185
Views
0
CrossRef citations to date
0
Altmetric
Review

Approaches for the discovery of drugs that target K Na 1.1 channels in KCNT1-associated epilepsy

&
Pages 1313-1328 | Received 17 Jan 2022, Accepted 17 Nov 2022, Published online: 24 Nov 2022

References

  • Łukawski K, Czuczwar SJ. Developing precision treatments for epilepsy using patient and animal models. Expert Rev Neurother. 2021;21:1241–1250.
  • Thijs RD, Surges R, O’Brien TJ, et al. Epilepsy in adults. Lancet. 2019;393:689–701.
  • Longo A, Houot M, Herlin B, et al. Distinctive neuropsychological profiles of lateral temporal lobe epilepsy. Epilepsy Behav. 2021;125:108411.
  • Perucca P, Bahlo M, Berkovic SF. The genetics of epilepsy. Annu Rev Genomics Hum Genet. 2020;21:205–230.
  • Servilha-Menezes G, Garcia-Cairasco N. A complex systems view on the current hypotheses of epilepsy pharmacoresistance. Epilepsia Open. 2022;7(Suppl. 1):S8–S22.
  • Perucca P, Perucca E. Identifying mutations in epilepsy genes: impact on treatment selection. Epilepsy Res. 2019;152:18–30.
  • Cole BA, Clapcote SJ, Muench SP, et al. Targeting K(Na)1.1 channels in KCNT1-associated epilepsy. Trends Pharmacol Sci. 2021;42:700–713.
  • Yao JA, Trybulski EJ, Tseng GN. Quinidine preferentially blocks the slow delayed rectifier potassium channel in the rested state. J Pharmacol Exp Ther. 1996;279:856–864.
  • Milligan CJ, Pachernegg S. Utilising automated electrophysiological platforms in epilepsy research. Methods Mol Biol. 2021;2188:133–155.
  • Barcia G, Fleming MR, Deligniere A, et al. De novo gain-of-function KCNT1 channel mutations cause malignant migrating partial seizures of infancy. Nat Genet. 2012;44:1255–1259.
  • Milligan CJ, Li M, Gazina EV, et al. KCNT1 gain of function in 2 epilepsy phenotypes is reversed by quinidine. Ann Neurol. 2014;75:581–590.
  • Kim GE, Kronengold J, Barcia G, et al. Human slack potassium channel mutations increase positive cooperativity between individual channels. Cell Rep. 2014;9:1661–1672.
  • Quraishi IH, Stern S, Mangan KP, et al. An epilepsy-associated KCNT1 mutation enhances excitability of human iPSC-derived neurons by increasing Slack KNa currents. J Neurosci. 2019;39:7438–7449.
  • McTague A, Nair U, Malhotra S, et al. Clinical and molecular characterization of KCNT1- related severe early-onset epilepsy. Neurology. 2018;90:E55–66.
  • Quraishi IH, Mercier MR, McClure H, et al. Impaired motor skill learning and altered seizure susceptibility in mice with loss or gain of function of the Kcnt1 gene encoding slack (KNa1.1) Na+-activated K+ channels. Sci Rep. 2020;10:3213.
  • Evely KM, Pryce KD, Bhattacharjee A. The Phe932Ile mutation In KCNT1 channels associated with severe epilepsy, delayed myelination and leukoencephalopathy produces a loss- of-function channel phenotype. Neuroscience. 2017;351:65–70.
  • Tang QY, Zhang FF, Xu J, et al. Epilepsy-related slack channel mutants lead to channel over-activity by two different mechanisms. Cell Rep. 2016;14:129–139.
  • Mikati MA, Jiang YH, Carboni M, et al. Quinidine in the treatment of KCNT1- positive epilepsies. Ann Neurol. 2015;78:995–999.
  • Rizzo F, Ambrosino P, Guacci A, et al. Characterization of two de novo KCNT1 mutations in children with malignant migrating partial seizures in infancy. Mol Cell Neurosci. 2016;72:54–63.
  • Cole BA, Johnson RM, Dejakaisaya H, et al. Structure-based identification and characterization of inhibitors of the epilepsy-associated K(Na)1.1 (KCNT1) potassium channel. iScience. 2020;23:101100.
