5,134
Views
0
CrossRef citations to date
0
Altmetric
Review

Discovery of RNA-targeted small molecules through the merging of experimental and computational technologies

Pages 207-226 | Received 01 Jun 2022, Accepted 07 Oct 2022, Published online: 09 Nov 2022

References

  • Pfeffer CG. The biotechnology sector: therapeutics. In: Burns LR, editor. The business of healthcare innovation. Cambridge (UK): Cambridge University Press; 2020. p. 89–302.
  • Hewitt WM, Calabrese DR, Schneekloth JS. Evidence for ligandable sites in structured RNA throughout the Protein Data Bank. Bioorg Med Chem. 2019;27(11):2253–2260.
  • Serganov A, Huang L, Patel DJ. Coenzyme recognition and gene regulation by a flavin mononucleotide riboswitch. Nature. 2009;458(7235):233–237.
  • Stagno JR, Liu Y, Bhandari YR, et al. Structures of riboswitch RNA reaction states by mix-and-inject XFEL serial crystallography. Nature. 2017;541(7636):242–246.
  • Michiels PJ, Versleijen AA, Verlaan PW, et al. Solution structure of the pseudoknot of SRV-1 RNA, involved in ribosomal frameshifting. J Mol Biol. 2001;310(5):1109–1123.
  • Davila-Calderon J, Patwardhan NN, Chiu L-Y, et al. IRES-targeting small molecule inhibits enterovirus 71 replication via allosteric stabilization of a ternary complex. Nat Commun. 2020;11(1):4775.
  • Faber C, Sticht H, Schweimer K, et al. Structural rearrangements of HIV-1 Tat- responsive RNA upon binding of neomycin B. J Biol Chem. 2000;275(27):20660–20666.
  • Shibata T, Nagano K, Ueyama M, et al. Small molecule targeting r(UGGAA)n disrupts RNA foci and alleviates disease phenotype in Drosophila model. Nat Commun. 2021;12(1):236.
  • Le Guilloux V, Schmidtke P, Tuffery P. Fpocket: an open source platform for ligand pocket detection. BMC Bioinformatics. 2009;10(1):168.
  • Matsui M, Corey DR. Non-coding RNAs as drug targets. Nat Rev Drug Discov. 2016;16(3):167–179.
  • ENCODE Project Consortium, Birney E, Stamatoyannopoulos JA, et al. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature. 2007;447:799–816.
  • Moazed D, Noller HF. Interaction of antibiotics with functional sites in 16S ribosomal RNA. Nature. 1987;327(6121):389–394.
  • Wong CH, Hendrix M, Priestley ES, et al. Specificity of aminoglycoside antibiotics for the A-site of the decoding region of ribosomal RNA. Chem Biol. 1998;5(7):397–406.
  • Verhelst SH, Michiels PJ, vander Marel GA, et al. Surface plasmon resonance evaluation of various aminoglycoside-RNA hairpin interactions reveals low degree of selectivity. Chembiochem. 2004;5(7):937–979.
  • Morgan BS, Forte JE, Culver RN, et al. Discovery of key physicochemical, structural, and spatial properties of RNA-targeted bioactive ligands. Angew Chem Int Ed Engl. 2017;56(43):13498–13502.
  • Donlic A, Swanson EG, Chiu LY, et al. R-BIND 2.0: an updated database of bioactive RNA-targeting small molecules and associated RNA secondary structures. ACS Chem Biol. 2022;17(6):1556–1566.
  • Warner KD, Hajdin CE, Weeks KM. Principles for targeting RNA with drug-like small molecules. Nat Rev Drug Discov. 2018;17(8):547–558.
  • Juru U, Hargrove A, A E. Frameworks for targeting RNA with small molecules. J Biol Chem. 2020;295(1):296.
  • Chavali SS, Bonn-Breach R, Wedekind JE. Face-time with TAR: portraits of an HIV-1 RNA with diverse modes of effector recognition relevant for drug discovery. J Biol Chem. 2019;294(24):9326–9341.
  • Howe JA, Wang H, Fischmann TO, et al. Selective small-molecule inhibition of an RNA structural element. Nature. 2015;526(7575):672–677.
  • Rizvi NF, Howe JA, Nahvi A, et al. Discovery of selective RNA-binding small molecules by affinity-selection mass spectrometry. ACS Chem Biol. 2018;13(3):820–831.
  • Vicens Q, Mondragón E, Reyes FE, et al. Structure-activity relationship of flavin analogues that target the flavin mononucleotide riboswitch. ACS Chem Biol. 2018;13(10):2908–2919.
