al. Versatile trans-replication systems for Chikungunya Virus allow functional analysis and tagging of every replicase protein. PLoS One. 2016;11(3):e0151616.
  • Blakney AK, McKay PF, Shattock RJ. Structural components for amplification of positive and negative strand VEEV splitzicons. Front Mol Biosci. 2018;5:71.
  • Bartholomeeusen K, Utt A, Coppens S, et al. A Chikungunya virus trans-replicase system reveals the importance of delayed nonstructural polyprotein processing for efficient replication complex formation in mosquito cells. J Virol. 2018;92(14):e00152–18.
  • Smerdou C, Liljestrom P. Two-helper RNA system for production of recombinant Semliki forest virus particles. J Virol. 1999;73(2):1092–1098.
  • Beissert T, Perkovic M, Vogel A, et al., A trans-amplifying RNA vaccine strategy for induction of potent protective immunity. Mol Ther. 28(1): 119–128. 2020.
  • Read ML, Singh S, Ahmed Z, et al. A versatile reducible polycation-based system for efficient delivery of a broad range of nucleic acids. Nucleic Acids Res. 2005;33(9):e86.
  • Siewert C, Haas H, Nawroth T, et al. Investigation of charge ratio variation in mRNA – DEAE-dextran polyplex delivery systems. Biomaterials. 2019;192:612–620.
  • Michel T, Link A, Abraham MK, et al. Generation of cationic nanoliposomes for the efficient delivery of in vitro transcribed messenger RNA. J Vis Exp. 2019Feb;1:144.
  • Dirisala A, Uchida S, Tockary TA, et al. Precise tuning of disulphide crosslinking in mRNA polyplex micelles for optimizing extracellular and intracellular nuclease tolerability. J Drug Target. 2019;27(5–6):670–680.
  • Chen R, Zhang H, Yan J, et al. Scaffold-mediated delivery of non-viral mRNA vaccines. Gene Ther. 2018;25(8):556–567.
  • Tros de Ilarduya C, Arangoa MA, Duzgunes N. Transferrin-lipoplexes with protamine-condensed DNA for serum-resistant gene delivery. Methods Enzymol. 2003;373:342–356.
  • Kowalski PS, Rudra A, Miao L, et al. Delivering the messenger: advances in technologies for therapeutic mRNA delivery. Mol Ther. 2019;27(4):710–728.
  • Bell GD, Yang Y, Leung E. mRNA transfection by a Xentry-protamine cell-penetrating peptide is enhanced by TLR antagonist E6446. PLoS One. 2018;13(7):e0201464.
  • Coolen AL, Lacroix C, Mercier-Gouy P, et al. Poly(lactic acid) nanoparticles and cell-penetrating peptide potentiate mRNA-based vaccine expression in dendritic cells triggering their activation. Biomaterials. 2019;195:23–37.
  • Noble GT, Stefanick JF, Ashley JD, et al. Ligand-targeted liposome design: challenges and fundamental considerations. Trends Biotech. 2014;32(1):32–45.
  • Guevara M, Persano F, Persano S. Advances in lipid nanoparticles for mRNA-based cancer immunotherapy. Front Chem. 2020;8:589959.
  • Eygeris Y, Patel S, Jozic A, et al. Deconvoluting lipid nanoparticle structure for messenger RNA delivery. Nano Lett. 2020;20(6):4543–4549.
  • Vallazza B, Petri S, Poleganov M, et al. Recombinant messenger RNA technology and its application in cancer immunotherapy, transcript replacement therapies, pluripotent stem cell induction, and beyond. Wiley Interdiscipl Rev RNA. 2015;6:471–499.
  • Loomis K, Kirschman J, Bhosle S, et al. Strategies for modulatingInnate immune activation and protein production of in vitro transcribed mRNAs. J Mater Chem. 2016;4(9):1619–1632.
  • Yoshioka N, Gros E, Li HR, et al. Efficient generation of human iPSCs by a synthetic self-replicative RNA. Cell Stem Cell. 2013;13(2):246–254.
  • Jain R, Frederick JP, Huang EY, et al., MicroRNAs enable mRNA therapeutics to selectively program cancer cells to self-destruct. Nucleic Acid Ther. 28(5): 285–296. 2018.
  • Glisovic T, Bachorik JL, Yong J, et al. RNA-binding proteins and post-transcriptional gene regulation. FEBS Lett. 2008;582(14):1977–1986.
  • Dolicka D, Sobolewski C, Correia de Sousa M, et al. mRNA post-transcriptional regulation by AU-rich element-binding proteins in liver inflammation and cancer. Int J Mol Sci. 2020;21(18):6648.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.