239
Views
0
CrossRef citations to date
0
Altmetric
Review

Lessons learned from the discovery and development of the sesquiterpene lactones in cancer therapy and prevention

, ORCID Icon, , , ORCID Icon & ORCID Icon
Pages 1377-1405 | Received 19 Jul 2022, Accepted 11 Nov 2022, Published online: 05 Dec 2022

References

  • Dias DA, Urban S, Roessner U. A historical overview of natural products in drug discovery. Metabolites. 2012;2(2):303–336.
  • Bernardini S, Tiezzi A, Laghezza Masci V, et al. Natural products for human health: an historical overview of the drug discovery approaches. Nat Prod Res. 2018;32(16):1926–1950.
  • Wangkheirakpam S. Chapter 2 - traditional and folk medicine as a target for drug discovery. In: Mandal SC, Mandal V, Konishi T, editors. Natural products and drug discovery: elsevier. 2018. p. 29–56.
  • Newman DJ, Cragg GM. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J Nat Prod. 2020;83(3):770–803.
  • Chadwick M, Trewin H, Gawthrop F, et al. Sesquiterpenoids lactones: benefits to plants and people. Int J Mol Sci. 2013;14(6):12780–12805.
  • Gach K, Długosz A, Janecka A. The role of oxidative stress in anticancer activity of sesquiterpene lactones. Naunyn Schmiedebergs Arch Pharmacol. 2015;388(5):477–486.
  • Ghantous A, Gali-Muhtasib H, Vuorela H, et al. What made sesquiterpene lactones reach cancer clinical trials? Drug Discov Today. 2010;15(15–16):668–678.
  • Su XZ, Miller LH. The discovery of artemisinin and the nobel prize in physiology or medicine. Sci China Life Sci. 2015;58(11):1175–1179.
  • Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–249.
  • Moujir L, Callies O, Sousa PMC, et al. Applications of sesquiterpene lactones: a review of some potential success cases. Appl Sci. 2020;10(9):3001.
  • Ivanescu B, Miron A, Corciova A. Sesquiterpene lactones from artemisia genus: biological activities and methods of analysis. J Anal Methods Chem. 2015;2015:247685.
  • Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–674.
  • Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100(1):57–70.
  • Klayman DL. Qinghaosu (artemisinin): an antimalarial drug from China. Science. 1985;228(4703):1049–1055.
  • Dai F, Bao Y, Li Z, et al. Artemisinin is highly soluble in polyethylene glycol 4000 and such solution has multiple biological effects. Acta Biochim Pol. 2020;67(2):203–211.
  • Sun X, Yan P, Zou C, et al. Targeting autophagy enhances the anticancer effect of artemisinin and its derivatives. Med Res Rev. 2019;39(6):2172–2193.
  • Woodrow CJ. Artemisinins. Postgrad Med J. 2005;81(952):71–78.
  • Medhi B, Patyar S, Rao RS, et al. Pharmacokinetic and toxicological profile of artemisinin compounds: an update. Pharmacology. 2009;84(6):323–332.
  • Drenberg CD, Buaboonnam J, Orwick SJ, et al. Evaluation of artemisinins for the treatment of acute myeloid leukemia. Cancer Chemother Pharmacol. 2016;77(6):1231–1243.
  • Woerdenbag HJ, Moskal TA, Pras N, et al. Cytotoxicity of artemisinin-related endoperoxides to Ehrlich ascites tumor cells. J Nat Prod. 1993;56(6):849–856.
  • Li Y, Zhou X, Liu J, et al. Therapeutic potentials and mechanisms of artemisinin and its derivatives for tumorigenesis and metastasis. Anticancer Agents Med Chem. 2020;20(5):520–535.
  • Lu X, Efferth T. Repurposing of artemisinin-type drugs for the treatment of acute leukemia. Semin Cancer Biol. 2021;68:291–312.
  • Dai X, Zhang X, Chen W, et al. Dihydroartemisinin: a potential natural anticancer drug. Int J Biol Sci. 2021;17(2):603–622.
  • Wang Q, Wei N, Guo J, et al. Hemin-lipid assembly as an artemisinin oral delivery system for enhanced cancer chemotherapy and immunotherapy. Nanoscale. 2021;13(31):13231–13240.
  • Cao Y, Feng YH, Gao LW, et al. Artemisinin enhances the anti-tumor immune response in 4T1 breast cancer cells in vitro and in vivo. Int Immunopharmacol. 2019;70:110–116.
  • Xiao X, Li Y, Wang Y, et al. Dihydroartemisinin inhibits Lewis Lung carcinoma progression by inducing macrophages M1 polarization via AKT/mTOR pathway. Int Immunopharmacol. 2022;103:108427.
  • Kim B-G, Malek E, Choi SH, et al. Novel therapies emerging in oncology to target the TGF-β pathway. J Hematol Oncol. 2021;14(1):55.
  • Ghellal A, Li C, Hayes M, et al. Prognostic significance of TGFβ1 and TGFβ3 in human breast carcinoma. Anticancer Res. 2000;20(6 B):4413–4418.
  • Li Y, Zhou X, Liu J, et al. Dihydroartemisinin inhibits the tumorigenesis and metastasis of breast cancer via downregulating CIZ1 expression associated with TGF-β1 signaling. Life Sci. 2020;248:117454.
  • Yao Y, Guo Q, Cao Y, et al. Artemisinin derivatives inactivate cancer-associated fibroblasts through suppressing TGF-β signaling in breast cancer. J Exp Clin Cancer Res. 2018;37(1):282.
  • Mitchell MJ, Billingsley MM, Haley RM, et al. Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discov. 2021;20(2):101–124.
  • Chen M, Cui Y, Hao W, et al. Ligand-modified homologous targeted cancer cell membrane biomimetic nanostructured lipid carriers for glioma therapy. Drug Deliv. 2021;28(1):2241–2255.
  • Zhu S, Yu Q, Huo C, et al. Ferroptosis: a novel mechanism of artemisinin and its derivatives in cancer therapy. Curr Med Chem. 2021;28(2):329–345.
  • Wang Z, Li M, Liu Y, et al. Dihydroartemisinin triggers ferroptosis in primary liver cancer cells by promoting and unfolded protein response‑induced upregulation of CHAC1 expression. Oncol Rep. 2021;46(5). DOI:10.3892/or.2021.8191.
  • Su Y, Zhao D, Jin C, et al. Dihydroartemisinin induces ferroptosis in hcc by promoting the formation of PEBP1/15-LO. Oxid Med Cell Longev. 2021;2021:3456725.