  • Park SJ, Kim YG, Park HJ. Identification of RNA pseudoknot-binding ligand that inhibits the −1 ribosomal frameshifting of SARS-coronavirus by structure-based virtual screening. J Am Chem Soc. 2011;133(26):10094–10100.
  • Davis DR, Seth PP. Therapeutic targeting of HCV internal ribosomal entry site RNA. Antivir Chem Chemother. 2011;21(3):117–128.
  • Disney MD, Dwyer BG, Childs-Disney JL. Drugging the RNA World. Cold Spring Harb Perspect Biol. 2018;10(11):a034769.
  • Verma AK, Khan E, Bhagwat SR, et al. Exploring the potential of small molecule-based therapeutic approaches for targeting trinucleotide repeat disorders. Mol Neurobiol. 2009;57:566–584.
  • Hamada M, Kiryu H, Sato K, et al. Prediction of RNA secondary structure using generalized centroid estimators. Bioinformatics. 2009;25(4):465–473.
  • Sato K, Hamada M, Asai K, et al. CENTROIDFOLD: a web server for RNA secondary structure prediction. Nucleic Acids Res. 2009;37(Web Server):W277–80.
  • Hamada M, Sato K, Kiryu H, et al. Predictions of RNA secondary structure by combining homologous sequence information. Bioinformatics. 2009;25(12):i330–8.
  • Zakov S, Goldberg Y, Elhadad M, et al. Rich parameterization improves RNA structure prediction. J Comput Biol. 2011;18(11):1525–1542.
  • Do CB, Woods DA, Batzoglou S, et al. CONTRAfold: RNA secondary structure prediction without physics-based models. Bioinformatics. 2006;15(14):e90–8.
  • Bleckley S, Stone JW, Schroeder SJ. Crumple: a method for complete enumeration of all possible pseudoknot-free RNA secondary structures. PLoS One. 2012;7(12):e52414.
  • Bindewald E, Kluth T, Shapiro BA. CyloFold: secondary structure prediction including pseudoknots. Nucleic Acids Res. 2010;38(Web Server):W368–72.
  • Swenson MS, Anderson J, Ash A, et al. GTfold: enabling parallel RNA secondary structure prediction on multi-core desktops. BMC Res Notes. 2012;5(1):341.
  • Sato K, Kato Y, Hamada M, et al. IPknot: fast and accurate prediction of RNA secondary structures with pseudoknots using integer programming. Bioinformatics. 2011;27(13):i85–93.
  • Xayaphoummine A, Bucher T, Thalmann F, et al. Prediction and statistics of pseudoknots in RNA structures using exactly clustered stochastic simulations. Proc Natl Acad Sci. 2003;100(26):15310–15315.
  • Xayaphoummine A, Bucher T, Isambert H. Kinefold web server for RNA/DNA folding path and structure prediction including pseudoknots and knots. Nucleic Acids Res. 2005;33(suppl_2):W605–10.
  • Parisien M, Major F. The MC-Fold and MC-Sym pipeline infers RNA structure from sequence data. Nature. 2008;452(7183):51–55.
  • Zuker M, Stiegler P. Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Res. 1981;9(1):133–148.
  • Rivas E, Eddy SR. A dynamic programming algorithm for RNA structure prediction including pseudoknots. J Mol Biol. 1999;285(5):2053–2068.
  • Reeder J, Steffen P, Pknotsrg GR. pknotsRG: RNA pseudoknot folding including near-optimal structures and sliding windows. Nucleic Acids Res. 2007;35:W320–4.
  • Gruber AR, Lorenz R, Bernhart SH, et al. The Vienna RNA websuite. Nucleic Acids Res. 2008;36:W70–4. DOI:10.1093/nar/gkn188.
  • Hofacker IL, Stadler PF. Memory efficient folding algorithms for circular RNA secondary structures. Bioinformatics. 2006;22(10):1172–1176.
  • Giegerich R, Voss B, Rehmsmeier M. Abstract shapes of RNA. Nucleic Acids Res. 2004;32(16):4843–4851.
  • Voss B, Giegerich R, Rehmsmeier M. Complete probabilistic analysis of RNA shapes. BMC Biol. 2006;4(1):5.
  • Mathews DH, Disney MD, Childs JL, et al. Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA secondary structure. Proc Natl Acad Sci. 2004;101(19):7287–7292.
  • Mathews DH. Using an RNA secondary structure partition function to determine confidence in base pairs predicted by free energy minimization. RNA. 2004;10(8):1178–1190.
  • Tsang HH, Wiese KC. SARNA-Predict: accuracy improvement of RNA secondary structure prediction using permutation-based simulated annealing. IEEE/ACM Trans Comput Biol Bioinform. 2010;7(4):727–740.
