544
Views
2
CrossRef citations to date
0
Altmetric
Review

Targeted Degradation of Structured RNAs via Ribonuclease-Targeting Chimeras (RiboTacs)

, ORCID Icon & ORCID Icon
Pages 929-942 | Received 28 Feb 2023, Accepted 09 Jun 2023, Published online: 20 Jun 2023

References

  • Agrawal S. The evolution of antisense oligonucleotide chemistry—A personal journey. Biomedicines. 2021;9(5):503. doi: 10.3390/biomedicines9050503
  • Zamecnik PC, Stephenson ML. Inhibition of Rous sarcoma virus replication and cell transformation by a specific oligodeoxynucleotide. Proc Natl Acad Sci U S A. 1978;75(1):280–284. doi: 10.1073/pnas.75.1.280
  • Stein CA, Castanotto D. FDA-Approved oligonucleotide therapies in 2017. Mol Ther. 2017;25(5):1069–1075. doi: 10.1016/j.ymthe.2017.03.023
  • Lima WF, Vickers TA, Nichols J, et al. Defining the factors that contribute to on-target specificity of antisense Oligonucleotides. PLoS ONE. 2014;9(7):e101752. doi: 10.1371/journal.pone.0101752
  • Stein CA, Hansen JB, Lai J, et al. Efficient gene silencing by delivery of locked nucleic acid antisense oligonucleotides, unassisted by transfection reagents. Nucleic Acids Res. 2010;38(1):e3–e3. doi: 10.1093/nar/gkp841
  • Cerrato CP, Kivijärvi T, Tozzi R, et al. Intracellular delivery of therapeutic antisense oligonucleotides targeting mRNA coding mitochondrial proteins by cell-penetrating peptides. J Mater Chem B. 2020;8(47):10825–10836. doi: 10.1039/D0TB01106A
  • Frazier KS. Antisense Oligonucleotide therapies: the promise and the challenges from a toxicologic pathologist’s perspective. Toxicol Pathol. 2015;43(1):78–89. doi: 10.1177/0192623314551840
  • Flierl U, Nero TL, Lim B, et al. Phosphorothioate backbone modifications of nucleotide-based drugs are potent platelet activators. J Exp Med. 2015;212(2):129–137. doi: 10.1084/jem.20140391
  • Sewing S, Roth AB, Winter M, et al. Assessing single-stranded oligonucleotide drug-induced effects in vitro reveals key risk factors for thrombocytopenia. PLoS ONE. 2017;12(11):e0187574. doi: 10.1371/journal.pone.0187574
  • Henry SP, Kim TW, Kramer-Stickland K, et al. Toxicologic properties of 2-O-Methoxyethyl chimeric antisense inhibitors in animals and man. Antisense Drug Technology. 2007;345–382.
  • Karaki S, Benizri S, Mejías R, et al. Lipid-oligonucleotide conjugates improve cellular uptake and efficiency of TCTP-antisense in castration-resistant prostate cancer. J Control Release. 2017;258:1–9. doi: 10.1016/j.jconrel.2017.04.042
  • Stombaugh J, Zirbel CL, Westhof E, et al. Frequency and isostericity of RNA base pairs. Nucleic Acids Res. 2009;37(7):2294–2312. doi: 10.1093/nar/gkp011
  • Butcher SE, Pyle AM. The molecular interactions that stabilize RNA tertiary structure: rNA motifs, patterns, and networks. Acc Chem Res. 2011;44(12):1302–1311. doi: 10.1021/ar200098t
  • Weeks KM. Advances in RNA structure analysis by chemical probing. Curr Opin Struct Biol. 2010; 20(3): 295–304, doi: 10.1016/j.sbi.2010.04.001
  • Manfredonia I, Nithin C, Ponce-Salvatierra A, et al. Genome-wide mapping of SARS-CoV-2 RNA structures identifies therapeutically-relevant elements. Nucleic Acids Res. 2020;48(22):12436–12452. doi: 10.1093/nar/gkaa1053
  • Sztuba-Solinska J, Shenoy SR, Gareiss P, et al. Identification of biologically active, HIV TAR RNA-binding small molecules using small molecule microarrays. J Am Chem Soc. 2014;136(23):8402–8410. doi: 10.1021/ja502754f
  • Donlic A, Hargrove AE. Targeting RNA in mammalian systems with small molecules. Wiley Interdiscip Rev RNA. 2018;9(4):e1477. doi: 10.1002/wrna.1477