  • Du J, Wang T, Li Y, et al. DHA inhibits proliferation and induces ferroptosis of leukemia cells through autophagy dependent degradation of ferritin. Free Radic Biol Med. 2019;131:356–369.
  • Chen X, Comish PB, Tang D, et al. Characteristics and biomarkers of ferroptosis. Front Cell Dev Biol. 2021;9:637162.
  • Ahmad B, Gamallat Y, Su P, et al. Alantolactone induces apoptosis in THP-1 cells through STAT3, survivin inhibition, and intrinsic apoptosis pathway. Chem Biol Drug Des. 2021;97(2):266–272.
  • An YH, Du J, Hou ZW, et al. Dihydroartemisinin induces AML cell apoptosis by inhibition of PTEN/AKT pathway. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2020;28(1):88–92.
  • Hu X, Fatima S, Chen M, et al. Dihydroartemisinin is potential therapeutics for treating late-stage CRC by targeting the elevated c-Myc level. Cell Death Dis. 2021;12(11):1053.
  • Zhang W, Ning N, Huang J. Artesunate suppresses the growth of lung cancer cells by downregulating the AKT/survivin signaling pathway. Biomed Res Int. 2022;2022:9170053.
  • Abylkassov R, Xie Y. Role of Yes-associated protein in cancer: an update. Oncol Lett. 2016;12(4):2277–2282.
  • Antunes P, Cruz A, Barbosa J, et al. Lipid droplets in cancer: from composition and role to imaging and therapeutics. molecules. (Basel Switzerland): Mdpi: 2022.Vol. 27(3)991.
  • Hao L, Guo Y, Peng Q, et al. Dihydroartemisinin reduced lipid droplet deposition by YAP1 to promote the anti-PD-1 effect in hepatocellular carcinoma. Phytomedicine. 2022;96:153913.
  • Li Y, Lu J, Chen Q, et al. Artemisinin suppresses hepatocellular carcinoma cell growth, migration and invasion by targeting cellular bioenergetics and Hippo-YAP signaling. Arch Toxicol. 2019;93(11):3367–3383.
  • Rasmussen U, Brøogger Christensen S, Sandberg F. Thapsigargine and thapsigargicine, two new histamine liberators from thapsia garganica L. Acta Pharm Suec. 1978;15(2):133–140.
  • Jaskulska A, Janecka AE, Gach-Janczak K. Thapsigargin-from traditional medicine to anticancer drug. Int J Mol Sci. 2020;22(1):4.
  • Wu L, Huang X, Kuang Y, et al. Thapsigargin induces apoptosis in adrenocortical carcinoma by activating endoplasmic reticulum stress and the JNK signaling pathway: an in vitro and in vivo study. Drug Des Devel Ther. 2019;13:2787–2798.
  • Körbel C, Linxweiler M, Bochen F, et al. Treatment of SEC62 over-expressing tumors by Thapsigargin and Trifluoperazine. Biomol Concepts. 2018;9(1):53–63.
  • Wang H, Zheng X, Behm FG, et al. Differentiation-independent retinoid induction of folate receptor type beta, a potential tumor target in myeloid leukemia. Blood. 2000;96(10):3529–3536.
  • Lynn RC, Poussin M, Kalota A, et al. Targeting of folate receptor β on acute myeloid leukemia blasts with chimeric antigen receptor-expressing T cells. Blood. 2015;125(22):3466–3476.
  • Roti G, Qi J, Kitara S, et al. Leukemia-specific delivery of mutant NOTCH1 targeted therapy. J Exp Med. 2018;215(1):197–216.
  • Roti G, Carlton A, Ross KN, et al. Complementary genomic screens identify SERCA as a therapeutic target in NOTCH1 mutated cancer. Cancer Cell. 2013;23(3):390–405.
  • Ogura M, Cordell GA, Farnsworth NR. Anticancer sesquiterpene lactones of michelia compressa (Magnoliaceae). Phytochemistry. 1978;17(5):957–961.
  • Jacobsson U, Kumar V, Saminathan S. Sesquiterpene lactones from Michelia champaca. Phytochemistry. 1995;39(4):839–843.
  • Zhai JD, Li D, Long J, et al. Biomimetic semisynthesis of arglabin from parthenolide. J Org Chem. 2012;77(16):7103–7107.
  • Zhang Q, Lu Y, Ding Y, et al. Guaianolide sesquiterpene lactones, a source to discover agents that selectively inhibit acute myelogenous leukemia stem and progenitor cells. J Med Chem. 2012;55(20):8757–8769.
  • Dong Y, Qian X, Li J. Sesquiterpene lactones and cancer: new insight into antitumor and anti-inflammatory effects of parthenolide-derived dimethylaminomicheliolide and micheliolide. Comput Math Methods Med. 2022;2022:3744837.
  • X-n X, Liu N, Wang Q-Q, et al. Pharmacokinetics, tissue distribution and excretion of ACT001 in sprague-dawley rats and metabolism of ACT001. J Chromatogr B. 2019;1104:29–39.
  • An Y, Guo W, Li L, et al. Micheliolide derivative DMAMCL inhibits glioma cell growth in vitro and in vivo. PLOS ONE. 2015;10(2):e0116202.
  • Tong L, Li J, Li Q, et al. ACT001 reduces the expression of PD-L1 by inhibiting the phosphorylation of STAT3 in glioblastoma. Theranostics. 2020;10(13):5943–5956.
  • Li Q, Sun Y, Liu B, et al. ACT001 modulates the NF-κB/MnSOD/ROS axis by targeting IKKβ to inhibit glioblastoma cell growth. J Mol Med (Berl). 2020;98(2):263–277.
  • Beer MF, Bivona AE, Sánchez Alberti A, et al. Preparation of sesquiterpene lactone derivatives: cytotoxic activity and selectivity of action. Molecules. 2019;24(6):1113.
  • Zhang S, Hua Z, Ba G, et al. Antitumor effects of the small molecule DMAMCL in neuroblastoma via suppressing aerobic glycolysis and targeting PFKL. Cancer Cell Int. 2021;21(1):619.
  • Xu N, Hua Z, Ba G, et al. The anti-tumor growth effect of a novel agent DMAMCL in rhabdomyosarcoma in vitro and in vivo. J Exp Clin Cancer Res. 2019;38(1):118.
  • Sakakibara T, Hibi K, Koike M, et al. Plasminogen activator inhibitor-1 as a potential marker for the malignancy of colorectal cancer. Br J Cancer. 2005;93(7):799–803.
  • Placencio VR, DeClerck YA. Plasminogen activator inhibitor-1 in cancer: rationale and insight for future therapeutic testing. Cancer Res. 2015;75(15):2969–2974.