  • Ding Y, Lawrence CE. A statistical sampling algorithm for RNA secondary structure prediction. Nucleic Acids Res. 2003;31(24):7280–7301.
  • Schroeder SJ, Stone JW, Bleckley S, et al. Ensemble of secondary structures for encapsidated satellite tobacco mosaic virus RNA consistent with chemical probing and crystallography constraints. Biophys J. 2011;101(1):167–175.
  • Singh J, Hanson J, Paliwal K, et al. RNA secondary structure prediction using an ensemble of two-dimensional deep neural networks and transfer learning. Nat Commun. 2019;10(1):5407.
  • Barsacchi M, Novoa EM, Kellis M, et al. SwiSpot: modeling riboswitches by spotting out switching sequences. Bioinformatics. 2016;32(21):3252–3259.
  • Markham NR, Zuker M. UNAFold: software for nucleic acid folding and hybridization. Methods Mol Biol. 2008;453:3–31.
  • Dawson W, Fujiwara K, Kawai G, et al. A method for finding optimal RNA secondary structures using a new entropy model (vsfold). Nucleosides Nucleotides Nucleic Acids. 2006;25(2):171–189.
  • Dawson WK, Fujiwara K, Kawai G. Prediction of RNA pseudoknots using heuristic modelling with mapping and sequential folding. PLoS One. 2007;2:e905.
  • Dawson W, Takai T, Ito N, et al. A new entropy model for RNA: part III. Is the folding free energy landscape of RNA funnel shaped? J Nucleic Acids Invest. 2014;5(1):2652.
  • Mathews DH, Turner DH. Prediction of RNA secondary structure by free energy minimization. Curr Opin Struct Biol. 2006;16(3):270–278.
  • Xia T, Santalucia J, Burkard ME, et al. Thermodynamic parameters for an expanded nearest-neighbor model for formation of RNA duplexes with Watson-Crick base pairs. Biochemistry. 1998;37(42):14719–14735.
  • Turner DH, Mathews DH. NNDB: the nearest neighbor parameter database for predicting stability of nucleic acid secondary structure. Nucleic Acids Res. 2009;38(suppl_1):D280–2.
  • Mathews DH, Sabina J, Zuker M, et al. Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J Mol Biol. 1999;288(5):911–940.
  • Woese CR, Pace NR. Probing RNA structure, function, and history by comparative analysis. In: Gesteland RF, Atkins JF, editors. RNA World. New York (NY): Cold Spring Harbor Press; 1993. p. 91–117.
  • Gutell RR, Lee JC, Cannone JJ. The accuracy of ribosomal RNA comparative structure models. Curr Opin Struct Biol. 2002;12(3):301–310.
  • Moazed D, Stern S, Noller HF. Rapid chemical probing of conformation in 16S ribosomal RNA and 30S ribosomal subunits using primer extension. J Mol Biol. 1986;187(3):399–416.
  • Merino EJ, Wilkinson KA, Coughlan JL, et al. RNA structure analysis at single nucleotide resolution by selective 2’-hydroxyl acylation and primer extension (SHAPE). J Am Chem Soc. 2005;127(12):4223–4231.
  • Mortimer SA, Weeks KM. A fast-acting reagent for accurate analysis of RNA secondary and tertiary structure by SHAPE chemistry. J Am Chem Soc. 2007;129(14):4144–4145.
  • Jackson TJ, Spriggs RV, Burgoyne NJ, et al. Evaluating bias-reducing protocols for RNA sequencing library preparation. BMC Genomics. 2014;15(1):569.
  • Fuchs RT, Sun Z, Zhuang F, et al. Bias in ligation-based small RNA sequencing library construction is determined by adaptor and RNA structure. PLoS One. 2015;10(5):e0126049.
  • Zubradt M, Gupta P, Persad S, et al. DMS-MaPseq for genome-wide or targeted RNA structure probing in vivo. Nat Methods. 2017;14(1):75–82.
  • Siegfried NA, Busan S, Rice GM, et al. RNA motif discovery by SHAPE and mutational profiling (SHAPE-MaP). Nat Methods. 2014;11(9):959–965.
  • Smola MJ, Rice GM, Busan S, et al. Selective 2’-hydroxyl acylation analyzed by primer extension and mutational profiling (SHAPE-MaP) for direct, versatile and accurate RNA structure analysis. Nat Protoc. 2015;10:1643–1669.
  • Busan S, Weeks KM. Accurate detection of chemical modifications in RNA by mutational profiling (MaP) with ShapeMapper 2. RNA. 2017;24(2):143–148.
  • Nakamura S, Jin L, Shino A, et al., inventors; Veritas In Silico Inc., assignee. Method for screening compound for controlling RNA function. WIPO (PCT) patent W0 2019/177103 A1.
