3,259
Views
1
CrossRef citations to date
0
Altmetric
Review

Frankincense diterpenes as a bio-source for drug discovery

, , , , &
Pages 513-529 | Received 15 Oct 2021, Accepted 17 Feb 2022, Published online: 04 Mar 2022

References

  • Martinez D, Lohs K, Weihrauch JJM. Kulturgeschichte und wirtschaftliche Bedeutung. Botanik Chemie Medizin: Wissenschaftliche Verlagsgesellschaft, Stuttgart; 1989.
  • Efferth T, and Franz O. Anti-inflammatory and anti-cancer activities of frankincense: targets, treatments and toxicities, Semin Cancer Biol, 2022;in print.
  • Al-Harrasi A, Hussain H, and Csuk R, et al. Chemistry and bioactivity of boswellic acids and other terpenoids of the genus Boswellia.Amsterdam:Elsevier;2018.
  • Hussain H, Al-Harrasi A, Green IR. Frankincense (Boswellia) Oils. In: Preedy VR, editor. Essential oils in food preservation, flavor and safety. Elsevier UK: Academic Press; 2016. p. 431–440.
  • Grbić ML, Unković N, Dimkić I, et al. Frankincense and myrrh essential oils and burn incense fume against micro-inhabitants of sacral ambients. Wisdom of the ancients? J Ethnopharmacol. 2018;12:1–14.
  • De Rapper S, Van Vuuren SF, Kamatou GPP, et al. The additive and synergistic antimicrobial effects of select frankincense and myrrh oils – a combination from the pharaonic pharmacopoeia. Lett Appl Microbiol. 2012;54:352–358.
  • Dennert G. the CAM-Cancer Consortium, Boswellia, concerted action for complementary and alternative medicine assessment in the cancer field (CAM-Cancer), (2020) www.cam-cancer.org.
  • Shen T, Lou HX. Bioactive constituents of myrrh and frankincense, two simultaneously prescribed gum resins in Chinese traditional medicine. Chem Biodivers. 2008;5:540–541.
  • Maupetit P. New constituents in olibanum resinoid and essential oil. Perfumer Flavorist. 1985;9:19–37.
  • Morikawa T, Matsuda H, Yoshikawa M. A review of anti-inflammatory terpenoids from the incense gum resins Frankincense and Myrrh. J Oleo Sci. 2017;66:805–814.
  • Al-Harrasi A, Ali L, Rehman N, et al. 11α-ethoxy-β-boswellic acid and Nizwanone: one new boswellic acid derivative and new triterpene, respectively, from Boswellia sacra. Chem Biodivers. 2013;10:1501–1506.
  • Rehman N, Khan A, Al-Harrasi A, et al. New α-glucosidase inhibitors from the resins of boswellia species with structure–glucosidase activity and molecular docking studies. Bioorg Chem. 2018;79:27–33.
  • Shamraiz U, Hussain H, Ur Rehman N, et al. Synthesis of new boswellic acid derivatives as potential antiproliferative agents. Nat Prod Res. 2020;34(13):1845–1852. DOI:https://doi.org/10.1080/14786419.2018.1564295.
  • Bini Araba AB, Ur Rehman N, Al-Araimi A, et al. New derivatives of 11-Keto-β-Boswellic Acid (KBA) Induce Apoptosis in Breast and Prostate Cancers Cells. Nat Prod Res. 2021;35(5):707–716. DOI:https://doi.org/10.1080/14786419.2019.1593165.
  • Hussain H, Ali I, Wang D. Boswellic acids: privileged structures to develop lead compounds for anticancer drug discovery. Expert Opin Drug Discov. 2021;16(8):851–867.
  • Roncero AM, Tobal IE, Moro RF, et al. Halimane diterpenoids: sources, structures, nomenclature and biological activities. Nat Prod Rep. 2018;35:955–991.
  • Al-Harrasi A, Avula SK, Csuk R, et al. Cembranoids from Boswellia species. Phytochemistry. 2021;191:112897.
  • Mehrzadi S, Tavakolifar B, Huseini HF, et al. The effects of boswellia serrata gum resin on the blood glucose and lipid profile of diabetic patients: a double-blind randomized placebo-controlled clinical trial. J Evid-Based Integr Med. 2018;23:1–7.