  • Berdan CA, Ho R, Lehtola HS, et al. Parthenolide covalently targets and inhibits focal adhesion kinase in breast cancer cells. Cell Chem Biol. 2019;26(7):1027–35.e22.
  • Lee H, Jeong AJ, Ye S-K. Highlighted STAT3 as a potential drug target for cancer therapy. BMB Rep. 2019;52(7):415–423.
  • Tang X, Ding Q, Chen C, et al. Micheliolide inhibits gastric cancer growth in vitro and in vivo via blockade of the IL-6/STAT3 pathway. Pharmazie. 2019;74(3):175–178.
  • Zeng B, Cheng Y, Zheng K, et al. Design, synthesis and in vivo anticancer activity of novel parthenolide and micheliolide derivatives as NF-κB and STAT3 inhibitors. Bioorg Chem. 2021;111:104973.
  • Li J, Li S, Guo J, et al. Natural product micheliolide (MCL) irreversibly activates pyruvate kinase M2 and suppresses leukemia. J Med Chem. 2018;61(9):4155–4164.
  • Ba G, Hua Z, Xu N, et al. Novel agent DMAMCL suppresses osteosarcoma growth and decreases the stemness of osteosarcoma stem cell. Cell Cycle. 2020;19(12):1530–1544.
  • Sun CM, Syu WJ, Don MJ, et al. Cytotoxic sesquiterpene lactones from the root of Saussurea lappa. J Nat Prod. 2003;66(9):1175–1180.
  • Zhang R, Hao J, Wu Q, et al. Dehydrocostus lactone inhibits cell proliferation and induces apoptosis by PI3K/Akt/Bad and ERS signalling pathway in human laryngeal carcinoma. J Cell Mol Med. 2020;24(11):6028–6042.
  • Sheng W, Mao H, Wang C, et al. Dehydrocostus lactone enhances chemotherapeutic potential of doxorubicin in lung cancer by inducing cell death and limiting metastasis. Med Sci Monit. 2018;24:7850–7861.
  • Zhang J, Hu X, Gao W, et al. Pharmacokinetic study on costunolide and dehydrocostuslactone after oral administration of traditional medicine Aucklandia lappa decne. by LC/MS/MS. J Ethnopharmacol. 2014;151(1):191–197.
  • Dong S, L-y M, Liu Y-T, et al. Pharmacokinetics of costunolide and dehydrocostuslactone after oral administration of Radix Aucklandiae extract in normal and gastric ulcer rats. J Asian Nat Prod Res. 2018;20(11):1055–1063.
  • Adekenov S, Mukhametzhanov M, Kagarlitskii A, et al. Arglabin, a new sessquiterpene lactone from Artemisia glabella. Chem Nat Comp. 1983;18:623–624.
  • Csuk R, Heinold A, Siewert B, et al. Synthesis and biological evaluation of antitumor-active arglabin derivatives. Arch Pharm (Weinheim). 2012;345(3):215–222.
  • Rowinsky EK, Windle JJ, Von Hoff DD. Ras protein farnesyltransferase: a strategic target for anticancer therapeutic development. J Clin Oncol. 1999;17(11):3631–3652.
  • Pylayeva-Gupta Y, Grabocka E, Bar-Sagi D. RAS oncogenes: weaving a tumorigenic web. Nat Rev Cancer. 2011;11(11):761–774.
  • He W, Lai R, Lin Q, et al. Arglabin is a plant sesquiterpene lactone that exerts potent anticancer effects on human oral squamous cancer cells via mitochondrial apoptosis and downregulation of the mTOR/PI3K/Akt signaling pathway to inhibit tumor growth in vivo. J buon. 2018;23(6):1679–1685.
  • Ghantous A, Sinjab A, Herceg Z, et al. Parthenolide: from plant shoots to cancer roots. Drug Discov Today. 2013;18(17–18):894–905.
  • Sun L, Yuan W, Wen G, et al. Parthenolide inhibits human lung cancer cell growth by modulating the IGF‑1R/PI3K/Akt signaling pathway. Oncol Rep. 2020;44(3):1184–1193.
  • Jin X, Zhou J, Zhang Z, et al. The combined administration of parthenolide and ginsenoside CK in long circulation liposomes with targeted tLyp-1 ligand induce mitochondria-mediated lung cancer apoptosis. Artif Cells Nanomed Biotechnol. 2018;46(sup3):S931–s42.
  • Liang P, Wu H, Zhang Z, et al. Preparation and characterization of parthenolide nanocrystals for enhancing therapeutic effects of sorafenib against advanced hepatocellular carcinoma. Int J Pharm. 2020;583:119375.
  • Yu Z, Chen Y, Wang S, et al. Inhibition of NF-κB results in anti-glioma activity and reduces temozolomide-induced chemoresistance by down-regulating MGMT gene expression. Cancer Lett. 2018;428:77–89.
  • Denduluri SK, Idowu O, Wang Z, et al. Insulin-like growth factor (IGF) signaling in tumorigenesis and the development of cancer drug resistance. Genes Dis. 2015;2(1):13–25.
  • Miao X, Yang W, Feng T, et al. Drug nanocrystals for cancer therapy. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2018;10(3):e1499.
  • Guzman ML, Rossi RM, Neelakantan S, et al. An orally bioavailable parthenolide analog selectively eradicates acute myelogenous leukemia stem and progenitor cells. Blood. 2007;110(13):4427–4435.
  • Karam L, Abou Staiteieh S, Chaaban R, et al. Anticancer activities of parthenolide in primary effusion lymphoma preclinical models. Mol Carcinog. 2021;60(8):567–581.
  • Liu X, Wang C, Li S, et al. Parthenolide derivatives as PKM2 activators showing potential in colorectal cancer. J Med Chem. 2021;64(23):17304–17325.
  • Ding Y, Xue Q, Liu S, et al. Identification of parthenolide dimers as activators of pyruvate kinase M2 in xenografts of glioblastoma multiforme in vivo. J Med Chem. 2020;63(4):1597–1611.
  • Jia X, Liu Q, Wang S, et al. Synthesis, cytotoxicity, and in vivo antitumor activity study of parthenolide semicarbazones and thiosemicarbazones. Bioorg Med Chem. 2020;28(13):115557.
  • Ding Y, Chen X, Liu C, et al. Identification of a small molecule as inducer of ferroptosis and apoptosis through ubiquitination of GPX4 in triple negative breast cancer cells. J Hematol Oncol. 2021;14(1):19.
  • Ding Y, Yang Z, Ge W, et al. Synthesis and biological evaluation of dithiocarbamate esters of parthenolide as potential anti-acute myelogenous leukaemia agents. J Enzyme Inhib Med Chem. 2018;33(1):1376–1391.
