651
Views
0
CrossRef citations to date
0
Altmetric
Review

A comprehensive update of siRNA delivery design strategies for targeted and effective gene silencing in gene therapy and other applications

, , , , , , , & show all
Pages 149-161 | Received 03 Mar 2022, Accepted 02 Dec 2022, Published online: 17 Dec 2022

References

  • Meister G, Tuschl T. Mechanisms of gene silencing by double-stranded RNA. Nature. 2004;431(7006):343–349.
  • Lares MR, Rossi JJ, Ouellet DL. RNAi and small interfering RNAs in human disease therapeutic applications. Trends Biotechnol. 2010;28(11):570–579.
  • ONPATTRO full prescribing information by FDA. 2018. [cited 10 January 2022]. https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/210922s000lbl.pdf
  • GIVLAARI full prescribing informations by FDA. 2019. [cited 12 January 2022]. https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/0212194s000lbl.pdf
  • OXLUMO full prescribing informations by FDA. 2020. [cited 12 January 2022]. https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/214103lbl.pdf
  • LEQVIO® (inclisiran) full prescribing information by FDA. 2021. [cited 15 May 2022]. https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/214012lbl.pdf
  • Zhang MM, Bahal R, Rasmussen TP, et al. The growth of siRNA-based therapeutics: updated clinical studies. Biochem Pharmacol. 2021;189:114432.
  • Harvey C, Klassa S, Finol E, et al. Chimeric flaviviral RNA− siRNA molecules resist degradation by the exoribonuclease Xrn1 and trigger gene silencing in mammalian cells. ChemBioChem. 2021;22(21):3099–3106.
  • Li WM, Barnes T, Lee CH. Endoribonucleases–enzymes gaining spotlight in mRNA metabolism. FEBS J. 2010;277(3):627–641.
  • Bartlett DW, Davis ME. Effect of siRNA nuclease stability on the in vitro and in vivo kinetics of siRNA‐mediated gene silencing. Biotechnol Bioeng. 2007;97(4):909–921.
  • Gao S, Dagnaes-Hansen F, Nielsen EJB, et al. The effect of chemical modification and nanoparticle formulation on stability and biodistribution of siRNA in mice. Mol Ther. 2009;17(7):1225–1233.
  • Kim HJ, Kim A, Miyata K, et al. Recent progress in development of siRNA delivery vehicles for cancer therapy. Adv Drug Deliv Rev. 2016;104:61–77.
  • Shegokar R, Al Shaal L, Mishra P. SiRNA delivery: challenges and role of carrier systems. Die Pharmazie- Int J Pharm Sci. 2011;66(5):313–318.
  • Tai W. Current aspects of siRNA bioconjugate for in vitro and in vivo delivery. Molecules. 2019;24(12):2211.
  • Watts JK, Deleavey GF, Damha MJ. Chemically modified siRNA: tools and applications. Drug Discov Today. 2008;13(19–20):842–855.
  • Chiu Y-L, Rana TM. siRNA function in RNAi: a chemical modification analysis. Rna. 2003;9(9):1034–1048.
  • Bardoliwala D, Patel V, Javia A, et al. Nanocarriers in effective pulmonary delivery of siRNA: current approaches and challenges. Ther Deliv. 2019;10(5):311–332.
  • Alshaer W, Zureigat H, Al Karaki A, et al. siRNA: mechanism of action, challenges, and therapeutic approaches. Eur J Pharmacol. 2021;916:174178.
  • Okamura K, Ishizuka A, Siomi H, et al. Distinct roles for Argonaute proteins in small RNA-directed RNA cleavage pathways. Genes Dev. 2004;18(14):1655–1666.
  • Hu B, Zhong L, Weng Y, et al. Therapeutic siRNA: state of the art. Signal Transduct Target Ther. 2020;5(1):1–25.
  • Caillaud M, El Madani M, Massaad-Massade L. Small interfering RNA from the lab discovery to patients’ recovery. J Control Release. 2020;321:616–628.
  • Juliano R, Bauman J, Kang H, et al. Biological barriers to therapy with antisense and siRNA oligonucleotides. Mol Pharm. 2009;6(3):686–695.
  • S-D L, Huang L. Nanoparticles evading the reticuloendothelial system: role of the supported bilayer. Biochimi Biophys Acta (BBA) Biomembr. 2009;1788(10):2259–2266.