  • Villa C, Combi R. Potassium channels and human epileptic phenotypes: an updated overview. Front Cell Neurosci. 2016;10:81.
  • Miceli F, Guerrini R, Nappi M, et al. Distinct epilepsy phenotypes and response to drugs in KCNA1 gain- and loss-of function variants. Epilepsia. 2022;63:e7–e14.
  • Møller RS, Heron SE, Larsen LHG, et al. Mutations in KCNT1 cause a spectrum of focal epilepsies. Epilepsia. 2015;56:e114–e20.
  • Johannesen KM, Liu Y, Koko M, et al. Genotype-phenotype correlations in SCN8A-related disorders reveal prognostic and therapeutic implications. Brain. 2022;145:2991–3009.
  • Shore AN, Colombo S, Tobin WF, et al. Reduced GABAergic neuron excitability, altered synaptic connectivity, and seizures in a KCNT1 gain-of-function mouse model of childhood epilepsy. Cell Rep. 2020;33:108303.
  • Fleming MR, Brown MR, Kronengold J, et al. Stimulation of slack K+ channels alters mass at the plasma membrane by triggering dissociation of a phosphatase-regulatory complex. Cell Rep. 2016;16:2281–2288.
  • Kuchenbuch M, Nabbout R, Yochum M, et al., In silico model reveals the key role of GABA in KCNT1-epilepsy in infancy with migrating focal seizures. Epilepsia. 2021;62(3): 683–697.
  • Bonardi CM, Heyne HO, Fiannacca M, et al. KCNT1-related epilepsies and epileptic encephalopathies: phenotypic and mutational spectrum. Brain. 2021;144:3635–3650.
  • Gertler T, Bearden D, Bhattacharjee A, et al. KCNT1-related epilepsy. In: Adam MP, Ardinger HH, Pagon RA, editors. GeneReviews®. Seattle: University of Washington; 2018:1993–2021.
  • Cornet MC, Cilio MR. Genetics of neonatal-onset epilepsies. Handb Clin Neurol. 2019;162:415–433.
  • Fukuoka M, Kuki I, Kawawaki H, et al. Quinidine therapy for West syndrome with KCNTI mutation: a case report. Brain Dev. 2017;39(1):80–83.
  • Jia Y, Lin Y, Li J, et al. Quinidine therapy for Lennox-Gastaut Syndrome with KCNT1 mutation. A case report and literature review. Front Neurol. 2019;10:64.
  • Shi X, Chen J, Lu Q, et al. Whole-exome sequencing revealing de novo heterozygous variant of KCNT1 in a twin discordant for benign epilepsy with centrotemporal spikes. J Paediatr Child Heal. 2018;54:709–710.
  • Tsang MH, Leung GK, Ho AC, et al. Exome sequencing identifies molecular diagnosis in children with drug-resistant epilepsy. Epilepsia Open. 2018;4:63–72.
  • Magleby KL. Stimulation of slack K+ channels alters mass at the plasma membrane by triggering dissociation of a phosphatase-regulatory complex. Nature. 2017;541(7635):3635–3650.
  • Matthies D, Bae C, Toombes GE, et al. Single-particle cryo-EM structure of a voltage-activated potassium channel in lipid nanodiscs. Elife. 2018;7:e37558.
  • Mackie AR, Byron KL. Cardiovascular KCNQ (Kv7) potassium channels: physiological regulators and new targets for therapeutic intervention. Mol Pharmacol. 2008;74:1171–1179.
  • Hong L, Pathak MM, Kim IH, et al. Voltage-sensing domain of voltage-gated proton channel Hv1 shares mechanism of block with pore domains. Neuron. 2013;77:274–287.
  • Cuello LG, Jogini V, Cortes DM, et al. Structural mechanism of C-type inactivation in K(+) channels. Nature. 2010;466:203–208.
  • Hoshi T, Zagotta WN, Aldrich RW. Two types of inactivation in Shaker K+ channels: effects of alterations in the carboxy-terminal region. Neuron. 1991;7:547–556.
  • Hoshi T, Armstrong CM. C-type inactivation of voltage-gated K+ channels: pore constriction or dilation? J Gen Physiol. 2013;141:151–160.
  • Smith RS, Walsh CA. Ion channel functions in early brain development. Trends Neurosci. 2020;43:103–114.