  • Rasul A, Parveen S, Ma T. Costunolide: a novel anti-cancer sesquiterpene lactone. Bangladesh J Pharmacol. 2012;7(1):6–13.
  • Kim DY, Choi BY. Costunolide-A bioactive sesquiterpene lactone with diverse therapeutic potential. Int J Mol Sci. 2019;20(12):2926.
  • Huang H, Park S, Zhang H, et al. Targeting AKT with costunolide suppresses the growth of colorectal cancer cells and induces apoptosis in vitro and in vivo. J Exp Clin Cancer Res. 2021;40(1):114.
  • Zhuge W, Chen R, Vladimir K, et al. Costunolide specifically binds and inhibits thioredoxin reductase 1 to induce apoptosis in colon cancer. Cancer Lett. 2018;412:46–58.
  • Huang H, Yi JK, Lim SG, et al. Costunolide induces apoptosis via the reactive oxygen species and protein kinase b pathway in oral cancer cells. Int J Mol Sci. 2021;22(14):7509.
  • Arnér ESJ. Chapter 31 - perspectives of TrxR1-based cancer therapies. Sies H, editor. Oxidative Stress: Academic Press; 2020. p. 639–667.
  • Jin X, Wang C, Wang L. Costunolide inhibits osteosarcoma growth and metastasis via suppressing STAT3 signal pathway. Biomed Pharmacother. 2020;121:109659.
  • T-x X, Wei D, Liu M, et al. Stat3 activation regulates the expression of matrix metalloproteinase-2 and tumor invasion and metastasis. Oncogene. 2004;23(20):3550–3560.
  • Yan Z, Xu T, An Z, et al. Costunolide induces mitochondria-mediated apoptosis in human gastric adenocarcinoma BGC-823 cells. BMC Complement Altern Med. 2019;19(1):151.
  • Wang J, Li P, Li B, et al. Bioactivities of compounds from elephantopus scaber, an ethnomedicinal plant from southwest China. Evid Based Complement Alternat Med. 2014;2014:569594.
  • Xu G, Liang Q, Gong Z, et al. Antitumor activities of the four sesquiterpene lactones from elephantopus scaber L. Exp Oncol. 2006;28(2):106–109.
  • Niu K, Guo C, Yan H, et al. LC–MS/MS determination of deoxyelephantopin, a novel anti-tumor candidate in rat plasma and its application to a pharmacokinetic study in rats. Revista Brasileira de Farmacognosia. 2018;28(5):582–588.
  • Mehmood T, Muanprasat C. Deoxyelephantopin and its isomer isodeoxyelephantopin: anti-cancer natural products with multiple modes of action. Molecules. 2022. 27(7) (Basel Switzerland): Mdpi:2086.
  • Cvetanova B, Li MY, Yang CC, et al. Sesquiterpene lactone deoxyelephantopin isolated from elephantopus scaber and its derivative DETD-35 suppress BRAF(V600E) mutant melanoma lung metastasis in mice. Int J Mol Sci. 2021;22(6):3226.
  • Ji D, Zhong X, Huang P, et al. Deoxyelephantopin induces apoptosis via oxidative stress and enhances gemcitabine sensitivity in vitro and in vivo through targeting the NF-κB signaling pathway in pancreatic cancer. Aging (Albany NY). 2020;12(11):11116–11138.
  • Chao WW, Cheng YW, Chen YR, et al. Phyto-sesquiterpene lactone deoxyelephantopin and cisplatin synergistically suppress lung metastasis of B16 melanoma in mice with reduced nephrotoxicity. Phytomedicine. 2019;56:194–206.
  • Feng JH, Nakagawa-Goto K, Lee KH, et al. A novel plant sesquiterpene lactone derivative, DETD-35, suppresses BRAFV600E mutant melanoma growth and overcomes acquired vemurafenib resistance in mice. Mol Cancer Ther. 2016;15(6):1163–1176.
  • Feng J-H, Nakagawa-Goto K, Lee K-H, et al. A novel plant sesquiterpene lactone derivative, DETD-35, suppresses BRAFV600E mutant melanoma growth and overcomes acquired vemurafenib resistance in mice. Mol Cancer Ther. 2016;15(6):1163–1176.
  • Nakagawa-Goto K, Chen JY, Cheng YT, et al. Novel sesquiterpene lactone analogues as potent anti-breast cancer agents. Mol Oncol. 2016;10(6):921–937.
  • Ascierto PA, Kirkwood JM, Grob -J-J, et al. The role of BRAF V600 mutation in melanoma. J Transl Med. 2012;10(1):85.
  • Becker MR, Siegelin MD, Rompel R, et al. COX-2 expression in malignant melanoma: a novel prognostic marker? Melanoma Res. 2009;19(1):8–16.
  • Konishi T, Shimada Y, Nagao T, et al. Antiproliferative sesquiterpene lactones from the roots of Inula helenium. Biol Pharm Bull. 2002;25(10):1370–1372.
  • Zhou B, Ye J, Yang N, et al. Metabolism and pharmacokinetics of alantolactone and isoalantolactone in rats: thiol conjugation as a potential metabolic pathway. J Chromatogr B. 2018;1072:370–378.
  • Braicu C, Buse M, Busuioc C, et al. A Comprehensive review on MAPK: a promising therapeutic target in cancer. Cancers (Basel). 2019;11(10):1618.
  • Yang C, Zhang L, Huang H, et al. Alantolactone inhibits proliferation, metastasis and promotes apoptosis of human osteosarcoma cells by suppressing Wnt/β-catenin and MAPKs signaling pathways. Genes Dis. 2022;9(2):466–478.
  • Wang Z, Hu Q, Chen H, et al. Inhibition of growth of esophageal cancer by alantolactone via Wnt/β- catenin signaling. Anticancer Agents Med Chem. 2021;21(18):2525–2535.
  • Ren Y, Lv C, Zhang J, et al. Alantolactone exhibits antiproliferative and apoptosis-promoting properties in colon cancer model via activation of the MAPK-JNK/c-Jun signaling pathway. Mol Cell Biochem. 2021;476(12):4387–4403.
  • Wu Q, Wu W, Fu B, et al. JNK signaling in cancer cell survival. Med Res Rev. 2019;39(6):2082–2104.
  • He W, Cao P, Xia Y, et al. Potent inhibition of gastric cancer cells by a natural compound via inhibiting TrxR1 activity and activating ROS-mediated p38 MAPK pathway. Free Radic Res. 2019;53(1):104–114.