  • Wang J, Lu Z, Wientjes MG, et al. Delivery of siRNA therapeutics: barriers and carriers. AAPS J. 2010;12(4):492–503.
  • Sato Y, Hatakeyama H, Hyodo M, et al. Relationship between the physicochemical properties of lipid nanoparticles and the quality of siRNA delivery to liver cells. Mol Ther. 2016;24(4):788–795.
  • C-f X, Wang J. Delivery systems for siRNA drug development in cancer therapy. Asian J Pharm Sci. 2015;10(1):1–12.
  • Lam JK, Chow MY, Zhang Y, et al. siRNA versus miRNA as therapeutics for gene silencing. Mol Ther Nucleic Acids. 2015;4:e252.
  • Gavrilov K, Saltzman WM. Therapeutic siRNA: principles, challenges, and strategies. Yale J Biol Med. 2012;85(2):187.
  • Elbashir SM, Martinez J, Patkaniowska A, et al. Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate. EMBO J. 2001;20(23):6877–6888.
  • Czauderna F, Fechtner M, Dames S, et al. Structural variations and stabilising modifications of synthetic siRNAs in mammalian cells. Nucleic Acids Res. 2003;31(11):2705–2716.
  • Deleavey GF, Damha MJ. Designing chemically modified oligonucleotides for targeted gene silencing. Chem Biol. 2012;19(8):937–954.
  • Mutisya D, Hardcastle T, Cheruiyot SK, et al. Amide linkages mimic phosphates in RNA interactions with proteins and are well tolerated in the guide strand of short interfering RNAs. Nucleic Acids Res. 2017;45(14):8142–8155.
  • Sarisozen C, Salzano G, Torchilin P. Lipid-based siRNA delivery systems: challenges, promises and solutions along the long journey. Curr Pharm Biotechnol. 2016;17(8):728–740.
  • Jayasena SD, Reynolds A, Khvorova A. Functional siRNAs and miRNAs Exhibit Strand Bias. Cell. 2003;115(4):505.
  • Schwarz DS, Hutvágner G, Du T, et al. Asymmetry in the assembly of the RNAi enzyme complex. Cell. 2003;115(2):199–208.
  • Sipa K, Sochacka E, Kazmierczak-Baranska J, et al. Effect of base modifications on structure, thermodynamic stability, and gene silencing activity of short interfering RNA. Rna. 2007;13(8):1301–1316.
  • Gaglione M, Messere A. Recent progress in chemically modified siRNAs. Mini Rev Med Chem. 2010;10(7):578–595.
  • Khvorova A, Reynolds A, Jayasena SD. Functional siRNAs and miRNAs exhibit strand bias. Cell. 2003;115(2):209–216.
  • Khvorova A, Watts JK. The chemical evolution of oligonucleotide therapies of clinical utility. Nat Biotechnol. 2017;35(3):238–248.
  • McNamara JO, Andrechek ER, Wang Y, et al. Cell type–specific delivery of siRNAs with aptamer-siRNA chimeras. Nat Biotechnol. 2006;24(8):1005–1015.
  • Kubo T, Nishimura Y, Hatori Y, et al. Antitumor effect of palmitic acid‐conjugated Dsi RNA for colon cancer in a mouse subcutaneous tumor model. Chem Biol Drug Des. 2019;93(4):570–581.
  • Foster DJ, Brown CR, Shaikh S, et al. Advanced siRNA designs further improve in vivo performance of GalNAc-siRNA conjugates. Mol Ther. 2018;26(3):708–717.
  • Bäumer S, Bäumer N, Appel N, et al. Antibody-mediated delivery of anti–KRAS-siRNA in vivo overcomes therapy resistance in colon cancer. Clin Cancer Res. 2015;21(6):1383–1394.
  • Song E, Zhu P, Lee S-K, et al. Antibody mediated in vivo delivery of small interfering RNAs via cell-surface receptors. Nat Biotechnol. 2005;23(6):709–717.
  • Kumar P, Ban H-S, Kim -S-S, et al. T cell-specific siRNA delivery suppresses HIV-1 infection in humanized mice. Cell. 2008;134(4):577–586.