  • Ehinger R, Kuret A, Matt L, et al. Slack K+ channels attenuate NMDA-induced excitotoxic brain damage and neuronal cell death. FASEB J. 2021;35:e21568.
  • Liu X, Stan Leung L. Sodium-activated potassium conductance participates in the depolarizing afterpotential following a single action potential in rat hippocampal CA1 pyramidal cells. Brain Res. 2004;1023:185–192.
  • Franceschetti S, Lavazza T, Curia G, et al. Na+-activated K+ current contributes to postexcitatory hyperpolarization in neocortical intrinsically bursting neurons. J Neurophysiol. 2003;89:2101–2111.
  • Yang B, Desai R, Kaczmarek LK. Slack and Slick KNa channels regulate the accuracy of timing of auditory neurons. J Neurosci. 2007;27:2617–2627.
  • Rizzi S, Knaus HG, Schwarzer C. Differential distribution of the sodium-activated potassium channels slick and slack in mouse brain. J Comp Neurol. 2016;524:2093–2116.
  • Bausch AE, Dieter R, Nann Y, et al. The sodium-activated potassium channel Slack is required for optimal cognitive flexibility in mice. Learn Mem. 2015;22:323–335.
  • Lu R, Bausch AE, Kallenborn-Gerhardt W, et al. Slack channels expressed in sensory neurons control neuropathic pain in mice. J Neurosci. 2015;35:1125–1135.
  • Huang F, Wang X, Ostertag EM, et al. TMEM16C facilitates Na(+)-activated K+ currents in rat sensory neurons and regulates pain processing. Nat Neurosci. 2013;16:1284–1290.
  • Evely KM, Pryce KD, Bausch AE, et al. Slack KNa channels influence dorsal horn synapses and nociceptive behavior. Mol Pain. 2017;13:1744806917714342.
  • Reijntjes DOJ, Lee JH, Park S, et al. Sodium-activated potassium channels shape peripheral auditory function and activity of the primary auditory neurons in mice. Sci Rep. 2019;9:2573.
  • Hite RK, Yuan P, Li Z, et al. Cryo-electron microscopy structure of the Slo2.2 Na(+)-activated K(+) channel. Nature. 2015;527:198–203.
  • Bartolini E, Campostrini R, Kiferle L, et al. Epilepsy and brain channelopathies from infancy to adulthood. Neurol Sci. 2020;41:749–761.
  • Ali SR, Malone TJ, Zhang Y, et al. Phactr1 regulates Slack (KCNT1) channels via protein phosphatase 1 (PP1). FASEB J. 2020;34:1591–1601.
  • Kaczmarek LK. Slack, slick and sodium-activated potassium channels. ISRN Neurosci. 2013;2013:354262.
  • Wray D. Structure and function of ion channels. Eur Biophys J. 2009;38:271–272.
  • Hill CL, Stephens GJ. An introduction to patch clamp recording. Methods Mol Biol. 2021;2188:1–19.
  • Bébarová M. Advances in patch clamp technique: towards higher quality and quantity. Gen Physiol Biophys. 2012;31:131–140.
  • Martin HC, Kim GE, Pagnamenta AT, et al. Clinical whole-genome sequencing in severe early-onset epilepsy reveals new genes and improves molecular diagnosis. Hum Mol Genet. 2014;23:3200–3211.
  • Martinac B. Single-molecule FRET studies of ion channels. Prog Biophys Mol Biol. 2017;130(Pt B):192–197.
  • Wang S, Lee SJ, Maksaev G, et al. Potassium channel selectivity filter dynamics revealed by single-molecule FRET. Nat Chem Biol. 2019;15:377–383.
  • Wang S, Brettmann JB, Nichols CG. Studying structural dynamics of potassium channels by single-molecule FRET. Methods Mol Biol. 2018;1684:163–180.
  • Yamamura H, Suzuki Y, Imaizumi Y. New light on ion channel imaging by total internal reflection fluorescence (TIRF) microscopy. J Pharmacol Sci. 2015;128:1–7.
  • Tedeschi G, Scipioni L, Papanikolaou M, et al. Fluorescence Fluctuation Spectroscopy enables quantification of potassium channel subunit dynamics and stoichiometry. Sci Rep. 2021;11:1071.