  • Andrews RJ, Roche J, Moss WN. ScanFold: an approach for genome-wide discovery of local RNA structural elements—applications to Zika virus and HIV. PeerJ. 2018;6:e6136.
  • Davuluri RV, Suzuki Y, Sugano S, et al. CART classification of human 5‘ UTR sequences. Genome Res. 2000;10(11):1807–1816.
  • Hentze MW, Caughman SW, Rouault TA, et al. Identification of the iron-responsive element for the translational regulation of human ferritin mRNA. Science. 1987;238(4833):1570–1573.
  • Kumari S, Bugaut A, Huppert J, et al. An RNA G-quadruplex in the 5′ UTR of the NRAS proto-oncogene modulates translation. Nat Chem Biol. 2007;3(4):218–221.
  • Cohen-Chalamish S, Hasson A, Weinberg D, et al. Dynamic refolding of IFN-gamma mRNA enables it to function as PKR activator and translation template. Nat Chem Biol. 2009;5(12):896–903.
  • Mailliot J, Martin F. Viral internal ribosomal entry sites: four classes for one goal. Wiley Interdiscip Rev RNA. 2017;9(2). DOI:10.1002/wrna.1458
  • Komar AA, Hatzoglou M. Cellular IRES-mediated translation: the war of ITAFs in pathophysiological states. Cell Cycle. 2011;10(2):229–240.
  • Estes PA, Cooke NE, Liebhaber SA. A native RNA secondary structure controls alternative splice-site selection and generates two human growth hormone isoforms. J Biol Chem. 1992;267(21):14902–14908.
  • Varani L, Hasegawa M, Spillantini MG, et al. Structure of tau exon 10 splicing regulatory element RNA and destabilization by mutations of frontotemporal dementia and parkinsonism linked to chromosome 17. Proc Natl Acad Sci. 1999;96(14):8229–8234.
  • Singh NN, Singh RN, Androphy EJ. Modulating role of RNA structure in alternative splicing of a critical exon in the spinal muscular atrophy genes. Nucleic Acids Res. 2007;35(2):371–389.
  • Brook JD, Mccurrach ME, Harley HG, et al. Molecular basis of myotonic dystrophy: expansion of a trinucleotide (CTG) repeat at the 3’ end of a transcript encoding a protein kinase family member. Cell. 1992;68(4):799–808.
  • Holden KL, Harris E. Enhancement of dengue virus translation: role of the 3’ untrans lated region and the terminal 3’ stem-loop domain. Virology. 2004;329(1):119–133.
  • Jiang H, Mankodi A, Swanson MS, et al. Myotonic dystrophy type 1 is associated with nuclear foci of mutant RNA, sequestration of muscleblind proteins and deregulated alternative splicing in neurons. Hum Mol Genet. 2004;13(24):3079–3088.
  • Yuan Y, Compton SA, Sobczak K, et al. Muscleblind-like 1 interacts with RNA hairpins in splicing target and pathogenic RNAs. Nucleic Acids Res. 2007;35(16):5474–5486.
  • Gu W, Zhou T, Wilke CO, et al. A universal trend of reduced mRNA stability near the translation-initiation site in prokaryotes and eukaryotes. PLoS Comput Biol. 2010;6(2):e1000664.
  • Joazeiro C. Mechanisms and functions of ribosome-associated protein quality control. Nat Rev Mol Cell Biol. 2019;20(6):368–383.
  • Bell NM, L’Hernault A, Murat P, et al. Targeting RNA-protein interactions within the human immunodeficiency virus type 1 lifecycle. Biochemistry. 2013;52(51):9269–9274.
  • Zhang Y, Zeng D, Cao J, et al. Interaction of quindoline derivative with telomeric repeat-containing RNA induces telomeric DNA-damage response in cancer cells through inhibition of telomeric repeat factor 2. Biochim Biophys Acta Gen Subj. 2017;1861(12):3246–3256.
  • Fedorova O, GE J Jr, Adams RL, et al. Small molecules that target group II introns are potent antifungal agents. Nat Chem Biol. 2018;14(12):1073–1078.
  • Simone R, Balendra R, Moens TG, et al. G-quadruplex-binding small molecules ameliorate C9orf72 FTD / ALS pathology in vitro and in vivo. EMBO Mol Med. 2018;10(1):22–31.
  • Rzuczek SG, Southern MR, Disney MD. Studying a drug-like, RNA-focused small molecule library identifies compounds that inhibit RNA toxicity in myotonic dystrophy. ACS Chem Biol. 2015;10(12):2706–2715.