  • Hamblett KJ, Senter PD, Chace DF, et al. Effects of drug loading on the antitumor activity of a monoclonal antibody drug conjugate. Clin Cancer Res. 2004;10(20):7063–7070.
  • Nair JK, Willoughby JL, Chan A, et al. Multivalent N-acetylgalactosamine-conjugated siRNA localizes in hepatocytes and elicits robust RNAi-mediated gene silencing. J Am Chem Soc. 2014;136(49):16958–16961.
  • Wong SC, Klein JJ, Hamilton HL, et al. Co-injection of a targeted, reversibly masked endosomolytic polymer dramatically improves the efficacy of cholesterol-conjugated small interfering RNAs in vivo. Nucleic Acid Ther. 2012;22(6):380–390.
  • Sugo T, Terada M, Oikawa T, et al. Development of antibody-siRNA conjugate targeted to cardiac and skeletal muscles. J Control Release. 2016;237:1–13.
  • Yu Z, Zhang X, Pei X, et al. Antibody-siRNA conjugates (ARCs) using multifunctional peptide as a tumor enzyme cleavable linker mediated effective intracellular delivery of siRNA. Int J Pharm. 2021;606:120940.
  • Tai W, Mahato R, Cheng K. The role of HER2 in cancer therapy and targeted drug delivery. J Control Release. 2010;146(3):264–275.
  • Parry JJ, Kelly TS, Andrews R, et al. In vitro and in vivo evaluation of 64Cu-labeled DOTA− linker− bombesin (7− 14) analogues containing different amino acid linker moieties. Bioconjug Chem. 2007;18(4):1110–1117.
  • Tai W, Shukla RS, Qin B, et al. Development of a peptide–drug conjugate for prostate cancer therapy. Mol Pharm. 2011;8(3):901–912.
  • Tai W, Gao X. Functional peptides for siRNA delivery. Adv Drug Deliv Rev. 2017;110:157–168.
  • Gandioso A, Massaguer A, Villegas N, et al. Efficient siRNA–peptide conjugation for specific targeted delivery into tumor cells. Chem Comm. 2017;53(19):2870–2873.
  • Luo J, Höhn M, Reinhard S, et al. IL4‐Receptor‐Targeted Dual Antitumoral Apoptotic Peptide—siRNA conjugate lipoplexes. Adv Funct Mater. 2019;29(25):1900697.
  • Eyford BA, Singh CS, Abraham T, et al. A nanomule peptide carrier delivers siRNA across the intact blood-brain barrier to attenuate ischemic stroke. Front Mol Biosci. 2021;8:133.
  • Srimanee A, Arvanitidou M, Kim K, et al. Cell-penetrating peptides for siRNA delivery to glioblastomas. Peptides. 2018;104:62–69.
  • Moschos SA, Jones SW, Perry MM, et al. Lung delivery studies using siRNA conjugated to TAT (48− 60) and penetratin reveal peptide induced reduction in gene expression and induction of innate immunity. Bioconjug Chem. 2007;18(5):1450–1459.
  • Olson ES, Aguilera TA, Jiang T, et al. In vivo characterization of activatable cell penetrating peptides for targeting protease activity in cancer. Integr Biol. 2009;1(5–6):382–393.
  • Shi N-Q, Gao W, Xiang B, et al. Enhancing cellular uptake of activable cell-penetrating peptide–doxorubicin conjugate by enzymatic cleavage. Int J Nanomedicine. 2012;7:1613.
  • Martín I, Teixidó M, Giralt E. Building cell selectivity into CPP-mediated strategies. Pharmaceuticals. 2010;3(5):1456–1490.
  • Zhou J, Rossi J. Cell-type–specific aptamer and aptamer-small interfering RNA conjugates for targeted human immunodeficiency virus type 1 therapy. J Invest Med. 2014;62(7):914–919.
  • Kruspe S, Giangrande PH. Aptamer-siRNA chimeras: discovery, progress, and future prospects. Biomedicines. 2017;5(3):45.
  • Khanali J, Azangou-khyavy M, Asaadi Y, Jamalkhah, M, Kiani, J, et al. Nucleic Acid-Based Treatments Against COVID-19: Potential Efficacy of Aptamers and siRNAs. Front Microbiol. 2021;12:758948.
  • Xia C-F, Boado RJ, Pardridge WM. Antibody-mediated targeting of siRNA via the human insulin receptor using avidin− biotin technology. Mol Pharm. 2009;6(3):747–751.