  • Tijerina P, Mohr S, Russell R. DMS footprinting of structured RNAs and RNA–protein complexes. Nat Protoc. 2007;2(10):2608. doi: 10.1038/nprot.2007.380
  • Disney MD, Yildirim I, Childs-Disney JL. Methods to enable the design of bioactive small molecules targeting RNA. Org Biomol Chem. 2014;12(7):1029–1039. doi: 10.1039/C3OB42023J
  • Winkler WC, Cohen-Chalamish S, Breaker RR. An mRNA structure that controls gene expression by binding FMN. Proc Natl Acad Sci U S A. 2002;99(25):15908–15913. doi: 10.1073/pnas.212628899
  • Falese JP, Donlic A, Hargrove AE. Targeting RNA with small molecules: from fundamental principles towards the clinic. Chem Soc Rev. 2021;50(4):2224. doi: 10.1039/D0CS01261K
  • Donlic A, Morgan BS, Xu JL, et al. Discovery of Small molecule ligands for MALAT1 by tuning an RNA-Binding Scaffold. Angew Chem Int Ed Engl. 2018;57(40):13242. doi: 10.1002/anie.201808823
  • Wicks SL, Hargrove AE. Fluorescent indicator displacement assays to identify and characterize small molecule interactions with RNA. Methods. 2019;167:3–14. doi: 10.1016/j.ymeth.2019.04.018
  • Benhamou RI, Suresh BM, Tong Y, et al. DNA-encoded library versus RNA-encoded library selection enables design of an oncogenic noncoding RNA inhibitor. Proc Natl Acad Sci U S A. 2022;119(6):e2114971119. doi: 10.1073/pnas.2114971119
  • Rizvi NF, Nickbarg EB. RNA-ALIS: methodology for screening soluble RNAs as small molecule targets using ALIS affinity-selection mass spectrometry. Methods. 2019;167:28–38. doi: 10.1016/j.ymeth.2019.04.024
  • Childs-Disney JL, Yang X, Gibaut QMR. et al. Targeting RNA structures with small molecules. Nat Rev Drug Discov. 2022; 21(10): 736–762, doi: 10.1038/s41573-022-00521-4
  • Vezina-Dawod S, Angelbello AJ, Choudhary S, et al. Massively parallel optimization of the linker domain in small molecule dimers targeting a toxic r(CUG) repeat expansion. ACS Med Chem Lett. 2021;12(6):907–914. doi: 10.1021/acsmedchemlett.1c00027
  • Nguyen L, Luu LM, Peng S, et al. Rationally designed small molecules that target both the DNA and RNA causing myotonic dystrophy type 1. J Am Chem Soc. 2015;137(44):14180–14189. doi: 10.1021/jacs.5b09266
  • Angelbello AJ, Rzuczek SG, Mckee KK, et al. Precise small-molecule cleavage of an r(CUG) repeat expansion in a myotonic dystrophy mouse model. Proc Natl Acad Sci U S A. 2019;116(16):7799–7804. doi: 10.1073/pnas.1901484116
  • Ondono R, Lirio Á, Elvira C, et al. Design of novel small molecule base-pair recognizers of toxic CUG RNA transcripts characteristics of DM1. Comput Struct Biotechnol J. 2021;19:51–61. doi: 10.1016/j.csbj.2020.11.053
  • Angelbello AJ, Defeo ME, Glinkerman CM, et al. Precise targeted cleavage of a r(CUG) repeat expansion in cells by using a small-molecule–Deglycobleomycin conjugate. ACS Chem Biol. 2020;15(4):849–855. doi: 10.1021/acschembio.0c00036
  • S W-G, A M, B RI, et al. A druglike small molecule that targets r(CCUG) repeats in myotonic dystrophy type 2 facilitates degradation by RNA quality control pathways. J Med Chem. 2021;64(12):8474–8485. doi: 10.1021/acs.jmedchem.1c00414
  • Breaker RR. Riboswitches and translation control. Cold Spring Harb Perspect Biol. 2018;10(11):10. doi: 10.1101/cshperspect.a032797
  • Deigan KE, Ferré-D’Amaré AR. Riboswitches: discovery of drugs that target bacterial gene-regulatory RNAs. Acc Chem Res. 2011;44(12):1329–1338. doi: 10.1021/ar200039b
