687
Views
6
CrossRef citations to date
0
Altmetric
Perspective

What is the gold standard model for Alzheimer’s disease drug discovery and development?

, , , &
Pages 1415-1440 | Received 14 May 2021, Accepted 21 Jul 2021, Published online: 25 Aug 2021

References

  • Cacabelos R, Fernández-Novoa L, Lombardi V, et al. Molecular genetics of Alzheimer’s disease and aging. Meth Find Exp Clin Pharmacol. 2005;27:1–573.
  • Dubois B, Hampel H, Feldman HH, et al. Preclinical Alzheimer’s disease: definition, natural history, and diagnostic criteria. Alzheimers Dement. 2016;12(3):292–323.
  • Cl M, Bateman R, Blennow K, et al. Alzheimer’s disease. Nat Rev Dis Primers. 2015;1(1):15056.
  • Busche MA, Hyman BT. Synergy between amyloid-β and tau in Alzheimer’s disease. Nat Neurosci. 2020;23(10):1183–1193.
  • Cacabelos R, Cacabelos P, Torrellas C, et al. Pharmacogenomics of Alzheimer’s disease: novel therapeutic strategies for drug development. Methods Mol Biol. 2014;1175:323–556.
  • Cacabelos R, Carril JC, Cacabelos P, et al. Pharmacogenomics of Alzheimer’s disease: genetic determinants of phenotypic variation and therapeutic outcome. J Genomic Med Pharmacogenomics. 2016;1:151–209.
  • Cacabelos R, Carril JC, Cacabelos N, et al. Sirtuins in Alzheimer’s Disease: SIRT2-Related GenoPhenotypes and Implications for PharmacoEpiGenetics. Int J Mol Sci. 2019;20(5):E1249.
  • Arvanitakis Z, Shah RC, Bennett DA. Diagnosis and management of dementia: review. JAMA. 2019;322(16):1589–1599.
  • Drummond E, Wisniewski T. Alzheimer’s disease: experimental models and reality. Acta Neuropathol. 2017;133(2):155–175.
  • Li HW, Zhang L, Qin C. Current state of research on non-human primate models of Alzheimer’s disease. Animal Model Exp Med. 2019;2(4): 227–238.
  • Qin T, Prins S, Groeneveld GJ, et al. Utility of animal models to understand human Alzheimer’s disease, using the mastermind research approach to avoid unnecessary further sacrifices of animals. Int J Mol Sci. 2020;21(9):3158.
  • Kim BY, Lim HS, Kim Y, et al. Evaluation of Animal Models by Comparison with Human Late-Onset Alzheimer’s Disease. Mol Neurobiol. 2018;55(12):9234–9250.
  • Vitek MP, Araujo JA, Fossel M, et al. Translational animal models for Alzheimer’s disease: an Alzheimer’s Association Business Consortium Think Tank. Alzheimers Dement (N Y). 2021;6(1):e12114.
  • Preuss C, Pandey R, Piazza E, et al., A novel systems biology approach to evaluate mouse models of late-onset Alzheimer’s disease. Mol Neurodegener. 15(1): 67. 2020. .
  • Didier ES, MacLean AG, Mohan M, et al., Contributions of Nonhuman Primates to Research on Aging. Vet Pathol. 53(2): 277–290. 2016. .
  • Puzzo D, Gulisano W, Palmeri A, et al. Rodent models for Alzheimer’s disease drug discovery. Expert Opin Drug Discov. 2015;10(7):703–711.
  • Cacabelos R. Pharmacogenetic considerations when prescribing cholinesterase inhibitors for the treatment of Alzheimer’s disease. Expert Opin Drug Metab Toxicol. 2020;16(8):673–701.
  • Cacabelos R. Have there been improvement in Alzheimer’s disease drug discovery over the past 5 years? Expert Opin Drug Discov. 2018;13(6):523–538.
  • Maramai S, Benchekroun M, Gabr MT, et al. Multitarget therapeutic strategies for Alzheimer’s disease: review on emerging target combinations. Biomed Res Int. 2020;2020:5120230.
  • Cacabelos R. How plausible is an Alzheimer’s disease vaccine? Expert Opin Drug Discov. 2020;15(1):1–6.
  • Cummings J, Lee G, Ritter A, et al. Alzheimer’s disease drug development pipeline: 2020. Alzheimers Dement (N Y). 00;6(1):e12050.
