362
Views
1
CrossRef citations to date
0
Altmetric
Review

Understanding circadian dynamics: current progress and future directions for chronobiology in drug discovery

, &
Pages 893-901 | Received 14 Apr 2023, Accepted 08 Jun 2023, Published online: 13 Jun 2023

References

  • Zhang R, Lahens NF, Ballance HI, et al. A circadian gene expression atlas in mammals: implications for biology and medicine. Proc Natl Acad Sci U S A. 2014 Nov 11;111(45):16219–16224.
  • Mure LS, Le HD, Benegiamo G, et al. Diurnal transcriptome atlas of a primate across major neural and peripheral tissues. Science. 2018 Mar 16;359(6381). doi: 10.1126/science.aao0318
  • Ruben MD, Wu G, Smith DF, et al. A database of tissue-specific rhythmically expressed human genes has potential applications in circadian medicine. Sci Transl Med. 2018 Sep 12:10(458). doi: 10.1126/scitranslmed.aat8806
  • Talamanca L, Gobet C, Naef F. Sex-dimorphic and age-dependent organization of 24-hour gene expression rhythms in humans. Science. 2023;379(6631):478–483. doi: 10.1126/science.add0846
  • Kramer A, Lange T, Spies C, et al. Foundations of circadian medicine. PLoS Biol. 2022;20(3):e3001567. doi: 10.1371/journal.pbio.3001567
  • Cederroth CR, Albrecht U, Bass J, et al. Medicine in the fourth dimension. Cell Metab. 2019;30(2):238–250. doi: 10.1016/j.cmet.2019.06.019
  • Klerman EB, Brager A, Carskadon MA, et al. Keeping an eye on circadian time in clinical research and medicine [10.1002/ctm2.1131]. Clinical & Translational Med. 2022 Dec 01;12(12):e1131.
  • Paul SM, Mytelka DS, Dunwiddie CT, et al. How to improve R&D productivity: the pharmaceutical industry’s grand challenge. Nat Rev Drug Discov. 2010 Mar;9(3):203–214.
  • Van Norman GA. Phase II trials in drug development and adaptive trial design. JACC Basic Transl Sci. 2019 Jun;4(3):428–437. doi: 10.1016/j.jacbts.2019.02.005
  • Thomas DW, Burns J, Audette J, et al. Clinical development success rates 2006–2015. BIO Industry Analysis. 2016;1(16):25.
  • Kaur G, Phillips C, Wong K, et al. Timing is important in medication administration: a timely review of chronotherapy research. Int J Clin Pharm. 2013 Jun;35(3):344–358.
  • Dallmann R, Brown SA, Gachon F. Chronopharmacology: new insights and therapeutic implications. Annu Rev Pharmacol Toxicol. 2014;54(1):339–361. doi:10.1146/annurev-pharmtox-011613-135923
  • Leenaars CHC, Kouwenaar C, Stafleu FR, et al. Animal to human translation: a systematic scoping review of reported concordance rates. J Transl Med. 2019 Jul 15;17(1):223.
  • Printezi MI, Kilgallen AB, Bond MJG, et al. Toxicity and efficacy of chronomodulated chemotherapy: a systematic review. Lancet Oncol. 2022;23(3):e129–e143. doi: 10.1016/S1470-2045(21)00639-2
  • Hermida RC, Ayala DE, Smolensky MH, et al. Chronotherapy with conventional blood pressure medications improves management of hypertension and reduces cardiovascular and stroke risks. Hypertens Res. 2016 May;39(5):277–292.
  • Scherholz ML, Schlesinger N, Androulakis IP. Chronopharmacology of glucocorticoids. Adv Drug Deliv Rev. 2019 Nov;151-152:245–261. doi: 10.1016/j.addr.2019.02.004
  • Gorbacheva VY, Kondratov RV, Zhang R, et al. Circadian sensitivity to the chemotherapeutic agent cyclophosphamide depends on the functional status of the CLOCK/BMAL1 transactivation complex. Proc Natl Acad Sci U S A. 2005 Mar 1;102(9):3407–3412. doi: 10.1073/pnas.0409897102
  • Manella G, Sabath E, Aviram R, et al. The liver-clock coordinates rhythmicity of peripheral tissues in response to feeding. Nat Metab. 2021 Jun;3(6):829–842.