  • Yin C, Dai X, Huang X, et al. Alantolactone promotes ER stress-mediated apoptosis by inhibition of TrxR1 in triple-negative breast cancer cell lines and in a mouse model. J Cell Mol Med. 2019;23(3):2194–2206.
  • Sun X, Xu H, Dai T, et al. Alantolactone inhibits cervical cancer progression by downregulating BMI1. Sci Rep. 2021;11(1):9251.
  • Xu R, Chen L, Yang WT. Aberrantly elevated Bmi1 promotes cervical cancer tumorigenicity and tumor sphere formation via enhanced transcriptional regulation of Sox2 genes. Oncol Rep. 2019;42(2):688–696.
  • Shi C, Lan W, Wang Z, et al. Alantolactone inhibits cell autophagy and promotes apoptosis via AP2M1 in acute lymphoblastic leukemia. Cancer Cell Int. 2020;20(1):442.
  • He R, Shi X, Zhou M, et al. Alantolactone induces apoptosis and improves chemosensitivity of pancreatic cancer cells by impairment of autophagy-lysosome pathway via targeting TFEB. Toxicol Appl Pharmacol. 2018;356:159–171.
  • Wang X, Zou S, Ren T, et al. Alantolactone suppresses the metastatic phenotype and induces the apoptosis of glioblastoma cells by targeting LIMK kinase activity and activating the cofilin/G‑actin signaling cascade. Int J Mol Med. 2021;47(5). DOI:10.3892/ijmm.2021.4901.
  • Shen Q, Kuang JX, Miao CX, et al. Alantolactone ameliorates cancer cachexia-associated muscle atrophy mainly by inhibiting the STAT3 signaling pathway. Phytomedicine. 2022;95:153858.
  • Sala D, Sacco A. Signal transducer and activator of transcription 3 signaling as a potential target to treat muscle wasting diseases. Curr Opin Clin Nutr Metab Care. 2016;19(3):171–176.
  • Cao P, Xia Y, He W, et al. Enhancement of oxaliplatin-induced colon cancer cell apoptosis by alantolactone, a natural product inducer of ROS. Int J Biol Sci. 2019;15(8):1676–1684.
  • Stojakowska A, Michalska K, Malarz J. Simultaneous quantification of eudesmanolides and thymol derivatives from tissues of Inula helenium and I. royleana by reversed-phase high-performance liquid chromatography. Phytochem Anal. 2006;17(3):157–161.
  • Yan YY, Zhang Q, Zhang B, et al. Active ingredients of Inula helenium L. exhibits similar anti-cancer effects as isoalantolactone in pancreatic cancer cells. Nat Prod Res. 2020;34(17):2539–2544.
  • Wen SW, Zhang YF, Li Y, et al. Isoalantolactone inhibits esophageal squamous cell carcinoma growth through downregulation of MicroRNA-21 and derepression of PDCD4. Dig Dis Sci. 2018;63(9):2285–2293.
  • Lu Z, Zhang G, Zhang Y, et al. Isoalantolactone induces apoptosis through reactive oxygen species-dependent upregulation of death receptor 5 in human esophageal cancer cells. Toxicol Appl Pharmacol. 2018;352:46–58.
  • Zhang C, Huang L, Xiong J, et al. Isoalantolactone inhibits pancreatic cancer proliferation by regulation of PI3K and Wnt signal pathway. PLoS One. 2021;16(3):e0247752.
  • Chen W, Li P, Liu Y, et al. Isoalantolactone induces apoptosis through ROS-mediated ER stress and inhibition of STAT3 in prostate cancer cells. J Exp Clin Cancer Res. 2018;37(1):309.
  • Xing JS, Wang X, Lan YL, et al. Isoalantolactone inhibits IKKβ kinase activity to interrupt the NF-κB/COX-2-mediated signaling cascade and induces apoptosis regulated by the mitochondrial translocation of cofilin in glioblastoma. Cancer Med. 2019;8(4):1655–1670.
  • Fathi N, Rashidi G, Khodadadi A, et al. STAT3 and apoptosis challenges in cancer. Int J Biol Macromol. 2018;117:993–1001.
  • Matsuhashi S, Manirujjaman M, Hamajima H, et al. Control mechanisms of the tumor suppressor PDCD4: expression and functions. Int J Mol Sci. 2019;20(9):2304.
  • Zhu B, Q-l Z, J-w H, et al. The traditional uses, phytochemistry, and pharmacology of atractylodes macrocephala koidz.: a review. J Ethnopharmacol. 2018;226:143–167.
  • Liu H, Zhu Y, Zhang T, et al. Anti-tumor effects of atractylenolide i isolated from atractylodes macrocephala in human lung Carcinoma cell lines. Molecules. 2013;18(11):13357–13368.
  • Li Y, Zhang Y, Wang Z, et al. Quantitative analysis of atractylenolide I in rat plasma by LC–MS/MS method and its application to pharmacokinetic study. J Pharm Biomed Anal. 2012;58:172–176.
  • Chen L, Wu H, Tu X, et al. Simultaneous determination of atractylenolide I and II in rat plasma by UPLC–MS/MS and its application to pharmacokinetic study after intravenous administration. Acta Chromatographica. 2019;31(1):8–11.
  • Xu H, Van der Jeught K, Zhou Z, et al. Atractylenolide I enhances responsiveness to immune checkpoint blockade therapy by activating tumor antigen presentation. J Clin Invest. 2021;131(10). DOI:10.1172/JCI146832.
  • Cornel AM, Mimpen IL, Nierkens S. MHC class i downregulation in cancer: underlying mechanisms and potential targets for cancer immunotherapy. Cancers (Basel). 2020;12(7):1760.
  • Wang K, Huang W, Sang X, et al. Atractylenolide I inhibits colorectal cancer cell proliferation by affecting metabolism and stemness via AKT/mTOR signaling. Phytomedicine. 2020;68:153191.
  • Li Y, Wang Y, Liu Z, et al. Atractylenolide I induces apoptosis and suppresses glycolysis by blocking the JAK2/STAT3 signaling pathway in colorectal cancer cells. Front Pharmacol. 2020;11:273.
  • Zhang WL, Li N, Shen Q, et al. Establishment of a mouse model of cancer cachexia with spleen deficiency syndrome and the effects of atractylenolide I. Acta Pharmacol Sin. 2020;41(2):237–248.
  • Xiao Q, Zheng F, Tang Q, et al. Repression of PDK1- and LncRNA HOTAIR-mediated EZH2 gene expression contributes to the enhancement of Atractylenolide 1 and erlotinib in the inhibition of human lung cancer cells. Cell Physiol Biochem. 2018;49(4):1615–1632.