  • Connelly CM, Numata T, Boer RE, et al. Synthetic ligands for PreQ1 riboswitches provide structural and mechanistic insights into targeting RNA tertiary structure. Nature Commun. 2019;10(1):1–12. doi: 10.1038/s41467-019-09493-3
  • Zeller MJ, Nuthanakanti A, Li K, et al. Subsite ligand recognition and cooperativity in the TPP riboswitch: implications for fragment-linking in RNA ligand discovery. ACS Chem Biol. 2022;17(2):438–448. doi: 10.1021/acschembio.1c00880
  • Gong G, An F, Wang Y, et al. MiR-15b represses BACE1 expression in sporadic Alzheimer’s disease. Oncotarget. 2017;8(53):91551–91557. doi: 10.18632/oncotarget.21177
  • Moncini S, Lunghi M, Valmadre A, et al. The miR-15/107 family of microRNA genes regulates CDK5R1/p35 with implications for Alzheimer’s disease pathogenesis. Mol Neurobiol. 2017;54(6):4329–4342. doi: 10.1007/s12035-016-0002-4
  • Gabr MT, Brogi S. MicroRNA-Based multitarget approach for Alzheimer’s disease: discovery of the first-in-class dual inhibitor of Acetylcholinesterase and microRNA-15b biogenesis. J Med Chem. 2020;63(17):9695–9704. doi: 10.1021/acs.jmedchem.0c00756
  • Stanton BZ, Chory EJ, Crabtree GR. Chemically induced proximity in biology and medicine. Science. 2018;359(6380):359. doi: 10.1126/science.aao5902
  • Trkulja MKAAV, Casanova E, Uras IZ, et al. Targeted protein degradation: clinical advances in the field of oncology. Int J Mol Sci. 2022;23(23):15440. doi: 10.3390/ijms232315440
  • Hua L, Zhang Q, Zhu X, et al. Beyond proteolysis-targeting chimeric molecules: designing heterobifunctional molecules based on functional effectors. J Med Chem. 2022;65(12):8091–8112. doi: 10.1021/acs.jmedchem.2c00316
  • Burslem GM, Crews CM. Proteolysis-targeting chimeras as therapeutics and tools for biological discovery. Cell. 2020;181(1):102–114. doi: 10.1016/j.cell.2019.11.031
  • Banik SM, Pedram K, Wisnovsky S, et al. Lysosome-targeting chimaeras for degradation of extracellular proteins. Nature. 2020;584(7820):291–297. doi: 10.1038/s41586-020-2545-9
  • Ahn G, Banik SM, Miller CL, et al. Lytacs that engage the asialoglycoprotein receptor for targeted protein degradation. Nat Chem Biol. 2021;17(9):937. doi: 10.1038/s41589-021-00770-1
  • Ramadas B, Kumar Pain P, Manna D. Lytacs: an emerging tool for the degradation of non-cytosolic proteins. ChemMedchem. 2021;16(19):2951–2953. doi: 10.1002/cmdc.202100393
  • Lytacs target extracellular and membrane proteins for degradation. Cancer Discov. 2020;10(10):1437–1437. doi: 10.1158/2159-8290.CD-RW2020-119
  • Breslow R, Labelle M. Sequential general base-acid catalysis in the hydrolysis of RNA by Imidazole. J Am Chem Soc. 1986;108(10):2655–2659. doi: 10.1021/ja00270a025
  • Anslyn E, Breslow R. On the mechanism of catalysis by Ribonuclease: cleavage and Isomerization of the Dinucleotide UpU catalyzed by Imidazole buffers. J Am Chem Soc. 1989;111(12):4473–4482. doi: 10.1021/ja00194a050
  • Breslow R, Anslyn E, Huang DL. Ribonuclease mimics. Tetrahedron. 1991;47(14–15):2365–2376. doi: 10.1016/S0040-4020(01)81774-9
  • Martin C, Bonnet M, Patino N, et al. Design, synthesis, and evaluation of Neomycin-Imidazole conjugates for RNA cleavage. Chempluschem. 2022;87(11):e202200250. doi: 10.1002/cplu.202200250
  • Vlassov V, Zuber G, Felden B, et al. Cleavage of tRNA with imidazole and spermine imidazole constructs: a new approach for probing RNA structure. Nucl Acids Res. 1995;23(16):3161–3167. doi: 10.1093/nar/23.16.3161
  • Guan L, Disney MD Small Molecule-Mediated Cleavage of RNA in Living Cells. Angew Chem Int Ed Engl. 2013;52:p. 1462.