  • Greco CM, Koronowski KB, Smith JG, et al. Integration of feeding behavior by the liver circadian clock reveals network dependency of metabolic rhythms. Sci Adv. 2021 Sep 24;7(39):eabi7828.
  • Delbes AS, Quinones M, Gobet C, et al. Mice with humanized livers reveal the role of hepatocyte clocks in rhythmic behavior. Sci Adv. 2023 May 19;9(20):eadf2982.
  • Roenneberg T, Kantermann T, Juda M, et al. Light and the human circadian clock. Handb Exp Pharmacol. 2013;217:311–331.
  • Stokkan KA, Yamazaki S, Tei H, et al. Entrainment of the circadian clock in the liver by feeding. Science. 2001 Jan 19;291(5503):490–493. doi: 10.1126/science.291.5503.490
  • Damiola F, Le Minh N, Preitner N, et al. Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev. 2000 Dec 1;14(23):2950–2961. doi: 10.1101/gad.183500
  • Atger F, Mauvoisin D, Weger B, et al. Regulation of mammalian physiology by interconnected circadian and feeding rhythms [Review]. Front Endocrinol. 2017;8:42. doi: 10.3389/fendo.2017.00042
  • Challet E. The circadian regulation of food intake. Nat Rev Endocrinol. 2019 Jul;15(7):393–405. doi: 10.1038/s41574-019-0210-x
  • Nagai K, Nishio T, Nakagawa H, et al. Effect of bilateral lesions of the suprachiasmatic nuclei on the circadian rhythm of food-intake. Brain Res. 1978 Feb 24;142(2):384–389.
  • Lamia KA, Storch KF, Weitz CJ. Physiological significance of a peripheral tissue circadian clock. Proc Natl Acad Sci U S A. 2008 Sep 30;105(39):15172–15177.
  • Vollmers C, Gill S, DiTacchio L, et al. Time of feeding and the intrinsic circadian clock drive rhythms in hepatic gene expression. Proc Natl Acad Sci U S A. 2009 Dec 15;106(50):21453–21458. doi: 10.1073/pnas.0909591106
  • Adamovich Y, Rousso-Noori L, Zwighaft Z, et al. Circadian clocks and feeding time regulate the oscillations and levels of hepatic triglycerides. Cell Metab. 2014 Feb 4;19(2):319–330.
  • Turek FW, Joshu C, Kohsaka A, et al. Obesity and metabolic syndrome in circadian clock mutant mice. Science. 2005 May 13;308(5724):1043–1045.
  • Weger BD, Gobet C, David FPA, et al. Systematic analysis of differential rhythmic liver gene expression mediated by the circadian clock and feeding rhythms. Proc Natl Acad Sci U S A. 2021 Jan 19;118(3). doi: 10.1073/pnas.2015803118
  • Patke A, Young MW, Axelrod S. Molecular mechanisms and physiological importance of circadian rhythms. Nat Rev Mol Cell Biol. 2020 Feb 01;21(2):67–84.
  • Rijo-Ferreira F, Takahashi JS. Genomics of circadian rhythms in health and disease. Genome Med. 2019 Dec 17;11(1):82.
  • Takahashi JS. Transcriptional architecture of the mammalian circadian clock. Nat Rev Genet. 2017 Mar;18(3):164–179. doi: 10.1038/nrg.2016.150
  • Gachon F, Leuenberger N, Claudel T, et al. Proline- and acidic amino acid-rich basic leucine zipper proteins modulate peroxisome proliferator-activated receptor α (PPARα) activity. Proc Natl Acad Sci U S A. 2011 Mar 22;108(12):4794–4799.