  • Azadmehr A, Ziaee A, Ghanei L, et al. A randomized clinical trial study: anti-oxidant, anti-hyperglycemic and anti-hyperlipidemic effects of olibanum gum in type 2 diabetic patients. Iran J Pharm Res. 2014;13:1003–1009.
  • Mehrzadi S, Tavakolifar B, Husseini HF, et al. The efficacy of Boswellia serrata gum resin for control of lipid profile and blood glucose in diabetic patients. Iran J Med Sci. 2016;41:S66.
  • Ahangarpour A, Heidari H, Fatemeh RA, et al. Effect of Boswellia serrata supplementation on blood lipid, hepatic enzymes and fructosamine levels in type 2 diabetic patients. J Diabetes Met Disord. 2014;13:29.
  • Schrott E, Laufer S, Lämmerhofer M, et al. Extract from gum resin of Boswellia serrata decreases IA 2 -antibody in a patient with “Late onset autoimmune diabetes of the adult“ (LADA). Phytomed. 2014;21:786.
  • Khalili N, Fereydoonzadeh R, Mohtashami R, et al. A mixed herbal formulation in the treatment of Type II Diabetes: a Randomized, double-blind, placebo-controlled, clinical trial. J Evid Based Complementary Altern Med. 2017;22:603–608.
  • Taghizadeha M, Maghaminejad F, Aghajanic M, et al. The effect of tablets containing Boswellia serrata and Melisa officinalis extract on older adults’ memory: arandomized controlled trial. Arch Gerontol Geriatr. 2018;75:146–150.
  • Asadi E, Shahabikaseb M, Zeidabadi R, et al. Effect of 4 weeks of frankincense consumption on explicit motor memory and serum BDNF in elderly men. Turk J Med Sci. 2019;49:1033–1040.
  • Aghajani M, Taghizadeh M, Maghaminejad F, et al. Effect of frankincense extract and lemon balm extract co-supplementation on memory of the elderly. Complement Med J. 2017;7:3.
  • Givad N, Rafieian-Kopaei M, Rezaei-Kheirabadi F, et al. A study of the clinical efficacy of frankincense in the acute phase of ischemic stroke. J Adv Herb Med. 2015;1:4–10.
  • Esmaelzadeh-Saeieh S, Rahimzadeh M, Khosravi-Dehaghi N, et al. The effects of inhalation aromatherapy with Boswellia carterii essential oil on the intensity of labor pain among nulliparous women. Nurs Midwifery Stud. 2018;7:45–49.
  • Eshaghian R, Mazaheri M, Ghanadian, et al. The effect of frankincense (Boswellia serrata, oleoresin) and ginger (Zingiber officinale, rhizoma) on heavy menstrual bleeding: a randomized, placebo-controlled, clinical trial. Complement Ther Med. 2019;42:42–47.
  • Rodrigues IG, Miguel MG, Mnif W. A brief review on new naturally occurring cembranoid diterpene derivatives from the soft corals of the genera Sarcophyton, sinularia, and lobophytum since 2016. Molecules. 2019;24:781.
  • Yu J, Zhao L, Sun X, et al. Bioactive cembrane diterpenoids from the gum resin of Boswellia carterii. Fitoterapia. 2020;146:104699.
  • Ren J, Wang YG, Wang AG, et al. Cembranoids from the gum resin of Boswellia carterii as potential antiulcerative colitis agents. J Nat Prod. 2015;78:2322–2331.
  • Wang YG, Ren J, Ma J, et al. Bioactive cembrane-type diterpenoids from the gum-resin of Boswellia carterii. Fitoterapia. 2019;137:104263.
  • Wang JJ, Sun HR, Suo XY, et al. Ten undescribed cembrane-type diterpenoids from the gum resin of Boswellia sacra and their biological activities. Phytochemistry. 2020;177:112425.
  • Sun X, Geng Y, Wang X, et al. Cembrane-type diterpenoids from the gum resin of Boswellia carterii and their biological activities. RSC Adv. 2020;10:746–755.
  • Wang J, Zhen B, Hu J, et al. Neuroactive and Anti-inflammatory frankincense cembranes: boscartins L–O: cembrane-type diterpenoids from the gum resin of Boswellia sacra Flueck. Phytochemistry. 2019;163:126–131.
  • Zhang B, Liu D, Ji W, et al. Sacraoxides A–G, Bioactive Cembranoids from Gum Resin of Boswellia sacra. Front Chem. 2021;9:649287.