  • Ma Y, Kowolik CM, Swiderski PM, et al. Humanized Lewis-Y specific antibody based delivery of STAT3 siRNA. ACS Chem Biol. 2011;6(9):962–970.
  • Palanca-Wessels MC, Convertine AJ, Cutler-Strom R, et al. Anti-CD22 antibody targeting of pH-responsive micelles enhances small interfering RNA delivery and gene silencing in lymphoma cells. Mol Ther. 2011;19(8):1529–1537.
  • Alam MR, Ming X, Fisher M, et al. Multivalent cyclic RGD conjugates for targeted delivery of small interfering RNA. Bioconjug Chem. 2011;22(8):1673–1681.
  • Blackburn WH, Dickerson EB, Smith MH, et al. Peptide-functionalized nanogels for targeted siRNA delivery. Bioconjug Chem. 2009;20(5):960–968.
  • Cesarone G, Edupuganti OP, Chen C-P, et al. Insulin receptor substrate 1 knockdown in human MCF7 ER+ breast cancer cells by nuclease-resistant IRS1 siRNA conjugated to a disulfide-bridged D-peptide analogue of insulin-like growth factor 1. Bioconjug Chem. 2007;18(6):1831–1840.
  • Jafari R, Zolbanin NM, Majidi J, et al. Anti-mucin1 aptamer-conjugated chitosan nanoparticles for targeted co-delivery of docetaxel and IGF-1R siRNA to SKBR3 metastatic breast cancer cells. Iran Biomed J. 2019;23(1):21.
  • Xu Y, Pang L, Wang H, et al. Specific delivery of delta-5-desaturase siRNA via RNA nanoparticles supplemented with dihomo-γ-linolenic acid for colon cancer suppression. Redox Biol. 2019;21:101085.
  • Powell D, Chandra S, Dodson K, et al. Aptamer-functionalized hybrid nanoparticle for the treatment of breast cancer. Eur J Pharm Biopharm. 2017;114:108–118.
  • Subhan MA, Attia SA, Torchilin VP. Advances in siRNA delivery strategies for the treatment of MDR cancer. Life Sci. 2021;274:119337.
  • Soutschek J, Akinc A, Bramlage B, et al. Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature. 2004;432(7014):173–178.
  • Chernikov I, Meschaninova M, Venyaminova A, et al. Cholesterol-conjugated siRNA accumulates in the different hematopoietic and lymphoid cells. J Hematol Oncol Res. 2016;2(2):13–19.
  • Osborn MF, Coles AH, Biscans A, et al. Hydrophobicity drives the systemic distribution of lipid-conjugated siRNAs via lipid transport pathways. Nucleic Acids Res. 2019;47(3):1070–1081.
  • Aviñó A, Ocampo SM, Lucas R, et al. Synthesis and in vitro inhibition properties of siRNA conjugates carrying glucose and galactose with different presentations. Mol Divers. 2011;15(3):751–757.
  • Zhu L, Mahato RI. Targeted delivery of siRNA to hepatocytes and hepatic stellate cells by bioconjugation. Bioconjug Chem. 2010;21(11):2119–2127.
  • Oishi M, Nagasaki Y, Itaka K, et al. Lactosylated poly (ethylene glycol)-siRNA conjugate through acid-labile β-thiopropionate linkage to construct pH-sensitive polyion complex micelles achieving enhanced gene silencing in hepatoma cells. J Am Chem Soc. 2005;127(6):1624–1625.
  • Rozema DB, Lewis DL, Wakefield DH, et al., Dynamic PolyConjugates for targeted in vivo delivery of siRNA to hepatocytes. Proc Nat Acad Sci. 2007. 104(32): 12982–12987.
  • Bayda S, Adeel M, Tuccinardi T, et al. The history of nanoscience and nanotechnology: from chemical–physical applications to nanomedicine. Molecules. 2020;25(1):112.
  • Zayed A, Haggag Y, Ezzat SM, et al. Fucoidans as nanoparticles: pharmaceutical and biomedical applications. Polysaccharide Nanopart. 2022;16;413–455.
  • Patra JK, Das G, Fraceto LF, et al. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnology. 2018;16(1):1–33.