  • Cretenet G, Le Clech M, Gachon F. Circadian clock-coordinated 12 hr period rhythmic activation of the ire1a pathway controls lipid metabolism in mouse liver. Cell Metab. 2010;11(1):47–57. doi: 10.1016/j.cmet.2009.11.002
  • Jouffe C, Cretenet G, Symul L, et al. The circadian clock coordinates ribosome biogenesis. PLoS Biol. 2013;11(1):e1001455. doi: 10.1371/journal.pbio.1001455
  • Sinturel F, Gerber A, Mauvoisin D, et al. Diurnal oscillations in liver mass and cell size accompany ribosome assembly cycles. Cell. 2017;169(4):651–663.e14. doi: 10.1016/j.cell.2017.04.015
  • Atger F, Gobet C, Marquis J, et al. Circadian and feeding rhythms differentially affect rhythmic mRNA transcription and translation in mouse liver. Proc Natl Acad Sci U S A. 2015 Nov 24;112(47):E6579–88.
  • Wang J, Mauvoisin D, Martin E, et al. Nuclear proteomics uncovers diurnal regulatory landscapes in mouse liver. Cell Metab. 2017 Jan 10;25(1):102–117.
  • Mauvoisin D, Wang J, Jouffe C, et al. Circadian clock-dependent and -independent rhythmic proteomes implement distinct diurnal functions in mouse liver. Proc Natl Acad Sci U S A. 2014 Jan 7;111(1):167–172.
  • Weger M, Weger BD, Gachon F. The mechanisms and physiological consequences of diurnal hepatic cell size fluctuations: a brief review. Cell Physiol Biochem. 2022 Jan 15;56(S2):1–11.
  • Bignon Y, Wigger L, Ansermet C, et al. Multiomics reveals multilevel control of renal and systemic metabolism by the renal tubular circadian clock. J Clin Invest. 2023 Mar 02;133. doi: 10.1172/JCI167133
  • Panda S, Antoch MP, Miller BH, et al. Coordinated transcription of key pathways in the mouse by the circadian clock. Cell. 2002 May 3;109(3):307–320.
  • Zuber AM, Centeno G, Pradervand S, et al. Molecular clock is involved in predictive circadian adjustment of renal function. Proc Natl Acad Sci U S A. 2009 Sep 22;106(38):16523–16528.
  • Johnson BP, Walisser JA, Liu Y, et al. Hepatocyte circadian clock controls acetaminophen bioactivation through NADPH-cytochrome P450 oxidoreductase. Proc Natl Acad Sci U S A. 2014;111(52):18757–18762. doi: 10.1073/pnas.1421708111
  • Kang HS, Angers M, Beak JY, et al. Gene expression profiling reveals a regulatory role for ROR alpha and ROR gamma in phase I and phase II metabolism. Physiol Genomics. 2007 Oct 22;31(2):281–294.
  • Mitsui S, Yamaguchi S, Matsuo T, et al. Antagonistic role of E4BP4 and PAR proteins in the circadian oscillatory mechanism. Genes Dev. 2001 Apr 15;15(8):995–1006.
  • Gachon F, Fleury Olela F, Schaad O, et al. The circadian PAR-domain basic leucine zipper transcription factors DBP, TEF, and HLF modulate basal and inducible xenobiotic detoxification. Cell Metab. 2006 Jul;4(1):25–36. doi: 10.1016/j.cmet.2006.04.015
  • Murakami Y, Higashi Y, Matsunaga N, et al. Circadian clock-controlled intestinal expression of the multidrug-resistance gene mdr1a in mice. Gastroenterology. 2008 Nov;135(5):1636–1644 e3.
  • Yoshitane H, Asano Y, Sagami A, et al. Functional D-box sequences reset the circadian clock and drive mRNA rhythms. Commun Biol. 2019;2(1):300. doi: 10.1038/s42003-019-0522-3
  • DeBruyne JP, Weaver DR, Dallmann R. The hepatic circadian clock modulates xenobiotic metabolism in mice. J Biol Rhythms. 2014 Aug;29(4):277–287. doi: 10.1177/0748730414544740
  • Ransick A, Lindström NO, Liu J, et al. Single-cell profiling reveals sex, lineage, and regional diversity in the mouse kidney. Dev Cell. 2019 Nov 04;51(3):399–413.e7.