  • Nibret E, Youns M, Krauth‐Siegel RL, et al. Biological activities of xanthatin from Xanthium strumarium leaves. Phytother Res. 2011;25(12):1883–1890.
  • Yan C, Li H, Wu Y, et al. Determination of xanthatin by ultra high performance liquid chromatography coupled with triple quadrupole mass spectrometry: application to pharmacokinetic study of xanthatin in rat plasma. J Chromatogr B. 2014;947-948:57–61.
  • Yang J, Li Y, Zong C, et al. Xanthatin selectively targets retinoblastoma by Inhibiting the PLK1-mediated cell cycle. Invest Ophthalmol Vis Sci. 2021;62(15):11.
  • Ma YY, Di ZM, Cao Q, et al. Xanthatin induces glioma cell apoptosis and inhibits tumor growth via activating endoplasmic reticulum stress-dependent CHOP pathway. Acta Pharmacol Sin. 2020;41(3):404–414.
  • Bi SX, Li XH, Wei CS, et al. The antitumour growth and antiangiogenesis effects of xanthatin in murine glioma dynamically evaluated by dynamic contrast-enhanced magnetic resonance imaging. Phytother Res. 2019;33(1):149–158.
  • Piloto-Ferrer J, Sánchez-Lamar Á, Francisco M, et al. Xanthium strumarium´s xanthatins induces mitotic arrest and apoptosis in CT26WT colon carcinoma cells. Phytomedicine. 2019;57:236–244.
  • Landis-Piwowar KR, Iyer NR. Cancer chemoprevention: current state of the art. Cancer Growth Metastasis. 2014;7:19–25.
  • Ma L, Zhang M, Zhao R, et al. Plant natural products: promising resources for cancer chemoprevention. Molecules. 2021;26(4):933.
  • Wang W, Sun Y, Li X, et al. Dihydroartemisinin prevents distant metastasis of laryngeal carcinoma by inactivating STAT3 in cancer stem cells. Med Sci Monit. 2020;26:e922348.
  • Khan M, Li T, Ahmad Khan MK, et al. Alantolactone induces apoptosis in HepG2 cells through GSH depletion, inhibition of STAT3 activation, and mitochondrial dysfunction. Biomed Res Int. 2013;2013:719858.
  • Butturini E, Cavalieri E, Carcereri de Prati A, et al. Two naturally occurring terpenes, dehydrocostuslactone and costunolide, decrease intracellular GSH content and inhibit STAT3 activation. PLoS One. 2011;6(5):e20174.
  • Gairola K, Gururani S, Bahuguna A, et al. Natural products targeting cancer stem cells: implications for cancer chemoprevention and therapeutics. J Food Biochem. 2021;45(7):e13772.
  • W-k Y, Z-y X, Yuan L, et al. Targeting β-catenin signaling by natural products for cancer prevention and therapy. Front Pharmacol. 2020;11:984.
  • Sarkar FH, Li Y. NF-kappaB: a potential target for cancer chemoprevention and therapy. Front Biosci. 2008;13(13):2950–2959.
  • Dong GZ, Shim AR, Hyeon JS, et al. Inhibition of Wnt/β-catenin pathway by dehydrocostus lactone and costunolide in colon cancer cells. Phytother Res. 2015;29(5):680–686.
  • Su T, Li F, Guan J, et al. Artemisinin and its derivatives prevent Helicobacter pylori-induced gastric carcinogenesis via inhibition of NF-κB signaling. Phytomedicine. 2019;63:152968.
  • Ghantous A, Saikali M, Rau T, et al. Inhibition of Tumor promotion by parthenolide: epigenetic modulation of p21. Cancer Prev Res. 2012;5(11):1298–1309.
  • Khan M, Yi F, Rasul A, et al. Alantolactone induces apoptosis in glioblastoma cells via GSH depletion, ROS generation, and mitochondrial dysfunction. IUBMB Life. 2012;64(9):783–794.
  • Liu J, Yang Z, Kong Y, et al. Antitumor activity of alantolactone in lung cancer cell lines NCI-H1299 and Anip973. J Food Biochem. 2019;43(9):e12972.
  • Huang CC, Lo CP, Chiu CY, et al. Deoxyelephantopin, a novel multifunctional agent, suppresses mammary tumour growth and lung metastasis and doubles survival time in mice. Br J Pharmacol. 2010;159(4):856–871.
  • Huang Y-W, Kuo C-T, Stoner K, et al. An overview of epigenetics and chemoprevention. FEBS Lett. 2011;585(13):2129–2136.
  • Guo YJ, Pan WW, Liu SB, et al. ERK/MAPK signalling pathway and tumorigenesis (review). Exp Ther Med. 2020;19(3):1997–2007.
  • Adler V, Polotskaya A, Kim J, et al. Dose rate and mode of exposure are key factors in JNK activation by UV irradiation. Carcinogenesis. 1996;17(9):2073–2076.
  • Chen W, Bowden GT. Role of p38 mitogen-activated protein kinases in ultraviolet-B irradiation-induced activator protein 1 activation in human keratinocytes. Mol Carcinog. 2000;28(4):196–202.
  • Matthews CP, Colburn NH, Young MR. AP-1 a target for cancer prevention. Curr Cancer Drug Targets. 2007;7(4):317–324.
  • Won YK, Ong CN, Shi X, et al. Chemopreventive activity of parthenolide against UVB-induced skin cancer and its mechanisms. Carcinogenesis. 2004;25(8):1449–1458.
  • Talalay P. Chemoprotection against cancer by induction of phase 2 enzymes. Biofactors. 2000;12(1–4):5–11.
  • Seo JY, Lim SS, Kim JR, et al. Nrf2-mediated induction of detoxifying enzymes by alantolactone present in Inula helenium. Phytother Res. 2008;22(11):1500–1505.
  • Seo JY, Park J, Kim HJ, et al. Isoalantolactone from Inula helenium caused Nrf2-mediated induction of detoxifying enzymes. J Med Food. 2009;12(5):1038–1045.
  • Xu XC. COX-2 inhibitors in cancer treatment and prevention, a recent development. Anticancer Drugs. 2002;13(2):127–137.
  • Harris RE, Beebe J, Alshafie GA. Reduction in cancer risk by selective and nonselective cyclooxygenase-2 (COX-2) inhibitors. J Exp Pharmacol. 2012;4:91–96.
  • Lim JW, Kim H, Kim KH. Nuclear factor-kappaB regulates cyclooxygenase-2 expression and cell proliferation in human gastric cancer cells. Lab Invest. 2001;81(3):349–360.