  • Su Z, Zhang Y, Gendron TF, et al. Discovery of a biomarker and lead small molecules to target r(GGGGCC)-associated defects in c9FTD/ALS. Neuron. 83(5):1043–1050.
  • Garcia-Lopez A, Tessaro F, Jonker HRA, et al. Targeting RNA structure in SMN2 reverses spinal muscular atrophy molecular phenotypes. Nat Commun. 2018;9(1):2032.
  • Wang ZF, Ursu A, Childs-Disney JL, et al. The hairpin form of r(G4C2)exp in c9ALS/FTD is repeat-associated non-ATG translated and a target for bioactive small molecules. Cell Chem Biol. 2019;26(2):179–190.
  • Seth PP, Miyaji A, Jefferson EA, et al. SAR by MS: discovery of a new class of RNA-binding small molecules for the hepatitis C virus: internal ribosome entry site IIA subdomain. J Med Chem. 2005;48(23):7099–7102.
  • Aguilar R, Spencer KB, Kesner B, et al. Targeting Xist with compounds that disrupt RNA structure and X inactivation. Nature. 2022;604(7904):160–166.
  • Sztuba-Solinska J, Shenoy SR, Gareiss P, et al. Identification of biologically active, HIV TAR RNA-binding small molecules using small molecule microarrays. J Am Chem Soc. 2014;136(23):8402–8410.
  • Abulwerdi FA, Xu W, Ageeli AA, et al. Selective small-molecule targeting of a triple helix encoded by the long noncoding RNA, MALAT1. ACS Chem Biol. 2019;14(2):223–235.
  • Childs-Disney JL, Tran T, Vummidi BR, et al. A massively parallel selection of small molecule-RNA motif binding partners informs design of an antiviral from sequence. Chem. 2018;4(10):2384–2404.
  • Lee MK, Bottini A, Kim M, et al. A novel small-molecule binds to the influenza A virus RNA promoter and inhibits viral replication. Chem Commun (Camb). 2013;50(3):368–370.
  • Garavís M, López-Méndez B, Somoza A, et al. Discovery of selective ligands for telomeric RNA G-quadruplexes (TERRA) through 19 F-NMR based fragment screening. ACS Chem Biol. 2014;18(7):1559–1566.
  • Benhamou RI, Suresh BM, Tong Y, et al. DNA-encoded library versus RNA-encoded library selection enables design of an oncogenic noncoding RNA inhibitor. Proc Natl Acad Sci. 2022;119(6):e2114971119.
  • Chen Q, Li Y, Lin C, et al. Expanding the DNA-encoded library toolbox: identifying small molecules targeting RNA. Nucleic Acids Res. 2022;50:gkac173.
  • Lind KE, Du Z, Fujinaga K, et al. Structure-based computational database screening, in vitro assay, and NMR assessment of compounds that target TAR RNA. Chem Biol. 2002;9(2):185–193.
  • Daldrop P, Reyes FE, Robinson DA, et al. Novel ligands for a purine riboswitch discovered by RNA-ligand docking. Chem Biol. 2011;18(3):324–335.
  • Stelzer AC, Frank AT, Kratz JD, et al. Discovery of selective bioactive small molecules by targeting an RNA dynamic ensemble. Nat Chem Biol. 2011;7(8):553–559.
  • González-Bulnes L, Ibáñez I, Bedoya LM, et al. Structure-based design of an RNA-binding p -terphenylene scaffold that inhibits HIV-1 rev protein function. Angew Chem Int Ed Engl. 2013;52(50):13405–13409.
  • Nguyen L, Luu LM, Peng S, et al. Rationally designed small molecules that target both the DNA and RNA causing myotonic dystrophy type 1. J Am Chem Soc. 2015;137(44):14180–14189.
  • González ÀL, Konieczny P, Llamusi B, et al. In silico discovery of substituted pyrido[2,3-d]pyrimidines and pentamidine-like compounds with biological activity in myotonic dystrophy models. PLoS One. 2017;12(6):e0178931.
  • Ren Y, Wang YF, Zhang J, et al. Targeted design and identification of AC1NOD4Q to block activity of HOTAIR by abrogating the scaffold interaction with EZH2. Clin Epigenetics. 2019;11(1):29.
  • Naryshkin NA, Weetall M, Dakka A, et al. Motor neuron disease. SMN2 splicing modifiers improve motor function and longevity in mice with spinal muscular atrophy. Science. 2014;345:688–693.
  • Ratni H, Ebeling M, Baird J, et al., Discovery of risdiplam, a selective survival of motor neuron-2 (SMN2) gene splicing modifier for the treatment of spinal muscular atrophy (SMA). J Med Chem. 2018;61(15): 6501–6517.