  • Yang X, Schadt EE, Wang S, et al. Tissue-specific expression and regulation of sexually dimorphic genes in mice. Genome Res. 2006;16(8):995–1004. doi: 10.1101/gr.5217506
  • Brie B, Ramirez MC, De Winne C, et al. Brain control of sexually dimorphic liver function and disease: the endocrine connection. Cell Mol Neurobiol. 2019 Mar 01;39(2):169–180.
  • Toews JNC, Hammond GL, Viau V. Liver at the nexus of rat postnatal HPA axis maturation and sexual dimorphism. J Endocrinol. 2021 Jan 01;248(1):R1–R17.
  • Laouari D, Vergnaud P, Hirose T, et al. The sexual dimorphism of kidney growth in mice and humans. Kidney Int. 2022 Jul 01;102(1):78–95.
  • Miller MA. Gender-based differences in the toxicity of pharmaceuticals—the food and drug administration’s perspective. Int J Toxicol. 2001 May 01;20(3):149–152.
  • Nicolson TJ, Mellor HR, Roberts RRA. Gender differences in drug toxicity. Trends Pharmacol Sci. 2010 Mar 01;31(3):108–114.
  • Özdemir BC, Gerard CL, Espinosa da Silva C. Sex and gender differences in anticancer treatment toxicity: a call for revisiting drug dosing in oncology. Endocrinology. 2022;163(6):bqac058. doi: 10.1210/endocr/bqac058
  • Noghrehchi F, Dawson AH, Raubenheimer JE, et al. Role of age-sex as underlying risk factors for death in acute pesticide self-poisoning: a prospective cohort study. Clin Toxicol (Phila). 2022 Feb 01;60(2):184–190.
  • Beauchamp GA, Carey JL, Adams T, et al. Sex differences in poisonings among older adults: an analysis of the toxicology investigators consortium (ToxIC) registry, 2010 to 2016. Clin Ther. 2018 Aug 01;40(8):1366–1374.e8.
  • Petrushevska T, Jakovski Z, Poposka V, et al. Drug-related deaths between 2002 and 2013 with accent to methadone and benzodiazepines. J Forensic Leg Med. 2015 Apr 01;31:12–18.
  • Layton AT, Gumz ML. Sex differences in circadian regulation of kidney function of the mouse. Am J Physiol Renal Physiol. 2022 Dec 01;323(6):F675–F685.
  • Weger BD, Gobet C, Yeung J, et al. The mouse microbiome is required for sex-specific diurnal rhythms of gene expression and metabolism. Cell Metab. 2019 Feb 5;29(2):362–382.e8. doi: 10.1016/j.cmet.2018.09.023
  • Ahowesso C, Li X-M, Zampera S, et al. Sex and dosing-time dependencies in irinotecan-induced circadian disruption. Chronobiol Int. 2011 May 01;28(5):458–470.