  • De Jong WH, Borm PJ. Drug delivery and nanoparticles: applications and hazards. Int J Nanomedicine. 2008;3(2):133.
  • Haggag YA, Yasser M, Tambuwala MM, et al. Repurposing of Guanabenz acetate by encapsulation into long-circulating nanopolymersomes for treatment of triple-negative breast cancer. Int J Pharm. 2021;600:120532.
  • Salem MA, Manaa EG, Osama N, et al. Coriander (Coriandrum sativum L.) essential oil and oil-loaded nano-formulations as an anti-aging potentiality via TGFβ/SMAD pathway. Sci Rep. 2022;12(1):1–15.
  • Ibrahim WM, AlOmrani AH, Yassin AEB. Novel sulpiride-loaded solid lipid nanoparticles with enhanced intestinal permeability. Int J Nanomedicine. 2014;9:129.
  • Zewail MB, El-Gizawy SA, Osman MA, et al. Preparation and In vitro characterization of a novel self-nano emulsifying drug delivery system for a fixed-dose combination of candesartan cilexetil and hydrochlorothiazide. J Drug Delivery Sci Technol. 2021;61:102320.
  • Haggag YA, Abosalha AK, Tambuwala MM, et al. Polymeric nanoencapsulation of zaleplon into PLGA nanoparticles for enhanced pharmacokinetics and pharmacological activity. Biopharm Drug Dispos. 2021;42(1):12–23.
  • Fam SY, Chee CF, Yong CY, et al. Stealth coating of nanoparticles in drug-delivery systems. Nanomaterials. 2020;10(4):787.
  • S-D L, Huang L. Pharmacokinetics and biodistribution of nanoparticles. Mol Pharm. 2008;5(4):496–504.
  • Choi HS, Liu W, Misra P, et al. Renal clearance of quantum dots. Nat Biotechnol. 2007;25(10):1165–1170.
  • Musumeci T, Ventura CA, Giannone I, et al. PLA/PLGA nanoparticles for sustained release of docetaxel. Int J Pharm. 2006;325(1–2):172–179.
  • Schleifman EB, McNeer NA, Jackson A, et al. Site-specific genome editing in PBMCs with PLGA nanoparticle-delivered PNAs confers HIV-1 resistance in humanized mice. Mol Ther Nucleic Acids. 2013;2:e135.
  • Perumal OP, Inapagolla R, Kannan S, et al. The effect of surface functionality on cellular trafficking of dendrimers. Biomaterials. 2008;29(24–25):3469–3476.
  • Lin Q, Jiang G, Tong K. Dendrimers in drug-delivery applications. Des Monomers Polym. 2010;13(4):301–324.
  • Sahoo SK, Dilnawaz F, Krishnakumar S. Nanotechnology in ocular drug delivery. Drug Discov Today. 2008;13(3–4):144–151.
  • Biswas S, Torchilin VP. Dendrimers for siRNA delivery. Pharmaceuticals. 2013;6(2):161–183.
  • Bauer BJ, Amis EJ. Characterization of dendritically branched polymers by small angle neutron scattering (SANS), small angle X-ray scattering (SAXS) and transmission electron microscopy (TEM) nist.gov. 2001;255–284. https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=853744
  • Abbasi E, Aval SF, Akbarzadeh A, et al. Dendrimers: synthesis, applications, and properties. Nanoscale Res Lett. 2014;9(1):1–10.
  • Mintzer MA, Grinstaff MW. Biomedical applications of dendrimers: a tutorial. Chem Soc Rev. 2011;40(1):173–190.
  • Maeda H. Tumor-selective delivery of macromolecular drugs via the EPR effect: background and future prospects. Bioconjug Chem. 2010;21(5):797–802.
  • Tomalia DA, Baker H, Dewald J, et al. A new class of polymers: starburst-dendritic macromolecules. Polym J. 1985;17(1):117–132.
  • Khan OF, Zaia EW, Yin H, et al. Ionizable amphiphilic dendrimer‐based nanomaterials with alkyl‐chain‐substituted amines for tunable siRNA delivery to the liver endothelium in vivo. Angew Chem. 2014;53(52):14397–14401.
  • Zhou J, Neff CP, Liu X, et al. Systemic administration of combinatorial dsiRNAs via nanoparticles efficiently suppresses HIV-1 infection in humanized mice. Mol Ther. 2011;19(12):2228–2238.