  • Palacino J, Swalley SE, Song C, et al., SMN2 splice modulators enhance U1-pre-mRNA association and rescue SMA mice. Nat Chem Biol. 2015;11(7): 511–517.
  • DeJesus-Hernandez M, Mackenzie IR, Boeve BF, et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron. 2011;72(2):245–256.
  • Chen CZ, Sobczak K, Hoskins J, et al. Two high-throughput screening assays for aberrant RNA-protein interactions in myotonic dystrophy type 1. Anal Bioanal Chem. 2012;402(5):1889–1898.
  • Parkesh R, Childs-Disney JL, Nakamori M, et al. Design of a bioactive small molecule that targets the myotonic dystrophy type 1 RNA via an RNA motif-ligand database and chemical similarity searching. J Am Chem Soc. 2012;134:4731–4742.
  • Wicks SL, Hargrove AE. Fluorescent indicator displacement assays to identify and characterize small molecule interactions with RNA. Methods. 2019;167:3–14.
  • Dremann DN, Chow CS. The use of electrospray ionization mass spectrometry to monitor RNA-ligand interactions. Methods Enzymol. 2019;623:315–337.
  • Rizvi NF, Nickbarg EB. RNA-ALIS: methodology for screening soluble RNAs as small molecule targets using ALIS affinity-selection mass spectrometry. Methods. 2019;167:28–38.
  • Rizvi NF, Maria JP, Nahvi A, et al. Targeting RNA with small molecules: identification of selective, RNA-binding small molecules occupying drug-like chemical space. SLAS Discov. 2020;25(4):384–396.
  • Connelly CM, Abulwerdi FA, Schneekloth JS. Discovery of RNA binding small molecules using small molecule microarrays. Methods Mol Biol. 2017;1518:157–175.
  • Disney MD, Labuda LP, Paul DJ, et al., Two-dimensional combinatorial screening identifies specific aminoglycoside-RNA internal loop partners. J Am Chem Soc. 2008;130(33): 11185–11194.
  • Velagapudi SP, Gallo SM, Disney MD. Sequence-based design of bioactive small molecules that target precursor microRNAs. Nat Chem Biol. 2014;10(4):291–297.
  • Disney MD, Winkelsas AM, Velagapudi SP, et al. Inforna 2.0: a platform for the sequence-based design of small molecules targeting structured RNAs. ACS Chem Biol. 2016;11(6):1720–1728.
  • Lundquist KP, Panchal V, Gotfredsen CH, et al. Fragment-based drug discovery for RNA targets. Chem Med Chem. 2021;16(17):2588–2603.
  • Chen L, Cressina E, Leeper FJ, et al. A fragment-based approach to identifying ligands for riboswitches. ACS Chem Biol. 2010;5:355–363.
  • Cressina E, Chen L, Moulin M, et al. Identification of novel ligands for thiamine pyrophosphate (TPP) riboswitches. Biochem Soc Trans. 2011;39(2):652–657.
  • Warner KD, Homan P, Weeks KM, et al. Validating fragment-based drug discovery for biological RNAs: lead fragments bind and remodel the TPP riboswitch specifically. Chem Biol. 2014;21(5):591–595.
  • Bryan TM, Englezou A, Gupta J, et al. Telomere elongation in immortal human cells without detectable telomerase activity. EMBO J. 1995;14(17):4240–4248.
  • Decurtins W, Wichert M, Franzini RM, et al. Automated screening for small organic ligands using DNA-encoded chemical libraries. Nat Protoc. 2016;11(4):764–780.
  • Clark MA, Acharya RA, Arico-Muendel CC, et al. Design, synthesis and selection of DNA-encoded small-molecule libraries. Nat Chem Biol. 2009;5(9):647–654.
  • Guilbert C, James TL. Docking to RNA via root-mean-square-deviation-driven energy minimization with flexible ligands and flexible targets. J Chem Inf Model. 2008;48(6):1257–1268.
  • Ruiz-Carmona S, Alvarez-Garcia D, Foloppe N, et al. rDock: a fast, versatile and open source program for docking ligands to proteins and nucleic acids. PLoS Comput Biol. 2014;10(4):e1003571.
  • Lang PT, Brozell SR, Mukherjee S, et al. DOCK 6: combining techniques to model RNA-small molecule complexes. RNA. 2009;15(6):1219–1230.
  • Filikov AV, Mohan V, Vickers TA, et al. Identification of ligands for RNA targets via structure-based virtual screening: HIV-1 TAR. J Comput Aided Mol Des. 2000;14(6):593–610.
  • Moitessier N, Westhof E, Hanessian S. Docking of aminoglycosides to hydrated and flexible RNA. J Med Chem. 2006;49(3):1023–1033.