  • Kim SH, Oh JM, No JH, et al. Involvement of NF-kappaB and AP-1 in COX-2 upregulation by human papillomavirus 16 E5 oncoprotein. Carcinogenesis. 2009;30(5):753–757.
  • Todoric J, Antonucci L, Karin M. Targeting Inflammation in Cancer Prevention and Therapy. Cancer Prev Res (Phila). 2016;9(12):895–905.
  • Wang CZ, Wan C, Luo Y, et al. Effects of dihydroartemisinin, a metabolite of artemisinin, on colon cancer chemoprevention and adaptive immune regulation. Mol Biol Rep. 2022;49(4):2695–2709.
  • Noonan DM, Benelli R, Albini A. Angiogenesis and Cancer Prevention: a Vision. Berlin Heidelberg: Springer. 2007;219–224.
  • Dell’Eva R, Pfeffer U, Vené R, et al. Inhibition of angiogenesis in vivo and growth of Kaposi’s sarcoma xenograft tumors by the anti-malarial artesunate. Biochem Pharmacol. 2004;68(12):2359–2366.
  • Lai H, Singh NP. Oral artemisinin prevents and delays the development of 7,12-dimethylbenz[a]anthracene (DMBA)-induced breast cancer in the rat. Cancer Lett. 2006;231(1):43–48.
  • Mehta RG. Experimental basis for the prevention of breast cancer. Eur J Cancer. 2000;36(10):1275–1282.
  • Disbrow GL, Baege AC, Kierpiec KA, et al. Dihydroartemisinin is cytotoxic to papillomavirus-expressing epithelial cells in vitro and in vivo. Cancer Res. 2005;65(23):10854–10861.
  • Mori H, Kawamori T, Tanaka T, et al. Chemopreventive effect of costunolide, a constituent of oriental medicine, on azoxymethane-induced intestinal carcinogenesis in rats. Cancer Lett. 1994;83(1–2):171–175.
  • Nakatani K, Maehama T, Nishio M, et al. Alantolactone is a natural product that potently inhibits YAP1/TAZ through promotion of reactive oxygen species accumulation. Cancer Sci. 2021;112(10):4303–4316.
  • Panossian LA, Garga NI, Pelletier D. Toxic brainstem encephalopathy after artemisinin treatment for breast cancer. Ann Neurol. 2005;58(5):812–813.
  • König M, von Hagens C, Hoth S, et al. Investigation of ototoxicity of artesunate as add-on therapy in patients with metastatic or locally advanced breast cancer: new audiological results from a prospective, open, uncontrolled, monocentric phase I study. Cancer Chemother Pharmacol. 2016;77(2):413–427.
  • von Hagens C, Walter-Sack I, Goeckenjan M, et al. Prospective open uncontrolled phase I study to define a well-tolerated dose of oral artesunate as add-on therapy in patients with metastatic breast cancer (ARTIC M33/2). Breast Cancer Res Treat. 2017;164(2):359–369.
  • von Hagens C, Walter-Sack I, Goeckenjan M, et al. Long-term add-on therapy (compassionate use) with oral artesunate in patients with metastatic breast cancer after participating in a phase I study (ARTIC M33/2). Phytomedicine. 2019;54:140–148.
  • Li Q, Hickman M. Toxicokinetic and toxicodynamic (TK/TD) evaluation to determine and predict the neurotoxicity of artemisinins. Toxicology. 2011;279(1–3):1–9.
  • Singh N, Verma KB. Case report of a laryngeal squamous cell carcinoma treated with artesunate. Arch Oncol. 2002;10(4):279–280.
  • Berger TG, Dieckmann D, Efferth T, et al. Artesunate in the treatment of metastatic uveal melanoma-first experiences. Oncol Rep. 2005;14(6):1599–1603.
  • Zhang ZY, Yu SQ, Miao LY, et al. Artesunate combined with vinorelbine plus cisplatin in treatment of advanced non-small cell lung cancer: a randomized controlled trial. Zhong Xi Yi Jie He Xue Bao. 2008;6(2):134–138.
  • Krishna S, Ganapathi S, Ster IC, et al. A randomised, double blind, placebo-controlled pilot study of oral artesunate therapy for colorectal cancer. EBioMedicine. 2015;2(1):82–90.
  • Deeken JF, Wang H, Hartley M, et al. A phase I study of intravenous artesunate in patients with advanced solid tumor malignancies. Cancer Chemother Pharmacol. 2018;81(3):587–596.
  • Trimble CL, Levinson K, Maldonado L, et al. A first-in-human proof-of-concept trial of intravaginal artesunate to treat cervical intraepithelial neoplasia 2/3 (CIN2/3). Gynecol Oncol. 2020;157(1):188–194.
  • Jansen FH, Adoubi I, CK J, et al. First study of oral Artenimol-R in advanced cervical cancer: clinical benefit, tolerability and tumor markers. Anticancer Res. 2011;31(12):4417–4422.
  • Singh NP, Panwar VK. Case report of a pituitary macroadenoma treated with artemether. Integr Cancer Ther. 2006;5(4):391–394.
  • Lickliter JD, Jennens R, Lemech CR, et al. Phase 1 dose-escalation study of ACT001 in patients with recurrent glioblastoma and other advanced solid tumors. J clin oncol. 2018;36(15_suppl):e14048–e.
  • Lickliter JD, Jennens R, Lemech CR, et al. Phase 1 dose-escalation study of ACT001 in patients with recurrent glioblastoma and other advanced solid tumors. J clin oncol. 2021;39(15_suppl):2037.
  • Shi Y, Bai G, Wang P, et al. A phase I dose-escalation study to evaluate pharmacokinetics, safety and tolerability of ACT001 in patients with advanced glioma. J clin oncol. 2021;39(15_suppl):2044.
  • Mahalingam D, Wilding G, Denmeade S, et al. Mipsagargin, a novel thapsigargin-based PSMA-activated prodrug: results of a first-in-man phase I clinical trial in patients with refractory, advanced or metastatic solid tumours. Br J Cancer. 2016;114(9):986–994.
  • Isaacs JT, Brennen WN, Christensen SB, et al. Mipsagargin: the beginning—not the end—of thapsigargin prodrug-based cancer therapeutics. Molecules. 2021;26(24):7469.
  • Christensen SB, Skytte DM, Denmeade SR, et al. A trojan horse in drug development: targeting of thapsigargins towards prostate cancer cells. Anticancer Agents Med Chem. 2009;9(3):276–294.
  • Mahalingam D, Peguero J, Cen P, et al. A phase II, multicenter, single-arm study of mipsagargin (G-202) as a second-line therapy following sorafenib for adult patients with progressive advanced hepatocellular carcinoma. Cancers (Basel). 2019;11(6):833.