  • Mallik A, Goupale D, Dhongade H, et al. Evaluation of Boswellia Serrata oleo-gum resin for wound healing activity. Der Pharmacia Lettre. 2010;2:457–463.
  • Namjou A, Rouhi-Broujeni H. Antihyperglycemic, antihyperlipidemic and wound healing of Boswellia serrata on experimentally induced diabetic rats. Abanico Veterinario. 2020;10:1–17.
  • Yu QH, Sura MB, Wang DW, et al. Isolation of Boswelliains A—E, Cembrane-Type Diterpenoids from Boswellia papyifera,and an Evaluation ofTheir Wound Healing Properties. Chin J Chem. 2021;39:2451–2459.
  • Moussaieff A, Shohami E, and Kashman Y, et al. Incensole acetate, a novel anti-inflammatory compound isolated from boswellia resin, inhibits nuclear Factor-κB activation. Mol Pharmacol. 2007;72:1657–1664.
  • Moussaieff A, Fride E, Amar Z, et al. The Jerusalem Balsam: from the Franciscan monastery in the old city of Jerusalem to Martindale 33. J Ethnopharmacol. 2005;101:16–26.
  • Sizemore N, Lerner N, Dombrowski N, et al. Distinct roles of the IκB kinase α_and β subunits in liberating nuclear factor κ B (NF-κB) from IκB and in phosphorylating the p65 subunit of NF-kappa B. J Biol Chem. 2002;277:3863–3869.
  • Castrillo A, de Las Heras B, Hortelano S, et al. Inhibition of the nuclear factor _B (NF-_B) pathway by tetracyclic kaurene diterpenes in macrophages. Specific effects on NF-_B-inducing kinase activity and on the coordinate activation of ERK and p38 MAPK. J Biol Chem. 2001;276:15854–15860.
  • Moussaieff A, Shein NA, and Tsenter J, et al. Incensole acetate: a novel neuroprotective agent isolated from Boswellia carterii. J Cereb Blood Flow Metab. 2008;28:1341–1352.
  • Shohami E, Bass R, Wallach D, et al. Inhibition of tumor necrosis factor alpha (TNFa) activity in rat brain is associated with cerebroprotection after closed head injury. J Cereb Blood Flow Metab. 1996;16:378–384.
  • Yaka R, Biegon A, Grigoriadis N, et al. D-cycloserine improves functional recovery and reinstates longterm potentiation (LTP) in a mouse model of closed head injury. FASEB J. 2007;21:2033– 2041.
  • Truettner JS, Suzuki T, Dietrich WD. The effect of therapeutic hypothermia on t he expression of inflammatory response genes following moderate traumatic brain injury in the rat. Brain Res Mol Brain Res. 2005;138:124–134.
  • Shein NA, Doron H, Horowitz M, et al. Altered cytokine expression and sustained hypothermia following traumatic brain injury in heat acclimated mice. Brain Res. 2007;1185:313–320.
  • Schuhmann MU, Mokhtarzardeh M, Skardelly M, et al. Effect of Boswellia carterii on brain edema following contusion injury. J Cereb Blood Flow Metab. 2005;25:S261.
  • Hussain H, Al-Harrasi A, and Csuk R, et al. Therapeutic potential of boswellic acids: a patent review (1990-2015). Expert Opin Ther Pat. 2017;27:81–90.
  • Pollastro F, Golin S, Chianese G, et al. Neuroactive and Anti-inflammatory Frankincense Cembranes: a Structure−Activity Study. J Nat Prod. 2016;79:1762–1768.
  • Moussaieff A, Rimmerman N, Bregman T, et al. Incensole acetate, an incense component, elicits psychoactivity by activating TRPV3 channels in the brain. FASEB J. 2008;22:3024–3034.
  • Beheshti S, Tohidloo S, Esmaeili A. Frankincense improves memory retrieval and downregulates the hippocampal synaptophysin mRNA during the development of the rat brain. Physiol Pharmacol. 2020;24:46–53.
  • Hosseini-Sharifabad M, Esfandiary E. A morphometeric study on CA3 hippocampal field in young rats following maternal administration of boswellia serrata resin during gestation. Iran J Basic Med Sci. 2007;10:176–182.
  • Hosseini-Sharifabad M, Esfandiari E. The effects of maternal administration of Boswellia gum resin (frankincense) during lactation on stereological parameters of rat hippocampus. J Isfahan Med Sch. 2012;29:2198–2207.