  • Rodrigo AC, Rivilla I, Pérez-Martínez FC, et al. Efficient, non-toxic hybrid PPV-PAMAM dendrimer as a gene carrier for neuronal cells. Biomacromolecules. 2011;12(4):1205–1213.
  • Liu X, Li G, Su Z, et al. Poly (amido amine) is an ideal carrier of miR-7 for enhancing gene silencing effects on the EGFR pathway in U251 glioma cells. Oncol Rep. 2013;29(4):1387–1394.
  • Dzmitruk V, Apartsin E, Ihnatsyeu-Kachan A, et al. Dendrimers show promise for siRNA and microRNA therapeutics. Pharmaceutics. 2018;10(3):126.
  • Liu X, Rocchi P, Fq Q, et al. PAMAM dendrimers mediate siRNA delivery to target Hsp27 and produce potent antiproliferative effects on prostate cancer cells. ChemMedChem. 2009;4(8):1302–1310.
  • Dong Y, Yu T, Ding L, et al. A dual targeting dendrimer-mediated siRNA delivery system for effective gene silencing in cancer therapy. J Am Chem Soc. 2018;140(47):16264–16274.
  • Ding B-S, Dziubla T, Shuvaev VV, et al. Advanced drug delivery systems that target the vascular endothelium. Mol interv. 2006;6(2):98.
  • Hua S, Wu SY. The use of lipid-based nanocarriers for targeted pain therapies. Front Pharmacol. 2013;4:143.
  • Daraee H, Etemadi A, Kouhi M, et al. Application of liposomes in medicine and drug delivery. Artif Cells Nanomed Biotechnol. 2016;44(1):381–391.
  • Akbarzadeh A, Rezaei-Sadabady R, Davaran S, et al. Liposome: classification, preparation, and applications. Nanoscale Res Lett. 2013;8(1):1–9.
  • Simões S, Filipe A, Faneca H, et al. Cationic liposomes for gene delivery. Expert Opin Drug Deliv. 2005;2(2):237–254.
  • Ozpolat B, Sood AK, Lopez-Berestein G. Liposomal siRNA nanocarriers for cancer therapy. Adv Drug Deliv Rev. 2014;66:110–116.
  • Yu-Wai-Man C, Tagalakis AD, Manunta MD, et al. Receptor-targeted liposome-peptide-siRNA nanoparticles represent an efficient delivery system for MRTF silencing in conjunctival fibrosis. Sci Rep. 2016;6(1):1–11.
  • Mokhtarieh AA, Cheong S, Kim S, et al. Asymmetric liposome particles with highly efficient encapsulation of siRNA and without nonspecific cell penetration suitable for target-specific delivery. Biochimi Biophys Acta (BBA) Biomembr. 2012;1818(7):1633–1641.
  • Khabazian E, Vakhshiteh F, Norouzi P, et al. Cationic liposome decorated with cyclic RGD peptide for targeted delivery of anti-STAT3 siRNA to melanoma cancer cells. J Drug Target. 2021;30:522–533. just-accepted.
  • Khatoon M, Shah KU, Din FU, et al. Proniosomes derived niosomes: recent advancements in drug delivery and targeting. Drug Deliv. 2017;24(2):56–69.
  • Abdelkader H, Alani AW, Alany RG. Recent advances in non-ionic surfactant vesicles (niosomes): self-assembly, fabrication, characterization, drug delivery applications and limitations. Drug Deliv. 2014;21(2):87–100.
  • Ag Seleci D, Seleci M, Walter J-G, et al. Niosomes as nanoparticular drug carriers: fundamentals and recent applications. J Nanomater. 2016;2016:1–13.
  • Sharma V, Anandhakumar S, Sasidharan M. Self-degrading niosomes for encapsulation of hydrophilic and hydrophobic drugs: an efficient carrier for cancer multi-drug delivery. Mater Sci Eng C. 2015;56:393–400.
  • Ge X, Wei M, He S, et al. Advances of non-ionic surfactant vesicles (niosomes) and their application in drug delivery. Pharmaceutics. 2019;11(2):55.
  • Hemati M, Haghiralsadat F, Yazdian F, et al. Development and characterization of a novel cationic PEGylated niosome-encapsulated forms of doxorubicin, quercetin and siRNA for the treatment of cancer by using combination therapy. Artif Cells Nanomed Biotechnol. 2019;47(1):1295–1311.