  • Scearce-Levie K, Sanchez PE, Lewcock JW. Leveraging preclinical models for the development of Alzheimer disease therapeutics. Nat Rev Drug Discov. 2020;19(7):447–462.
  • Games D, Adams D, Alessandrini R, et al. Alzheimer-type neuropathology in transgenic mice overexpressing V717F b-amyloid precursor protein. Nature. 1995;373(6514):523–529.
  • Kunkle BW, Grenier-Boley B, Sims R, et al. Genetic meta-analysis of diagnosed Alzheimer’s disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing. Nat Genet. 2019;51(3):414–430.
  • Cacabelos R. Population-level pharmacogenomics for precision drug development in dementia. Expert Rev Prec Med Drug Develop. 2018;3(3):163–188.
  • Lambert JC, Ibrahim-Verbaas CA, Harold D, et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci Alzheimer’s disease. Nat Genet. 2013;45(12):1452–1458.
  • Flister MJ, Tsaih SW, O’Meara CC, et al. Identifying multiple causative genes at a single GWAS locus. Genome Res. 2013;23(12):1996–2002.
  • Liu D, Dai SX, He K, et al. Identification of hub ubiquitin ligase genes affecting Alzheimer’s disease by analyzing transcriptome data from multiple brain regions. Sci Prog. 2021;104(1):368504211001146.
  • Kang S, Kim J, Chang KA. Spatial memory deficiency early in 6xTg Alzheimer’s disease mouse model. Sci Rep. 2021;11(1):1334.
  • Oakley H, Cole SL, Logan S, et al. Intraneuronal beta-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer’s disease mutations: potential factors in amyloid plaque formation. J Neurosci. 2006;26(40):10129–10140.
  • Lewis J, Dickson DW, Lin WL, et al. Enhanced neurofibrillary degeneration in transgenic mice expressing mutant tau and APP. Science. 2001;293(5534):1428–1491.
  • Oddo S, Caccamo A, Shepherd JD, et al. Triple-transgenic model of Alzheimer’s disease with plaques and tangles: intracellular Abeta and synaptic dysfunction. Neuron. 2003;39(3):409–421.
  • Ribe EM, Perez M, Puig B, et al. Accelerated amyloid deposition, neurofibrillary degeneration and neuronal loss in double mutant APP/Tau transgenic mice. Neurobiol Dis. 2005;20(3):814–822.
  • Bolmont T, Clavaguera F, Meyer-Luehmann M, et al. Induction of tau pathology by intracerebral infusion of amyloid-beta-containing brain extract and by amyloid beta deposition in in APPxTau transgenic mice. Am J Pathol. 2007;171(6):2012–2020.
  • Grueninger F, Bohrmann B, Czech C, et al. Phosphorylation of Tau at S422 is enhanced by Abeta in TauPS2APP triple transgenic mice. Neurobiol Dis. 2010;37(2):294–306.
  • Saul A, Sprenger F, Bayer TA, et al. Accelerated tau pathology with synaptic and neuronal loss in a novel triple transgenic mouse model of Alzheimer’s disease. Neurobiol Aging. 2013;34(11):2564–2573.
  • Stancu IC, Ris L, Vasconcelos B, et al. Tauopathy contributes to synaptic and cognitive deficits in a murine model of Alzheimer’s disease. FASEB J. 2014;28(6):2620–2631.
  • Heraud C, Goufak D, Ando K, et al. Increased misfolding and truncation of tau in APP/PS1/tau transgenic mice compared to mutant tau mice. Neurobiol Dis. 2014;62:100–112.
  • Jackson RJ, Rudinskiy N, Herrmann AG, et al. Human tau increases amyloid-beta plaque size but not amyloid-beta-mediated size but not amyloid-beta-mediated size but not amyloid-beta-mediated size but not amyloid-beta-mediated synapse loss in a novel mouse model of Alzheimer’s disease. Eur J Neurosci. 2016;44(12):3056–3066.
  • Kosel F, Pelley JMS, Franklin TB. Behavioural and psychological symptoms of dementia in mouse models of Alzheimer’s disease-related pathology. Neurosci Biobehav Rev. 2020;112:634–647.