  • Beheshti S, Skakakomi AG, and Ghaedi K, et al. Frankincense upregulates the hippocampal calcium/calmodulin kinase ii-alpha during development of the rat brain and improves memory performance. Int J Dev Neurosci. 2018;69:44–48.
  • Mahmoudi A, Hosseini-Sharifabad A, Monsef-Esfahani HR, et al. Evaluation of systemic administration of boswellia papyrifera extracts on spatial memory retention in male rats. J Nat Med. 2011;65:519–525.
  • Hosseini-Sharifabad M, Kamali-Ardakani R, Hosseini-Sharifabad A. Beneficial effect of Boswellia serrata gum resin on spatial learning and the dendritic tree of dentate gyrus granule cells in aged rats. Avicenna J Phytomed. 2016;6:189–197.
  • Moussaief A, Yu J, and Zhu H, et al. Protective effects of incensole acetate on cerebral ischemic injury. Brain Res. 2012;1443:89–97.
  • Butterfield DA, Drake J, Pocernich C, et al. Evidence of oxidative damage in Alzheimer’s disease brain: central role for amyloid beta-peptide. Trends Mol Med. 2001;7:548–554.
  • Lopez-Toledano MA, Shelanski ML. Neurogenic effect of beta-amyloid peptide in the development of neural stem cells. J Neurosci. 2004;24:5439–5444.
  • Chen DL, Zhang P, Shuai LO L, et al. Protective effect of Bajijiasu against beta-amyloid-induced neurotoxicity in PC12 cells. Cell Mol Neurobiol. 2013;33:837–850.
  • Wang HQ, Sun XB, Xu YX, et al. Astaxanthin upregulates heme oxygenase-1 expression through ERK1/2 pathway and its protective effect against beta-amyloid-induced cytotoxicity in SH-SY5Y cells. Brain Res. 2010;360:159–167.
  • El-Magd MA, Khalifa SF, Alzahrani A, et al. Incensole acetate prevents beta-amyloid-induced neurotoxicity in human olfactory bulb neural stem cells. Biomed Pharmacother. 2018;105:813–823.
  • Evelson P, Llesuy S, Filinger E, et al. Decreased oxidative stress in prehepatic portal hypertensive rat livers following the induction of diabetes. Clin Exp Pharmacol Physiol. 2004;31:169–173.
  • Hosseini M, Hadjzadeh MA, Derakhshan M, et al. The benefcial effects of olibanum on memory defcit induced by hypothyroidism in adult rats tested in Morris water maze. Arch Pharm Res. 2010;33:463–468.
  • Marshall S. Frankincense: festive pharmacognosy. Pharm J. 2003;271:862–864.
  • Zipp F, Aktas O. The brain as a target of infammation: common pathways link infammatory and neurodegenerative diseases. Trends Neurosci. 2006;29:518–527.
  • Ali SI, Zhang CR, Mohamed AA, et al. Major constituents of Boswellia carteri resin exhibit cyclooxygenase enzyme inhibition and antiproliferative activity. Nat Prod Commun. 2013;8:1365–1366.
  • Narges M, Beheshti F, Vafaee F, et al. the efects of incensole acetate on Neuro-infammation, brain-derived neurotrophic factor and memory impairment induced by lipopolysaccharide in rats. Neurochem Res. 2021;46:2473–2484.
  • Harada HJ, Sugimoto M. Activation of caspase-3 in beta-amyloid-induced apoptosis of cultured rat cortical neurons. Brain Res. 1999;842:311–323.
  • Zhu L, Nang C, Luo F, et al. Esculetin attenuates lipopolysaccharide (LPS)-induced neuroinfammatory processes and depressive-like behavior in mice. Physiol Behav. 2016;163:184–192.
  • Fulgenzi G, Tomassoni-Ardori F, Babini L, et al. BDNF modulates heart contraction force and long-term homeostasis through truncated TrkB T1 receptor activation. J Cell Biol. 2015;210:1003–1012.
  • Gao J, Xiong B, Zhang B, et al. Sulforaphane alleviates lipopolysaccharide-induced spatial learning and memory dysfunction in mice: the role of BDNF-mTOR signaling pathway. Neuroscience. 2018;388:357–366.
  • Thompson BL RJB. Immediate-early gene expression in the central nucleus of the amygdala is not specific for anxiolytic or anxiogenic drugs. Neuropharmacology. 2006;50:57–68.