  • Gilbert SD, Reyes FE, Edwards AL, et al. Adaptive ligand binding by the purine riboswitch in the recognition of guanine and adenine analogs. Structure. 2009;17(6):857–868.
  • Sivaramakrishnan M, Mccarthy KD, Campagne S, et al. Binding to SMN2 pre-mRNA-protein complex elicits specificity for small molecule splicing modifiers. Nat Commun. 2017;8(1):1476.
  • An open label study of LMI070 (branaplam) in type 1 spinal muscular atrophy [Internet]. Novartis Pharmaceuticals. clinicaltrials.gov. [ cited 2014 Oct 20]. Available from: https://clinicaltrials.gov/ct2/show/NCT02268552.
  • Keller CG, Shin Y, Monteys AM. An orally available, brain penetrant, small molecule lowers huntingtin levels by enhancing pseudoexon inclusion. Nat Commun. 2022;13(1):1150.
  • Kumar GS, Basu A. The use of calorimetry in the biophysical characterization of small molecule alkaloids binding to RNA structures. Biochim Biophys Acta. 2016;1860(5):930–944.
  • Vo T, Paul A, Kumar A, et al. Biosensor-surface plasmon resonance: a strategy to help establish a new generation RNA-specific small molecules. Methods. 2019;167:15–27.
  • Childs-Disney JL, Yildirim I, Park H, et al. Structure of the myotonic dystrophy type 2 RNA and designed small molecules that reduce toxicity. ACS Chem Biol. 2014;9(2):538–550.
  • Yang WY, He F, Strack RL, et al. Small molecule recognition and tools to study modulation of r(CGG) exp in Fragile X-associated tremor ataxia syndrome. ACS Chem Biol. 2016;11(9):2456–2465.
  • Moon MH, Hilimire TA, Sanders AM, et al. Measuring RNA-ligand interactions with microscale thermophoresis. Biochemistry. 2018;57(31):4638–4643.
  • Thompson RD, Baisden JT, Zhang Q. NMR characterization of RNA small molecule interactions. Methods. 2019;167:67–77.
  • Guan L, Disney MD. Covalent small-molecule–RNA complex formation enables cellular profiling of small-molecule–RNA interactions. Angew Chem Int Ed Engl. 2013;52(38):10010–10013.
  • Yang W-Y, Wilson HD, Velagapudi SP, et al. Inhibition of non-ATG translational events in cells via covalent small molecules targeting RNA. J Am Chem Soc. 2015;137(16):5336–5345.
  • Velagapudi SP, Cameron MD, Haga CL, et al. Design of a small molecule against an oncogenic noncoding RNA. Proc Natl Acad Sci U S A. 2016;113:5898–5903.
  • Rzuczek SG, Colgan LA, Nakai Y, et al. Precise small-molecule recognition of a toxic CUG RNA repeat expansion. Nat Chem Biol. 2017;13(2):188–193.
  • Costales MG, Haga CL, Velagapudi SP, et al. Small molecule inhibition of microRNA-210 reprograms an oncogenic hypoxic circuit. J Am Chem Soc. 2017;139(9):3446–3455.
  • Velagapudi SP, Luo Y, Tran T, et al. Defining RNA-small molecule affinity landscapes enables design of a small molecule inhibitor of an oncogenic noncoding RNA. ACS Cent Sci. 2017;3(3):205–216.
  • Costales MG, Hoch DG, Abegg D, et al. A designed small molecule inhibitor of a non-coding RNA sensitizes HER2 negative cancers to herceptin. J Am Chem Soc. 2019;141(7):2960–2974.
  • Zhang P, Liu X, Abegg D, et al. Reprogramming of protein-targeted small-molecule medicines to RNA by ribonuclease recruitment. J Am Chem Soc. 2021;143(33):13044–13055.
  • Tong Y, Gibaut QMR, Rouse W, et al. Transcriptome-wide mapping of small-molecule RNA-binding sites in cells informs an isoform-specific degrader of QSOX1 mRNA. J Am Chem Soc. 2022;144(26):11620–11625.
  • Mukherjee H, Blain JC, Vandivier LE, et al. PEARL-seq: a photoaffinity platform for the analysis of small molecule-RNA interactions. ACS Chem Biol. 2020;15(9):2374–2381.
  • Sexton AN, Vandivier LE, Petter JC, et al. Determination of RNA-ligand interactions with the photoaffinity platform PEARL-seq. Methods. 2022;205:83–88.
  • Li Y, Disney MD. Precise small molecule degradation of a noncoding RNA identifies cellular binding sites and modulates an oncogenic phenotype. ACS Chem Biol. 2018;13(11):3065–3071.