  • Lewandowski CT, Maldonado Weng J, LaDu MJ. Alzheimer’s disease pathology in APOE transgenic mouse models: the who, what, when, where, why, and how. Neurobiol Dis. 2020;139:104811.
  • Mamun AA, Uddin MS, Bin Bashar MF, et al. Molecular insight into the therapeutic promise of targeting APOE4 for Alzheimer’s disease. Oxid Med Cell Longev. 2020;2020:5086250.
  • Lanfranco MF, Ng CA, Rebeck GW. ApoE lipidation as a therapeutic target in Alzheimer’s disease. Int J Mol Sci. 2020;21(17):6336.
  • Sánchez-Melgar A, Albasanz JL, Pallàs M, et al. Adenosine Metabolism in the Cerebral Cortex from Several Mice Models during Aging. Int J Mol Sci. 2020;21(19):7300.
  • Rong Z, Cheng B, Zhong L, et al. Activation of FAK/Rac1/Cdc42-GTPase signaling ameliorates impaired microglial migration response to Aβ42 in triggering receptor expressed on myeloid cells 2 loss-of-function murine models. FASEB J. 2020;34(8):10984–10997.
  • Kozyrev N, Albers S, Yang J, et al. Infiltrating hematogenous macrophages aggregate around β-amyloid plaques in an age- and sex-dependent manner in a mouse model of Alzheimer disease. J Neuropathol Exp Neurol. 2020;79(11):1147–1162.
  • Muraoka S, Jedrychowski MP, Iwahara N, et al. Enrichment of neurodegenerative microglia signature in brain-derived extracellular vesicles isolated from Alzheimer’s disease mouse models. J Proteome Res. 2021;20(3):1733–1743.
  • Marsh SE, Abud EM, Lakatos A, et al. The adaptive immune system restrains Alzheimer’s disease pathogenesis by modulating microglial function. Proc Natl Acad Sci USA. 2016;113(9):E1316–1325.
  • Jackson HM, Foley KE, O’Rourke R, et al. A novel mouse model expressing human forms for complement receptors CR1 and CR2. BMC Genet. 2020;21(1):101.
  • Kalovyrna N, Apokotou O, Boulekou S, et al. A 3ʹUTR modification of the TNF-α mouse gene increases peripheral TNF-α and modulates the Alzheimer-like phenotype in 5XFAD mice. Sci Rep. 2020;10(1):8670.
  • Müller L, Power Guerra N, Stenzel J, et al. Long-Term caloric restriction attenuates β-Amyloid neuropathology and is accompanied by autophagy in APPswe/PS1delta9 mice. Nutrients. 2021;13(3):985.
  • Yu XL, Zhu J, Liu XM, et al. Vaccines targeting the primary amino acid sequence and conformational epitope of amyloid-β had distinct effects on neuropathology and cognitive deficits in EAE/AD mice. Br J Pharmacol. 2020;177(12):2860–2871.
  • Carrera I, Etcheverría I, Li Y, et al. Immunocytochemical characterization of Alzheimer disease hallmarks in APP/PS1 transgenic mice treated with a new anti-amyloid-β vaccine. Biomed Res Int. 2013;2013:709145.
  • Carrera I, Etcheverría I, Fernández-Novoa L, et al. A comparative evaluation of a novel vaccine in APP/PS1 mouse models of Alzheimer’s disease. Biomed Res Int. 2015;2015:807146.
  • Sacher C, Blume T, Beyer L, et al. Asymmetry of fibrillar plaque burden in amyloid mouse models. J Nucl Med. 2020;61(12):1825–1831.
  • Liu P, Reichl JH, Rao ER, et al. Quantitative comparison of dense-core amyloid plaque accumulation in amyloid-β protein precursor transgenic mice. J Alzheimers Dis. 2017;56(2):743–761.
  • Rijal Upadhaya A, Scheibe F, Kosterin I, et al. The type of Aβ-related neuronal degeneration differs between amyloid precursor protein (APP23) and amyloid β-peptide (APP48) transgenic mice. Acta Neuropathol Commun. 2013;1(1):77.
  • Cohen RM, Rezai-Zadeh K, Weitz TM, et al. A transgenic Alzheimer rat with plaques, tau pathology, behavioral impairment, oligomeric Abeta, and frank neuronal loss. J Neurosci. 2013;33(15):6245–6256.