  • Moussaief A, Gross M, and Nesher E, et al. Incensole acetate reduces depressive-like behavior and modulates hippocampal BDNF and CRF expression of submissive animals. J Psychopharmacol. 2012;26:1584–1593.
  • Malatynska E, Knapp RJ. Dominant-submissive behavior as models of mania and depression. Neurosci Biobehav Rev. 2005;29:715–737.
  • de Kloet Er. About stress hormones and resilience to psychopathology. J Neuroendocrinol. 2008;20:885–892.
  • Duman RS, Monteggia LM. A neurotrophic model for stressrelated mood disorders. Biol Psychiatry. 2006;59:1116–1127.
  • Al-Harrasia A, Khan A, and Rehman NU, et al. Evidence for the involvement of a GABAergic mechanism in the effectiveness of natural and synthetically modified incensole derivatives in neuropharmacological disorders: a computational and pharmacological approach. Phytochemistry. 2019;16:358–374.
  • Yu J, Zhao L, Sun X, et al. Terpenoids from the Oleo-Gum-Resin of Boswellia serrata and Their Antiplasmodial Effects In Vitro. Planta Med. 2017;83:1214–1226.
  • Yu JQ, Geng YL, Wang DJ, et al. Terpenes from the gum resin of Boswellia carterii and their NO inhibitory activies. Phytochem Lett. 2018;28:59–63.
  • Schmidt TJ, Kaiser M, Brun R. Complete Structural Assignment of Serratol, a Cembrane-Type Diterpene from Boswellia serrata, and Evaluation of Its Antiprotozoal Activity. Planta Med. 2011;77:849–850.
  • Morikawa T, Oominami H, Matsuda H, et al. New terpenoids, olibanumols D–G, from traditional Egyptian medicine olibanum, the gum-resin of Boswellia carterii. J Nat Med. 2011;65:129–134.
  • Wang YG, Ren J, Wang AG, et al. Hepatoprotective Prenylaromadendrane-Type Diterpenes from the Gum Resin of Boswellia carterii. J Nat Prod. 2013;76:2074–2079.
  • Yu J, Geng Y, Zhao H, et al. Diterpenoids from the gum resin of Boswellia carterii and their biological activities. Tetrahedron. 2018;74:5858–5866.
  • Wang JJ, Suo XY, Sun HY, et al. Prenylaromadendrane-type diterpenoids from the gum resin of Boswellia sacra flueck and their cytotoxic effects. Nat Prod Res. 2021. DOI:https://doi.org/10.1080/14786419.2021.1939331. in print.
  • Groenendijk P, Eshete A, Sterck FJ, et al. Limitations to sustainable frankincense production: blocked regeneration, high adult mortality and declining populations. J Appl Ecol. 2012;49:164–173.
  • Wang Q, Liu Y, Zhou J. Neuroinflammation in Parkinson’s disease and its potential as therapeutic target. Transl Neurodegener. 2015;4:19.
  • Müller N, Weidinger E, Leitner B, et al. The role of inflammation in schizophrenia. Front Neurosci. 2015;9:372.
  • Pop-Busui R, Ang L, Holmes C, et al. Inflammation as a therapeutic target for diabetic neuropathies. Curr Diab Rep. 2016;16:29.
  • Basar S 2005. Phytochemical Investigations on Boswellia Species, Comparative Studies on the Essential Oils, Pyrolysates and Boswellic Acids. Dissertation, University of Hamburg, Germany.
  • Paul M 2012. Ph. D thesis; Chemotaxonomic Investigations on Resins of the Frankincense Species Boswellia papyrifera, Boswellia serrata and Boswellia sacra, respectively, Boswellia carterii. Saarland University Saarbrücken, Saarland Germany.
  • Al-Harrasi A, Hussain H, Hussain J, et al. Two pyrolysate products from Omani Frankincense smoke: first evidence of thermal aromatization of boswellic acids. J Anal Appl Pyrolysis. 2014;110:430–434.
  • Milića N, Miloševića N, Kona SG, et al. Warfarin interactions with medicinal herbs. Nat Prod Commun. 2014;9:1211–1216.
  • Basch E, Boon H, Davies-Heerema T, et al. Boswellia: an evidence-based systematic review by the natural standard research collaboration. J Herb Pharmacother. 2004;4:63–83.