  • Hite RK, MacKinnon R. Structural titration of Slo2.2, a Na +-Dependent K+ Channel. Cell. 2017;168:390–399.
  • Schmidpeter PAM, Nimigean CM. Correlating ion channel structure and function. Methods Enzymol. 2021;652:3–30.
  • Normand EA, Alaimo JT, Van den Veyver IB. Exome and genome sequencing in reproductive medicine. Fertil Steril. 2018;109:213–220.
  • Jelin AC, Vora N. Whole exome sequencing: applications in prenatal genetics. Obstet Gynecol Clin North Am. 2018;45:69–81.
  • Petrovski S, Aggarwal V, Giordano JL, et al. Whole-exome sequencing in the evaluation of fetal structural anomalies: a prospective cohort study. Lancet. 2019;393:758–767.
  • Wapner RJ, Martin CL, Levy B, et al. Chromosomal microarray versus karyotyping for prenatal diagnosis. N Engl J Med. 2012;367:2175–2184.
  • Rabbani B, Mahdieh N, Hosomichi K, et al. Next-generation sequencing: impact of exome sequencing in characterizing Mendelian disorders. J Hum Genet. 2012;57:621–632.
  • Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282:1145–1147.
  • Hanna J, Wernig M, Markoulaki S, et al. Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science. 2007;318:1920–1923.
  • Ohnuki M, Takahashi K. Present and future challenges of induced pluripotent stem cells. Philos Trans R Soc Lond B Biol Sci. 2015;370:20140367.
  • Poisson K, Wong M, Lee C, et al. Response to cannabidiol in epilepsy of infancy with migrating focal seizures associated with KCNT1 mutations: an open-label, prospective, interventional study. Eur J Paediatr Neurol. 2020;25:77–81.
  • Devinsky O, Cross JH, Wright S. Trial of cannabidiol for drug-resistant seizures in the Dravet syndrome. N Engl J Med. 2017;377:699–700.
  • Devinsky O, Marsh E, Friedman D, et al. Cannabidiol in patients with treatment‐resistant epilepsy: an open‐label interventional trial. Lancet Neurol. 2016;15:270–278.
  • Szaflarski JP, Bebin EM, Comi AM, et al. Long-term safety and treatment effects of cannabidiol in children and adults with treatment-resistant epilepsies: Expanded access program results. Epilepsia. 2018;59:1540–1548.
  • Millar SA, Stone NL, Bellman ZD, et al. A systematic review of cannabidiol dosing in clinical populations. Br J Clin Pharmacol. 2019;85:1888–1900.
  • Saade D, Joshi C. Pure cannabidiol in the treatment of malignant migrating partial seizures in infancy: a case report. Pediatr Neurol. 2015;52:544–547.
  • Devinsky O, Patel AD, Cross JH, et al. Effect of cannabidiol on drop seizures in the Lennox-Gastaut syndrome. N Engl J Med. 2018;378:1888–1897.
  • Thiele EA, Marsh ED, French JA, et al. Cannabidiol in patients with seizures associated with Lennox-Gastaut syndrome (GWPCARE4): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet. 2018;391:1085–1096.
  • Abdelnour E, Gallentine W, McDonald M, et al. Does age affect response to quinidine in patients with KCNT1 mutations? Report of three new cases and review of the literature. Seizure. 2018;55:1–3.
  • Amin MR, Ali DW. Pharmacology of medical cannabis. Adv Exp Med Biol. 2019;1162:151–165.
  • Freeman AM, Petrilli K, Lees R, et al. How does cannabidiol (CBD) influence the acute effects of delta-9-tetrahydrocannabinol (THC) in humans? A systematic review. Neurosci Biobehav Rev. 2019;107:696–712.
  • Hermann D, Schneider M. Potential protective effects of cannabidiol on neuroanatomical alterations in cannabis users and psychosis: a critical review. Curr Pharm Des. 2012;18:4897–4905.
  • Campos AC, Fogaça MV, Sonego AB, et al. Cannabidiol, neuroprotection and neuropsychiatric disorders. Pharmacol Res. 2016;112:119–127.
  • Campos AC, Moreira FA, Gomes FV, et al. Multiple mechanisms involved in the large-spectrum therapeutic potential of cannabidiol in psychiatric disorders. Philos Trans R Soc Lond B Biol Sci. 2012;367:3364–3378.