  • Li Y, Disney MD. Precise small molecule degradation of a noncoding RNA identifies cellular binding sites and modulates an oncogenic phenotype. ACS Chem Biol. 2018;13(11):3065. doi: 10.1021/acschembio.8b00827
  • Moseley PL, Chalkley R. Bleomycin-induced DNA cleavage: studies in vitro and in intact cells. J Lab Clin Med. 1987;110(5):618–623.
  • Angelbello AJ, Disney MD. Bleomycin can cleave an oncogenic noncoding RNA. Chembiochem. 2018;19(1):43–47. doi: 10.1002/cbic.201700581
  • Meyer SM, Williams CC, Akahori Y, et al. Small molecule recognition of disease-relevant RNA structures. Chem Soc Rev. 2020;49(19):7167–7199. doi: 10.1039/D0CS00560F
  • Disney MD, Suresh BM, Benhamou RI, et al. Progress toward the development of the small molecule equivalent of small interfering RNA. Curr Opin Chem Biol. 2020;56:63–71. doi: 10.1016/j.cbpa.2020.01.001
  • Benhamou RI, Angelbello AJ, Andrews RJ, et al. Structure-specific cleavage of an RNA repeat expansion with a dimeric small molecule is advantageous over sequence-specific recognition by an Oligonucleotide. ACS Chem Biol. 2020;15(2):485–493. doi: 10.1021/acschembio.9b00958
  • Squire J, Zhou A, Hassel BA, et al. Localization of the interferon-induced, 2-5A-dependent RNase gene (RNS4) to human chromosome 1q25. Genomics. 1994;19(1):174–175. doi: 10.1006/geno.1994.1033
  • Sarkar SN, Pandey M, Sen GC. Assays for the interferon-induced enzyme 2’,5’ oligoadenylate synthetases. Methods Mol Med. 2005;116:81–101.
  • Thakur CS, Xu Z, Wang Z, et al. A convenient and sensitive fluorescence resonance energy transfer assay for RNase L and 2’,5’ oligoadenylates. Methods Mol Med. 2005;116:103–113.