  • Bon K, Lantéri-Minet M, Menétrey D, et al. Sex, time-of-day and estrous variations in behavioral and bladder histological consequences of cyclophosphamide-induced cystitis in rats. Pain. 1997;73(3):423–429. doi: 10.1016/S0304-3959(97)00134-6
  • Lawrence GM, Beesley AC. The effect of diurnal rhythms on the hepatotoxicity of thioacetamide in male and female rats. Drug Metabol Drug Interact. 1988;6(3–4):359–370. doi: 10.1515/DMDI.1988.6.3-4.359
  • Giacchetti S, Dugué PA, Innominato PF, et al. Sex moderates circadian chemotherapy effects on survival of patients with metastatic colorectal cancer: a meta-analysis. Ann Oncol. 2012;23(12):3110–3116. doi: 10.1093/annonc/mds148
  • Li X-M, Mohammad-Djafari A, Dumitru M, et al. A circadian clock transcription model for the personalization of cancer chronotherapy. Cancer Res. 2013;73(24):7176–7188. doi: 10.1158/0008-5472.CAN-13-1528
  • Innominato PF, Ballesta A, Huang Q, et al. Sex-dependent least toxic timing of irinotecan combined with chronomodulated chemotherapy for metastatic colorectal cancer: randomized multicenter EORTC 05011 trial [10.1002/cam4.3056]. Cancer Med. 2020 Jun 01;9(12):4148–4159. doi: 10.1002/cam4.3056
  • Kim DW, Byun JM, Lee J-O, et al. Chemotherapy delivery time affects treatment outcomes of female patients with diffuse large B-cell lymphoma. JCI Insight. 2022 Dec 13;8. doi: 10.1172/jci.insight.164767
  • Ghoneim RH, Ngo Sock ET, Lavoie J-M, et al. Effect of a high-fat diet on the hepatic expression of nuclear receptors and their target genes: relevance to drug disposition. Br J Nutr. 2015;113(3):507–516. doi: 10.1017/S0007114514003717
  • Ning M, Jeong H. High-fat diet feeding alters expression of hepatic drug-metabolizing enzymes in mice. Drug Metab Dispos. 2017;45(7):707–711. doi: 10.1124/dmd.117.075655
  • Brill MJE, Diepstraten J, van Rongen A, et al. Impact of obesity on drug metabolism and elimination in adults and children. Clin Pharmacokinet. 2012 May 01;51(5):277–304.
  • Mikhailova ON, Gulyaeva LF, Filipenko ML. Gene expression of drug metabolizing enzymes in adult and aged mouse liver: a modulation by immobilization stress. Toxicology. 2005;210(2–3):189–196. doi: 10.1016/j.tox.2005.01.018
  • Oshida K, Waxman DJ, Corton JC, et al. Chemical and hormonal effects on STAT5b-dependent sexual dimorphism of the liver transcriptome. PLoS ONE. 2016;11(3):e0150284. doi: 10.1371/journal.pone.0150284
  • Oshida K, Vasani N, Waxman DJ, et al. Disruption of STAT5b-regulated sexual dimorphism of the liver transcriptome by diverse factors is a common event. PLoS ONE. 2016;11(3):e0148308. doi: 10.1371/journal.pone.0148308
  • Rasmussen MH, Hvidberg A, Juul A, et al. Massive weight loss restores 24-hour growth hormone release profiles and serum insulin-like growth factor-I levels in obese subjects. J Clin Endocrinol Metab. 1995;80(4):1407–1415. doi: 10.1210/jcem.80.4.7536210
  • Huang L, Steyn FJ, Tan HY, et al. The decline in pulsatile GH Secretion throughout early adulthood in mice is exacerbated by dietary-induced weight gain. Endocrinology. 2012;153(9):4380–4388. doi: 10.1210/en.2012-1178
  • Giustina A, Veldhuis JD. Pathophysiology of the neuroregulation of growth hormone secretion in experimental animals and the human. Endocr Rev. 1998 Dec 1;19(6):717–797.
  • Jouffe C, Weger Benjamin D, Martin E, et al. Disruption of the circadian clock component BMAL1 elicits an endocrine adaption impacting on insulin sensitivity and liver disease. Proc Natl Acad Sci U S A. 2022 Mar 08;119(10):e2200083119.
  • Buckley TN, Omotola O, Archer LA, et al. High-fat feeding disrupts daily eating behavior rhythms in obesity-prone but not in obesity-resistant male inbred mouse strains. Am J Physiol Regul Integr Comp Physiol. 2021 May 01;320(5):R619–R629.
  • Kohsaka A, Laposky AD, Ramsey KM, et al. High-fat diet disrupts behavioral and molecular circadian rhythms in mice. Cell Metab. 2007;6(5):414–421. doi: 10.1016/j.cmet.2007.09.006
  • Hatori M, Vollmers C, Zarrinpar A, et al. Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet. Cell Metab. 2012 Jun 6;15(6):848–860.