  • Maurer V, Altin S, Ag Seleci D, et al. In-vitro application of magnetic hybrid niosomes: targeted siRNA-delivery for enhanced breast cancer therapy. Pharmaceutics. 2021;13(3):394.
  • Mandawgade SD, Patravale VB. Development of SLNs from natural lipids: application to topical delivery of tretinoin. Int J Pharm. 2008;363(1–2):132–138.
  • Souto E, Müller R. SLN and NLC for topical delivery of ketoconazole. J Microencapsul. 2005;22(5):501–510.
  • Mukherjee S, Ray S, Thakur R. Solid lipid nanoparticles: a modern formulation approach in drug delivery system. Indian J Pharm Sci. 2009;71(4):349.
  • Mehnert W, Mäder K. Solid lipid nanoparticles: production, characterization and applications. Adv Drug Deliv Rev. 2012;64:83–101.
  • Üner M, Yener G. Importance of solid lipid nanoparticles (SLN) in various administration routes and future perspectives. Int J Nanomedicine. 2007;2(3):289.
  • Dhiman S, Mishra N, Sharma S. Development of PEGylated solid lipid nanoparticles of pentoxifylline for their beneficial pharmacological potential in pathological cardiac hypertrophy. Artif Cells Nanomed Biotechnol. 2016;44(8):1901–1908.
  • Bondì ML, Di Gesù R, Craparo EF. Lipid nanoparticles for drug targeting to the brain. Methods Enzymol. 2012;508:229–251.
  • Mei Z, Chen H, Weng T, et al. Solid lipid nanoparticle and microemulsion for topical delivery of triptolide. Eur J Pharm Biopharm. 2003;56(2):189–196.
  • Lobovkina T, Jacobson GB, Gonzalez-Gonzalez E, et al. In vivo sustained release of siRNA from solid lipid nanoparticles. ACS nano. 2011;5(12):9977–9983.
  • Oner E, Kotmakci M, Baird A-M, et al. Development of EphA2 siRNA-loaded lipid nanoparticles and combination with a small‐molecule histone demethylase inhibitor in prostate cancer cells and tumor spheroids. J Nanobiotechnology. 2021;19(1):1–20.
  • van Vlerken LE, Vyas TK, Amiji MM. Poly (ethylene glycol)-modified nanocarriers for tumor-targeted and intracellular delivery. Pharm Res. 2007;24(8):1405–1414.
  • Haggag YA, Faheem AM, Tambuwala MM, et al. Effect of poly (ethylene glycol) content and formulation parameters on particulate properties and intraperitoneal delivery of insulin from PLGA nanoparticles prepared using the double-emulsion evaporation procedure. Pharm Dev Technol. 2018;23(4):370–381.
  • Fonte P, Reis S, Sarmento B. Facts and evidences on the lyophilization of polymeric nanoparticles for drug delivery. J Control Release. 2016;225:75–86.
  • Haggag YA, Matchett KB, Falconer RA, et al. Novel ran-RCC1 inhibitory peptide-loaded nanoparticles have anti-cancer efficacy in vitro and in vivo. Cancers (Basel). 2019;11(2):222.
  • Ibrahim B, Mady OY, Tambuwala MM, et al. pH-Sensitive nanoparticles containing 5-fluorouracil and leucovorin as an improved anti-cancer option for colon cancer. Nanomedicine. 2022;17(6):367–381.
  • Abdelkader DH, Abosalha AK, Khattab MA, et al. A novel sustained anti-inflammatory effect of atorvastatin—calcium PLGA nanoparticles: in vitro optimization and in vivo evaluation. Pharmaceutics. 2021;13(10):1658.
  • Haggag Y, Abu Ras B, El-Tanani Y, et al. Co-delivery of a RanGTP inhibitory peptide and doxorubicin using dual-loaded liposomal carriers to combat chemotherapeutic resistance in breast cancer cells. Expert Opin Drug Deliv. 2020;17(11):1655–1669.
  • Luten J, van Nostrum C, De Smedt S, et al. J controlled release: official. J Controlled Release Soc. 2008;126(2):97–110.