  • Han Y, Donovan J, Rath S, et al. Structure of human RNase L reveals the basis for regulated RNA decay in the IFN response. Science. 2014;343(6176):1244–1248. doi: 10.1126/science.1249845
  • Washenberger CL, Han JQ, Kechris KJ, et al. Hepatitis C virus RNA: dinucleotide frequencies and cleavage by RNase L. Virus Res. 2007;130(1–2):85–95. doi: 10.1016/j.virusres.2007.05.020
  • Wreschner DH, McCauley JW, Skehel JJ, et al. Interferon action—sequence specificity of the ppp(A2′p)ppp(A2′p)Na-dependent ribonuclease. Nature. 1981;289(5796):414–417. doi: 10.1038/289414a0
  • Malathi K, Dong B, Gale M, et al. Small self-RNA generated by RNase L amplifies antiviral innate immunity. Nature. 2007;448(7155):816–819. doi: 10.1038/nature06042
  • Costales MG, Matsumoto Y, Velagapudi SP. et al. Small Molecule Targeted Recruitment of a Nuclease to RNA. J Am Chem Soc. 2018; 140(22): 6741–6744,doi: 10.1021/jacs.8b01233
  • Costales MG, Suresh B, Vishnu K, et al. Targeted degradation of a hypoxia-associated non-coding RNA enhances the selectivity of a small molecule interacting with RNA. Cell Chem Biol. 2019;26(8):1180–1186.e5. doi: 10.1016/j.chembiol.2019.04.008
  • Costales MG, Aikawa H, Li Y, et al. Small-molecule targeted recruitment of a nuclease to cleave an oncogenic RNA in a mouse model of metastatic cancer. Proc Natl Acad Sci, USA. 2020;117(5):2406–2411. doi: 10.1073/pnas.1914286117
  • Haniff HS, Tong Y, Liu X, et al. Targeting the SARS-COV-2 RNA genome with small molecule binders and ribonuclease targeting chimera (RiboTAC) degraders. ACS Cent Sci. 2020;6(10):1713–1721. doi: 10.1021/acscentsci.0c00984
  • Liu X, Haniff HS, Childs-Disney JL, et al. Targeted degradation of the oncogenic MicroRNA 17-92 cluster by structure-targeting ligands. J Am Chem Soc. 2020;142(15):6970–6982. doi: 10.1021/jacs.9b13159
  • Bush JA, Aikawa H, Fuerst R. et al. Ribonuclease recruitment using a small molecule reduced c9ALS/FTD r(G4C2) repeat expansion in vitro and in vivo ALS models. Sci Transl Med. 2021; 13(617): eabd5991, doi: 10.1126/scitranslmed.abd5991
  • Zhang P, Liu X, Abegg D, et al. ReprogramMing of protein-targeted small-molecule medicines to RNA by ribonuclease recruitment. J Am Chem Soc. 2021;143(33):13044–13055. doi: 10.1021/jacs.1c02248
  • Tong Y, Gibaut QMR, Rouse W, et al. Transcriptome-wide mapping of small-molecule RNA-binding sites in cells informs an isoform-specific degrader of QSOX1 mRNA. J Am Chem Soc. 2022;144(26):11620–11625. doi: 10.1021/jacs.2c01929
  • Meyer SM, Tanaka T, Zanon PRA. et al. DNA-Encoded library screening to inform design of a ribonuclease targeting chimera (RiboTAC). J Am Chem Soc. 2022; 144(46): 21096–21102, doi: 10.1021/jacs.2c07217
  • Thakur CS, Jha BK, Dong B, et al. Small-molecule activators of RNase L with broad-spectrum antiviral activity. Proc Natl Acad Sci U S A. 2007;104(23):9585–9590. doi: 10.1073/pnas.0700590104
  • DeJesus-Hernandez M, Mackenzie IR, Boeve BF, et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron. 2011;72(2):245–256. doi: 10.1016/j.neuron.2011.09.011
  • Renton AE, Majounie E, Waite A, et al. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron. 2011;72(2):257–268. doi: 10.1016/j.neuron.2011.09.010
  • Gendron TF, Bieniek KF, Zhang YJ, et al. Antisense transcripts of the expanded C9ORF72 hexanucleotide repeat form nuclear RNA foci and undergo repeat-associated non-ATG translation in c9FTD/ALS. Acta Neuropathol. 2013;126(6):829–844. doi: 10.1007/s00401-013-1192-8
  • Chew J, Cook C, Gendron TF, et al. Aberrant deposition of stress granule-resident proteins linked to C9orf72-associated TDP-43 proteinopathy. Mol Neurodegener. 2019;14(1):14. doi: 10.1186/s13024-019-0310-z