  • Calapai F, Cardia L, Sorbara EE, et al. Cannabinoids, blood-brain barrier, and brain disposition. Pharmaceutics. 2020;12:265.
  • Kozela E, Lev N, Kaushansky, et al. Cannabidiol inhibits pathogenic T cells, decreases spinal microglial activation and ameliorates multiple sclerosis-like disease in C57BL/6 mice. Br J Pharmacol. 2011;163:1507–1519.
  • Cohen K, Weizman A, Weinstein A. Modulatory effects of cannabinoids on brain neurotransmission. Eur J Neurosci. 2019;50:2322–2345.
  • Madaan P, Jauhari P, Gupta A, et al. A quinidine non responsive novel KCNT1 mutation in an Indian infant with epilepsy of infancy with migrating focal seizures. Brain Dev. 2018;40:229–232.
  • Li H, Liu Y, Tian D, et al. Overview of cannabidiol (CBD) and its analogues: structures, biological activities, and neuroprotective mechanisms in epilepsy and Alzheimer’s disease. Eur J Med Chem. 2020;192:11216.
  • Massi A, Vaccani S, Bianchessi B, et al. The non-psychoactive cannabidiol triggers caspase activation and oxidative stress in human glioma cells. Cell Mol Life Sci. 2006;63:2057–2066.
  • Sales AJ, Fogaça MV, Sartim AG, et al. Cannabidiol induces rapid and sustained antidepressant-like effects through increased BDNF signaling and synaptogenesis in the prefrontal cortex. Mol Neurobiol. 2019;56:1070–1081.
  • Miziak B, Czuczwar S. Advances in the design and discovery of novel small molecule drugs for the treatment of Dravet Syndrome. Expert Opin Drug Discov. 2021;16:579–593.
  • Jain A, Jack J. Quinidine 2021. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2021. Available at: https://europepmc.org/article/MED/31194350.
  • Vitali Serdoz L, Rittger H, Furlanello F, et al. Quinidine-A legacy within the modern era of antiarrhythmic therapy. Pharmacol Res. 2019;144:257–263.
  • White NJ, Looareesuwan S, Warrell DA, et al. Quinidine in falciparum malaria. Lancet. 1981;2(8255):1069–1071.
  • Sheets MF, Fozzard HA, Lipkind GM, et al. Sodium channel molecular conformations and antiarrhythmic drug affinity. Trends Cardiovasc Med. 2010;20:16–21.
  • Cheng KI, Lin IL, Chang LL, et al. Application of quinidine on rat sciatic nerve decreases the amplitude and increases the latency of evoked responses. Anesth. 2014;28:559–568.
  • Sokolov AY, Lyubashina OA, Berkovich RR, et al. Intravenous dextromethorphan/quinidine inhibits activity of dura-sensitive spinal trigeminal neurons in rats. Eur J Pain. 2015;19:1086–1094.
  • Bearden D, Strong A, Ehnot J, et al. Targeted treatment of migrating partial seizures of infancy with quinidine. Ann Neurol. 2014;76:457–461.
  • Fitzgerald MP, Fiannacca M, Smith DM, et al. Treatment responsiveness in KCNT1-related epilepsy. Neurotherapeutics. 2019;16(3):848–857.
  • Data JL, Wilkinson GR, Nies AS. Interaction of quinidine with anticonvulsant drugs. N Engl J Med. 1976;294:699–702.
  • Yoshitomi S, Takahashi Y, Yamaguchi T, et al. Quinidine therapy and therapeutic drug monitoring in four patients with KCNT1 mutations. Epileptic Disord. 2019;21:48–54.
  • Numis AL, Nair U, Datta AN, et al. Lack of response to quinidine in KCNT1-related neonatal epilepsy. Epilepsia. 2018;59:1889–1898.
  • Dilena R, DiFrancesco JC, Soldovieri MV, et al. Early treatment with quinidine in 2 patients with epilepsy of infancy with migrating focal seizures (EIMFS) due to gain-of-function KCNT1 mutations: functional studies, clinical responses, and critical issues for personalized therapy. Neurotherapeutics. 2018;15:1112–1126.
  • Delanty N, Cavalleri G. Genomics-guided precise anti-epileptic drug development. Neurochem Res. 2017;42:2084–2088.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.