  • Zhang K, S L, Kappel K, et al. Cryo-EM structure of a 40 kDa SAM-IV riboswitch RNA at 3.7 Å resolution. Nat Commun. 2019;10(1):5511.
  • Ferré-D’amaré AR. Use of the spliceosomal protein U1A to facilitate crystallization and structure determination of complex RNAs. Methods. 2010;52(2):159–167.
  • Ferré-D’amaré AR, Zhou K, Doudna JA. A general module for RNA crystallization. J Mol Biol. 1998;279(3):621–631.
  • Krummel DAP, Oubridge C, Leung AK, et al. Crystal structure of human spliceosomal U1 snRNP at 5.5 A resolution. Nature. 2009;458(7237):475–480.
  • Lee E, Bujalowski PJ, Teramoto T. Structures of flavivirus RNA promoters suggest two binding modes with NS5 polymerase. Nat Commun. 2021;12(1):2530.
  • Kondo J. Crystallographic studies of the ribosomal A-site molecular switches by using model RNA oligomers. Methods Mol Biol. 2016;1320:315–327.
  • Correll CC, Freeborn B, Moore PB, et al. Use of chemically modified nucleotides to determine a 62-nucleotide RNA crystal structure: a survey of phosphorothioates, Br, Pt and Hg. J Biomol Struct Dyn. 1997;15(2):165–172.
  • Baugh C, Grate D, Wilson C. 2.8 Å crystal structure of the malachite green aptamer. J Mol Biol. 2000;301(1):117–128.
  • Lin L, Huang Z. Se-derivatized RNAs for X-ray crystallography. Methods Mol Biol. 2012;941:213–225.
  • Adams PD, Afonine PV, Bunkóczi G, et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr. 2010;66(2):213–221.
  • Sakamoto T, Otsu M, Kawai G. NMR studies on RNA: The Nuclear Magnetic Resonance Society of Japan. Singapore: Springer; 2018. Experimental Approaches of NMR Spectroscopy. p. 439–459.
  • Olenginski LT, Taiwo KM, Leblanc RM, et al. Isotope-labeled RNA building blocks for NMR structure and dynamics studies. Molecules. 2021;26(18):5581.
  • Novakovic M, Olsen GL, Pintér G, et al. A 300-fold enhancement of imino nucleic acid resonances by hyperpolarized water provides a new window for probing RNA refolding by 1D and 2D NMR. Proc Natl Acad Sci. 2020;117(5):2449–2455.
  • Liu B, Shi H, Al-Hashimi HM. Developments in solution-state NMR yield broader and deeper views of the dynamic ensembles of nucleic acids. Curr Opin Struct Biol. 2021;70:16–25.
  • Liu D, Thélot FA, Piccirilli JA, et al. Sub-3-Å cryo-EM structure of RNA enabled by engineered homomeric self-assembly. Nat Methods. 2022;19(5):576–585.
  • Kappel K, Zhang K, Su Z, et al. Accelerated cryo-EM-guided determination of three-dimensional RNA-only structures. Nat Methods. 2020;17(7):699–707.
  • Kappel K, Liu S, Larsen KP, et al. De novo computational RNA modeling into cryo-EM maps of large ribonucleoprotein complexes. Nat Methods. 2018;15(11):947–954.
  • Fukuzawa K, Tanaka S. Fragment molecular orbital calculations for biomolecules. Curr Opin Struct Biol. 2022;72:127–134.
  • Deb I, Wong H, Tacubao C, et al. Quantum mechanics helps uncover atypical recognition features in the flavin mononucleotide riboswitch. J Phys Chem B. 2021;125(30):8342–8350.
  • Dawson WK, Shino A, Kawai G, et al. Developing an updated strategy for estimating the free-energy parameters in RNA duplexes. Int J Mol Sci. 2021;22(18):9708.
  • Vicens Q, Kieft JS. Thoughts on how to think (and talk) about RNA structure. Proc Natl Acad Sci. 2022;119(17):e2112677119.
  • Townshend RJL, Eismann S, Watkins AM, et al. Geometric deep learning of RNA structure. Science. 2021;373(6558):1047–1051.
  • Šponer J, Bussi G, Krepl M, et al. RNA structural dynamics as captured by molecular simulations: a comprehensive overview. Chem Rev. 2018;118(8):4177–4338.
  • The RNAcentral Consortium, RNAcentral: a hub of information for non-coding RNA sequences. Nucleic Acids Res. 2019;47(D1):D221–9.
  • Consortium R, Petrov AI, Ribas CE. RNAcentral 2021: secondary structure integration, improved sequence search and new member databases. Nucleic Acids Res. 2021;49(D1):D212–20.