  • Leon WC, Canneva F, Patridge V, et al. A novel transgenic rat model with a full Alzheimer’s-like amyloid pathology displays pre-plaque intracellular amyloid-beta-associated cognitive impairment. J Alzheimers Dis. 2010;20(1):113–126.
  • Liu L, Orozco IJ, Planel E, et al. A transgenic rat that develops Alzheimer’s disease-like amyloid pathology, deficits in synaptic plasticity and cognitive impairment. Neurobiol Dis. 2008;31(1):46–57.
  • Nilsen LH, Melø TM, Witter MP, et al. Early differences in dorsal hippocampal metabolite levels in males but not females in a transgenic rat model of Alzheimer’s disease. Neurochem Res. 2014;39(2):305.
  • Gilissen EP, Leroy K, Yilmaz Z, et al. A neuronal aging pattern unique to humans and common chimpanzees. Brain Struct Funct. 2016;221(1):647–664.
  • Lizarraga S, Daadi EW, Roy-Choudhury G, et al. Age-related cognitive decline in baboons: modeling the prodromal phase of Alzheimer’s disease and related dementias. Aging (Albany NY). 2020;12(11):10099–10116.
  • Pifferi F, Epelbaum J, Aujard F. Strengths and weaknesses of the gray mouse lemur (Microcebus murinus) as a model for the behavioral and psychological symptoms and neuropsychiatric symptoms of dementia. Front Pharmacol. 2019;10:1291.
  • Rosen RF, Farberg AS, Gearing M, et al. Tauopathy with paired helical filaments in an aged chimpanzee. J Comp Neurol. 2008;509(3):259–270.
  • Chan AW, Chong KY, Martinovich C, et al. Transgenic monkeys produced by retroviral gene transfer into mature oocytes. Science. 2001;291(5502):309–312.
  • Yang SH, Cheng PH, Banta H, et al. Towards a transgenic model of Huntington’s disease in a non-human primate. Nature. 2008;453(7197):921–924.
  • Niu Y, Guo X, Chen Y, et al. Early Parkinson’s Disease in alpha-synuclein transgenic monkeys. Hum Mol Genet. 2015;24(8):2308–2317.
  • Zeiss CJ. Utility of spontaneous animal models of Alzheimer’s disease in preclinical efficacy studies. Cell Tissue Res. 2020;380(2):273–286.
  • Denner J, Bigley TM, Phan TL, et al., Comparative analysis of roseoloviruses in humans, pigs, mice, and other species. Viruses. 11(12): 1108. 2019. .
  • Lee SE, Hyun H, Park MR, et al., Production of transgenic pig as an Alzheimer’s disease model using a multi-cistronic vector system. PLoS One. 12(6): e0177933. 2017. .
  • Liang JJH, McKinnon IA, Rankin CH. The contribution of C. elegans neurogenetics to understanding neurodegenerative diseases. J Neurogenet. 2020;34(3–4):527–548.
  • Bolus H, Crocker K, Boekhoff-Falk G, et al. Modeling Neurodegenerative Disorders in Drosophila melanogaster. Int J Mol Sci. 2020;21(9):3055.
  • Scholes HM, Cryar A, Kerr F, et al. Dynamic changes in the brain protein interaction network correlates with progression of Aβ42 pathology in drosophila. Sci Rep. 2020;10(1):18517.
  • Kaur P, Kibat C, Teo E, et al. Use of optogenetic Amyloid-β to monitor protein aggregation in drosophila melanogaster, danio rerio and caenorhabditis elegans. Biol Protoc. 2020;10(23):e3856.
  • Saluja D, Jhanji R, Kaushal S, et al. Importance of Zebrafish as an efficient research model for the screening of novel therapeutics in neurological disorders. CNS Neurol Disord Drug Targets. 2020. https://doi.org/10.2174/1871527319666201207211927.
  • Lee JG, Cho HJ, Jeong YM, et al. Genetic approaches using zebrafish to study the microbiota-gut-brain axis in neurological disorders. Cells. 2021;10(3):566.
  • Slanzi A, Iannoto G, Rossi B, et al. In vitro models of neurodegenerative diseases. Front Cell Dev Biol. 2020;8:328.
  • Yu B, Zhang J, Li H, et al. Silencing of aquaporin1 activates the Wnt signaling pathway to improve cognitive function in a mouse model of Alzheimer’s disease. Gene. 2020;755:144904.