  • Nakamura TJ, Nakamura W, Yamazaki S, et al. Age-related decline in circadian output. J Neurosci. 2011;31(28):10201–10205. doi: 10.1523/JNEUROSCI.0451-11.2011
  • Acosta-Rodríguez V, Rijo-Ferreira F, Izumo M, et al. Circadian alignment of early onset caloric restriction promotes longevity in male C57BL/6J mice. Science. 2022 Jun 10;376(6598):1192–1202.
  • Hanley MJ, Abernethy DR, Greenblatt DJ. Effect of obesity on the pharmacokinetics of drugs in humans. Clin Pharmacokinet. 2010 Feb 01;49(2):71–87.
  • Mangoni AA, Jackson SH. Age-related changes in pharmacokinetics and pharmacodynamics: basic principles and practical applications. Br J Clin Pharmacol. 2004 Jan;57(1):6–14. doi: 10.1046/j.1365-2125.2003.02007.x
  • Vinarov Z, Abdallah M, Agundez JAG, et al. Impact of gastrointestinal tract variability on oral drug absorption and pharmacokinetics: an UNGAP review. Eur J Pharm Sci. 2021 Jul 1;162:105812.
  • Matsunaga N, Nakamura N, Yoneda N, et al. Influence of feeding schedule on 24-h rhythm of hepatotoxicity induced by acetaminophen in mice. J Pharmacol Exp Ther. 2004 Nov;311(2):594–600.
  • Song JG, Nakano S, Ohdo S, et al. Chronotoxicity and chronopharmacokinetics of methotrexate in mice: modification by feeding schedule. Jpn J Pharmacol. 1993 Aug;62(4):373–378.
  • Song J, Ohdo S, Ogawa N, et al. Influence of feeding schedule on chronopharmacological aspects of gentamicin in mice. Chronobiol Int. 1993 Oct;10(5):338–348.
  • Ohdo S, Nakano S, Ogawa N. Chronopharmacological study of sodium valproate in mice: dose-concentration-response relationship. Jpn J Pharmacol. 1988 May;47(1):11–19. doi: 10.1016/S0021-5198(19)43245-9
  • Toulis KA, Nirantharakumar K, Pourzitaki C, et al. Glucokinase activators for type 2 diabetes: challenges and future developments. Drugs. 2020 Apr;80(5):467–475.
  • Kim YC, Lee SJ. Temporal variation in hepatotoxicity and metabolism of acetaminophen in mice. Toxicology. 1998 Jun 26;128(1):53–61.
  • Marcheva B, Ramsey KM, Buhr ED, et al. Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes. Nature. 2010 Jul 29;466(7306):627–631.
  • Kroon T, Hagstedt T, Alexandersson I, et al. Chronotherapy with a glucokinase activator profoundly improves metabolism in obese Zucker rats. Sci, trans med. 2022;14(668):eabh1316. doi: 10.1126/scitranslmed.abh1316
  • Weger BD, Rawashdeh O, Gachon F. At the intersection of microbiota and circadian clock: are sexual dimorphism and growth hormones the missing link to pathology?: circadian clock and microbiota: potential egffect on growth hormone and sexual development. BioEssays. 2019 Sep;41(9):e1900059. doi: 10.1002/bies.201900059
  • Litichevskiy L, Thaiss CA. The oscillating gut microbiome and its effects on host circadian biology. Annu Rev Nutr. 2022 Aug 22;42(1):145–164.
  • Thaiss CA, Zeevi D, Levy M, et al. Transkingdom control of microbiota diurnal oscillations promotes metabolic homeostasis. Cell. 2014 Oct 23;159(3):514–529. doi: 10.1016/j.cell.2014.09.048
  • Thaiss CA, Levy M, Korem T, et al. Microbiota diurnal rhythmicity programs host transcriptome oscillations. Cell. 2016 Dec 1;167(6):1495–1510 e12. doi: 10.1016/j.cell.2016.11.003
  • Skarke C, Lahens NF, Rhoades SD, et al. A pilot characterization of the human chronobiome. Sci Rep. 2017 Dec 7;7(1):17141.