  • Gagliardi A, Giuliano E, Eeda V, et al. Biodegradable polymeric nanoparticles for drug delivery to solid tumors. Front Pharmacol. 2021;12:17.
  • Acharya S, Sahoo SK. PLGA nanoparticles containing various anticancer agents and tumour delivery by EPR effect. Adv Drug Deliv Rev. 2011;63(3):170–183.
  • Chereddy KK, Vandermeulen G, Préat V. PLGA based drug delivery systems: promising carriers for wound healing activity. Wound Repair Regener. 2016;24(2):223–236.
  • Lassalle V, Ferreira ML. PLGA based drug delivery systems (DDS) for the sustained release of insulin: insight into the protein/polyester interactions and the insulin release behavior. J Chem Technol Biot. 2010;85(12):1588–1596.
  • Rao JP, Geckeler KE. Polymer nanoparticles: preparation techniques and size-control parameters. Prog Polym Sci. 2011;36(7):887–913.
  • Pantazis P, Dimas K, Wyche JH, et al. Nanoparticles in Biology and Medicine. In: Preparation of siRNA-encapsulated PLGA nanoparticles for sustained release of siRNA and evaluation of encapsulation efficiency. New York, USA: Springer, 2012; 311–319.
  • Lee S, Shin H-J, Noh C, et al. IKBKB siRNA-encapsulated poly (lactic-co-glycolic acid) nanoparticles diminish neuropathic pain by inhibiting microglial activation. Int J Mol Sci. 2021;22(11):5657.
  • Pangestuti R, Kim S-K. Neuroprotective properties of chitosan and its derivatives. Mar Drugs. 2010;8(7):2117–2128.
  • Schaly S, Islam P, Abosalha A, et al. Alginate–chitosan hydrogel formulations sustain baculovirus delivery and VEGFA expression which promotes angiogenesis for wound dressing applications. Pharmaceuticals. 2022;15(11):1382.
  • Bhumkar DR, Pokharkar VB. Studies on effect of pH on cross-linking of chitosan with sodium tripolyphosphate: a technical note. Aaps Pharmscitech. 2006;7(2):E138–E143.
  • Ragelle H, Riva R, Vandermeulen G, et al. Chitosan nanoparticles for siRNA delivery: optimizing formulation to increase stability and efficiency. J Control Release. 2014;176:54–63.
  • Li T, Deng N, Xu R, et al. NEAT1 siRNA packed with chitosan nanoparticles regulates the development of colon cancer cells via lncRNA NEAT1/miR-377-3p axis. Biomed Res Int. 2021;2021:5528982.
  • Yin H, Kanasty RL, Eltoukhy AA, et al. Non-viral vectors for gene-based therapy. Nat Rev Genet. 2014;15(8):541–555.
  • Sokolova V, Epple M. Inorganic nanoparticles as carriers of nucleic acids into cells. Angew Chem. 2008;47(8):1382–1395.
  • Conde J, Ambrosone A, Hernandez Y, et al. 15 years on siRNA delivery: beyond the state-of-the-art on inorganic nanoparticles for RNAi therapeutics. Nano Today. 2015;10(4):421–450.
  • Jiang Y, Huo S, Hardie J, et al. Progress and perspective of inorganic nanoparticle-based siRNA delivery systems. Expert Opin Drug Deliv. 2016;13(4):547–559.
  • Rahme K, Guo J, Holmes JD. Bioconjugated gold nanoparticles enhance siRNA delivery in prostate cancer cells. Rna interference and cancer therapy. New York, USA: Springer; 2019. p. 291–301.
  • Garrelfs SF, Frishberg Y, Hulton SA, et al., Lumasiran, an RNAi therapeutic for primary hyperoxaluria type 1. N Engl J Med. 2021. 384(13): 1216–1226.
  • Chalbatani GM, Dana H, Gharagouzloo E, et al. Small interfering RNAs (siRNAs) in cancer therapy: a nano-based approach. Int J Nanomedicine. 2019;14:3111.
  • Bobbin ML, Burnett JC, Rossi JJ. RNA interference approaches for treatment of HIV-1 infection. Genome Med. 2015;7(1):1–16.
  • Idris A, Davis A, Supramaniam A, et al., A SARS-CoV-2 targeted siRNA-nanoparticle therapy for COVID-19. Mol Ther. 2021. 29(7): 2219–2226.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.