  • Tan HY, Cho H, Lee LP. Human mini-brain models. Nat Biomed Eng. 2021;5(1):11–25.
  • Chun H, Im H, Kang YJ, et al. Severe reactive astrocytes precipitate pathological hallmarks of Alzheimer’s disease via H2O2- production. Nat Neurosci. 2020;23(12):1555–1566.
  • Hashemiaghdam A, Mroczek M. Microglia heterogeneity and neurodegeneration: the emerging paradigm of the role of immunity in Alzheimer’s disease. J Neuroimmunol. 2020;341:577185.
  • Chen WT, Lu A, Craessaerts K, et al. Spatial transcriptomics and in situ sequencing to study Alzheimer’s disease. Cell. 2020;182(4):976–991.
  • Cai H, Ao Z, Hu L, et al. Acoustofluidic assembly of 3D neurospheroids to model Alzheimer’s disease. Analyst. 2020;145(19):6243–6253.
  • D’Souza GX, Rose SE, Knupp A, et al. The application of in vitro-derived human neurons in neurodegenerative disease modeling. J Neurosci Res. 2021;99(1):124–140.
  • Harberts J, Fendler C, Teuber J, et al. toward brain-on-a-chip: human induced pluripotent stem cell-derived guided neuronal networks in tailor-made 3d nanoprinted microscaffolds. ACS Nano. 2020;14(10):13091–13102.
  • Giau VV, Lee H, Shim KH, et al. Genome-editing applications of CRISPR-Cas9 to promote in vitro studies of Alzheimer’s disease. Clin Interv Aging. 2018;13:221–233.
  • Choi SH, Kim YH, Hebish M, et al. A three-dimensional human neural cell culture model of Alzheimer’s disease. Nature. 2014;515(7526):274–278.
  • Raman S, Brookhouser N, Brafman DA. Using human induced pluripotent stem cells (hiPSCs) to investigate the mechanisms by which Apolipoprotein E (APOE) contributes to Alzheimer’s disease (AD) risk. Neurobiol Dis. 2020;138:104788.
  • Liu XY, Yang LP, Zhao L. Stem cell therapy for Alzheimer’s disease. World J Stem Cells. 2020;12(8):787–802.
  • MacDougall G, Brown LY, Kantor B, et al. The path to progress preclinical studies of age-related neurodegenerative diseases: a perspective on rodent and hiPSC-derived models. Mol Ther. 2021;29(3):949–972.
  • Cacabelos R, Cacabelos P, Carril JC. Epigenetics and pharmacoepigenetics of age-related neurodegenerative disorders. In: Cacabelos R, editor. Pharmacoepigenetics. Oxford: Academic Press/Elsevier; 2019. p. 903–950.
  • Mo D, Li X, Raabe CA, et al. Circular RNA encoded amyloid beta peptides-a novel putative player in alzheimer’s disease. Cells. 2020;9(10):2196.
  • Edwards SR, Hamlin AS, Marks N, et al. Comparative studies using the Morris water maze to assess spatial memory deficits in two transgenic mouse models of Alzheimer’s disease. Clin Exp Pharmacol Physiol. 2014;41(10):798–806.
  • Sukoff Rizzo SJ, Masters A, Onos KD, et al. Model‐AD consortium. Improving preclinical to clinical translation in Alzheimer’s disease research. Alzheimers Dement. 2020;6(1):e12038.
  • Sierksma A, Escott-Price V, De Strooper B. Translating genetic risk of Alzheimer’s disease into mechanistic insight and drug targets. Science. 2020;370(6512):61–66.
  • Ebert P, Audano PA, Zhu Q, et al. Haplotype-resolved diverse human genomes and integrated analysis of structural variation. Science. 2021;372(6537):eabf7117.
  • Nasser J, Bergman DT, Fulco CP, et al. Genome-wide enhancer maps link risk variants to disease genes. Nature. 2021;593(7858):238–243.
  • Birling MC, Yoshiki A, Dj A, et al. A resource of targeted mutant mouse lines for 5,061 genes. Nat Genet. 2021;53(4):416–419.
  • Mullane K, Williams M. Alzheimer’s disease beyond amyloid: can the repetitive failures of amyloid-targeted therapeutics inform future approaches to dementia drug discovery? Biochem Pharmacol. 2020;177:113945.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.