  • Adekenov SM. Chemical modification of arglabin and biological activity of its new derivatives. Fitoterapia. 2016;110:196–205.
  • Adekenov S, Zhumakayeva A, Perminov V, et al. Neoadjuvant therapy with drug arglabin for breast cancer with expression of H-Ras oncoproteins. Asian Pac J Cancer Prev. 2020;21(11):3441–3447.
  • Fomenko Y, Sirota V, Bitz U, et al. Neoadjuvant chemotherapy for locally advanced breast cancer. Ann Oncol. 2016;27:ix30‐.
  • Zhumakayeva A, Rakhimov K, Sirota V, et al. Long-term results of combination therapy for locally advanced breast cancer. Georgian Med News. 2018;282:30–35.
  • Curry EA, Murry DJ, Yoder C, et al. Phase I dose escalation trial of feverfew with standardized doses of parthenolide in patients with cancer. Invest New Drugs. 2004;22(3):299–305.
  • Siveen KS, Uddin S, Mohammad RM. Targeting acute myeloid leukemia stem cell signaling by natural products. Mol Cancer. 2017;16(1):13.
  • Liu Y, Jia Z, Dong L, et al. A randomized pilot study of atractylenolide I on gastric cancer cachexia patients. Evid Based Complement Alternat Med. 2008;5(3):337–344.
  • Sülsen V, Martino V. Sesquiterpene lactones: advances in their chemistry and biological aspects 2018.
  • Laurella LC, Mirakian NT, Garcia MN, et al. Sesquiterpene lactones as promising candidates for cancer therapy: focus on pancreatic cancer. Molecules. 2022;27(11):3492.
  • Easa A, Rizk A. Constituents of centaurea species. 1992.
  • Hou Y, Sun B, Liu W, et al. Targeting of glioma stem-like cells with a parthenolide derivative ACT001 through inhibition of AEBP1/PI3K/AKT signaling. Theranostics. 2021;11(2):555–566.
  • Ding Y, Gao H, Zhang Y, et al. Alantolactone selectively ablates acute myeloid leukemia stem and progenitor cells. J Hematol Oncol. 2016;9(1):93.
  • Diamanti P, Cox CV, Moppett JP, et al. Parthenolide eliminates leukemia-initiating cell populations and improves survival in xenografts of childhood acute lymphoblastic leukemia. Blood. 2013;121(8):1384–1393.
  • Torsvik A, Stieber D, Enger P, et al. U-251 revisited: genetic drift and phenotypic consequences of long-term cultures of glioblastoma cells. Cancer Med. 2014;3(4):812–824.
  • Bleijs M, van de Wetering M, Clevers H, et al. Xenograft and organoid model systems in cancer research. Embo J. 2019;38(15):e101654.
  • Jin Q, Yan S, Hu H, et al. Enhanced chemodynamic therapy and chemotherapy via delivery of a dual threat artept and iodo-click reaction mediated glutathione consumption. Small Methods. 2021;5(12):e2101047.
  • Fan H, Demirci U, Chen P. Emerging organoid models: leaping forward in cancer research. J Hematol Oncol. 2019;12(1):142.
  • Lim J, Ching H, Yoon JK, et al. Microvascularized tumor organoids-on-chips: advancing preclinical drug screening with pathophysiological relevance. Nano Converg. 2021;8(1):12.
  • Li QG, Peggins JO, Fleckenstein LL, et al. The pharmacokinetics and bioavailability of dihydroartemisinin, arteether, artemether, artesunic acid and artelinic acid in rats. J Pharm Pharmacol. 1998;50(2):173–182.
  • Jun X, Fu P, Lei Y, et al. Pharmacological effects of medicinal components of atractylodes lancea (Thunb.) DC. Chin Med. 2018;13(1):59.
  • Cui Z, Wang H, Li S, et al. Dihydroartemisinin enhances the inhibitory effect of sorafenib on HepG2 cells by inducing ferroptosis and inhibiting energy metabolism. J Pharmacol Sci. 2022;148(1):73–85.
  • Xi X, Liu N, Wang Q, et al. ACT001, a novel PAI-1 inhibitor, exerts synergistic effects in combination with cisplatin by inhibiting PI3K/AKT pathway in glioma. Cell Death Dis. 2019;10(10):757.
  • Zheng H, Yang L, Kang Y, et al. Alantolactone sensitizes human pancreatic cancer cells to EGFR inhibitors through the inhibition of STAT3 signaling. Mol Carcinog. 2019;58(4):565–576.
  • Sztiller-Sikorska M, Czyz M. Parthenolide as cooperating agent for anti-cancer treatment of various malignancies. Pharmaceuticals (Basel). 2020;13(8):194.
  • Ma Z, Woon CY, Liu CG, et al. Repurposing artemisinin and its derivatives as anticancer drugs: a chance or challenge? Front Pharmacol. 2021;12:828856.
  • Li J, Feng W, Lu H, et al. Artemisinin inhibits breast cancer-induced osteolysis by inhibiting osteoclast formation and breast cancer cell proliferation. J Cell Physiol. 2019;234(8):12663–12675.
  • Tsui KH, Wu MY, Lin LT, et al. Disruption of mitochondrial homeostasis with artemisinin unravels anti-angiogenesis effects via auto-paracrine mechanisms. Theranostics. 2019;9(22):6631–6645.
  • Xiao R, Ding C, Zhu H, et al. Suppression of asparagine synthetase enhances the antitumor potency of ART and artemalogue SOMCL-14-221 in non-small cell lung cancer. Cancer Lett. 2020;475:22–33.
  • Xu X, Huang L, Zhang Z, et al. Targeting non-oncogene ROS pathway by alantolactone in B cell acute lymphoblastic leukemia cells. Life Sci. 2019;227:153–165.
  • Talib WH, Al Kury LT. Parthenolide inhibits tumor-promoting effects of nicotine in lung cancer by inducing P53 - dependent apoptosis and inhibiting VEGF expression. Biomed Pharmacother. 2018;107:1488–1495.
  • Yip-Schneider MT, Wu H, Njoku V, et al. Effect of celecoxib and the novel anti-cancer agent, dimethylamino-parthenolide, in a developmental model of pancreatic cancer. Pancreas. 2008;37(3):e45–53.
  • Ericsson T, Blank A, von Hagens C, et al. Population pharmacokinetics of artesunate and dihydroartemisinin during long-term oral administration of artesunate to patients with metastatic breast cancer. Eur J Clin Pharmacol. 2014;70(12):1453–1463.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.