  • Ellison AR, Wilcockson D, Cable J. Circadian dynamics of the teleost skin immune-microbiome interface. Microbiome. 2021 Nov 16;9(1):222.
  • Brooks JF 2nd, Behrendt CL, Ruhn KA, et al. The microbiota coordinates diurnal rhythms in innate immunity with the circadian clock. Cell. 2021 Aug 5;184(16):4154–4167 e12.
  • Zarrinpar A, Chaix A, Yooseph S, et al. Diet and feeding pattern affect the diurnal dynamics of the gut microbiome. Cell Metab. 2014 Dec 2;20(6):1006–1017. doi: 10.1016/j.cmet.2014.11.008
  • Leeming ER, Louca P, Gibson R, et al. The complexities of the diet-microbiome relationship: advances and perspectives. Genome Med. 2021 Jan 20;13(1):10.
  • Hildebrand F, Nguyen TL, Brinkman B, et al. Inflammation-associated enterotypes, host genotype, cage and inter-individual effects drive gut microbiota variation in common laboratory mice. Genome Biol. 2013 Jan 24;14(1):R4.
  • Rothschild D, Weissbrod O, Barkan E, et al. Environment dominates over host genetics in shaping human gut microbiota. Nature. 2018 Mar 8;555(7695):210–215.
  • Heddes M, Altaha B, Niu Y, et al. The intestinal clock drives the microbiome to maintain gastrointestinal homeostasis. Nat Commun. 2022 Oct 14;13(1):6068.
  • Leone V, Gibbons SM, Martinez K, et al. Effects of diurnal variation of gut microbes and high-fat feeding on host circadian clock function and metabolism. Cell Host Microbe. 2015 May 13;17(5):681–689.
  • Jensen TL, Kiersgaard MK, Sorensen DB, et al. Fasting of mice: a review. Lab Anim. 2013 Oct;47(4):225–240.
  • Spanogiannopoulos P, Bess EN, Carmody RN, et al. The microbial pharmacists within us: a metagenomic view of xenobiotic metabolism. Nat Rev Microbiol. 2016 Apr;14(5):273–287.
  • Zimmermann M, Zimmermann-Kogadeeva M, Wegmann R, et al. Mapping human microbiome drug metabolism by gut bacteria and their genes. Nature. 2019 Jun 01;570(7762):462–467. doi: 10.1038/s41586-019-1291-3
  • Lee JH, Lee J. Indole as an intercellular signal in microbial communities. FEMS Microbiol Rev. 2010 Jul;34(4):426–444. doi: 10.1111/j.1574-6976.2009.00204.x
  • Tintelnot J, Xu Y, Lesker TR, et al. Microbiota-derived 3-IAA influences chemotherapy efficacy in pancreatic cancer. Nature. 2023 Mar 01;615(7950):168–174. doi: 10.1038/s41586-023-05728-y
  • Paulose JK, Wright JM, Patel AG, et al. Human gut bacteria are sensitive to melatonin and express endogenous circadian rhythmicity. PLoS ONE. 2016;11(1):e0146643. doi: 10.1371/journal.pone.0146643
  • Paulose JK, Cassone CV, Graniczkowska KB, et al. Entrainment of the circadian clock of the enteric bacterium Klebsiella aerogenes by temperature cycles. iScience. 2019 Sep 27;19:1202–1213.
  • Eelderink-Chen Z, Bosman J, Sartor F, et al. A circadian clock in a nonphotosynthetic prokaryote. Sci Adv. 2021 Jan;7(2). doi: 10.1126/sciadv.abe2086
  • Nelson RJ, Bumgarner JR, Liu JA, et al. Time of day as a critical variable in biology. BMC Biol. 2022 Jun 15;20(1):142.
  • Esposito E, Li WT, Mandeville E, et al. Potential circadian effects on translational failure for neuroprotection. Nature. 2020 Jun 01;582(7812):395–398.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.