  • Chen JL, Vanetten DM, Fountain MA, et al. Structure and dynamics of RNA repeat expansions that cause Huntington’s disease and myotonic dystrophy type 1. Biochemistry. 2017;56(27):3463. doi: 10.1021/acs.biochem.7b00252
  • Dhuri K, Bechtold C, Quijano E, et al. Antisense Oligonucleotides: an emerging area in drug discovery and development. J Clin Med. 2020;9(6):2004–2024. doi: 10.3390/jcm9062004
  • Janes J, Young ME, Chen E, et al. The ReFRAME library as a comprehensive drug repurposing library and its application to the treatment of cryptosporidiosis. Proc Natl Acad Sci U S A. 2018;115(42):10750–10755. doi: 10.1073/pnas.1810137115
  • Bush JA, Aikawa H, Fuerst R, et al. Ribonuclease recruitment using a small molecule reduced c9ALS/FTD r(G4C2) repeat expansion in vitro and in vivo ALS models. Sci Transl Med. 2021;13(617). 10.1126/scitranslmed.abd5991
  • Lengauer C, Kinzler KW, Vogelstein B. Genetic instabilities in human cancers. Nature. 1998;396(6712):643–649. doi: 10.1038/25292
  • Iorio M, Croce CM. MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review. EMBO Mol Med. 2012;4(3):143–159. doi: 10.1002/emmm.201100209
  • Han J, Lee Y, Yeom KH, et al. The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev. 2004;18(24):3016–3027. doi: 10.1101/gad.1262504
  • Lee Y, Ahn C, Han J, et al. The nuclear RNase III Drosha initiates microRNA processing. Nature. 2003;425(6956):415–419. doi: 10.1038/nature01957
  • Karube Y, Tanaka H, Osada H, et al. Reduced expression of Dicer associated with poor prognosis in lung cancer patients. Cancer Sci. 2005;96(2):111–115. doi: 10.1111/j.1349-7006.2005.00015.x
  • Merritt WM, Lin YG, Han LY, et al. Dicer, Drosha, and outcomes in patients with ovarian cancer. N Engl J Med. 2008;359(25):2641–2650. doi: 10.1056/NEJMoa0803785
  • Velagapudi SP, Cameron MD, Haga CL, et al. Design of a small molecule against an oncogenic noncoding RNA. Proc Natl Acad Sci U S A. 2016;113(21):5898–5903. doi: 10.1073/pnas.1523975113
  • Fu Z, Tindall DJ. Foxos, cancer and regulation of apoptosis. Oncogene. 2008;27(16):2312–2319. doi: 10.1038/onc.2008.24
  • Krichevsky AM, Gabriely G. MiR-21: a small multi-faceted RNA. J Cell Mol Med. 2009;13(1):39–53. doi: 10.1111/j.1582-4934.2008.00556.x
  • Li Y, Chen M, Liu J, et al. Upregulation of MicroRNA 18b contributes to the development of colorectal cancer by inhibiting CDKN2B. Mol Cell Biol. 2017;37(22):e00391–17. doi: 10.1128/MCB.00391-17
  • Gomez IG, MacKenna DA, Johnson BG, et al. Anti–microRNA-21 oligonucleotides prevent Alport nephropathy progression by stimulating metabolic pathways. J Clin Invest. 2014;125(1):141–156. doi: 10.1172/JCI75852
  • Medina PP, Nolde M, Slack FJ. OncomiR addiction in an in vivo model of microRNA-21-induced pre-B-cell lymphoma. Nature. 2010;467(7311):86–90. doi: 10.1038/nature09284
  • Baek JA, Song PH, Ko YH, et al. High expression of QSOX1 is associated with tumor invasiveness and high grades groups in prostate cancer. Pathol Res Pract. 2018;214(7):964–967. doi: 10.1016/j.prp.2018.05.019
  • Fifield AL, Hanavan PD, Faigel DO, et al. Molecular inhibitor of QSOX1 suppresses tumor growth in vivo. Mol Cancer Ther. 2020;19(1):112–122. doi: 10.1158/1535-7163.MCT-19-0233
  • Morgan BS, Sanaba BG, Donlic A, et al. R-BIND: an interactive database for exploring and developing RNA-Targeted chemical probes. ACS Chem Biol. 2019;14(12):2691–2700. doi: 10.1021/acschembio.9b00631
  • Disney MD, Winkelsas AM, Velagapudi SP, et al. Inforna 2.0: a platform for the sequence-based design of small molecules targeting structured RNAs. ACS Chem Biol. 2016;11(6):1720–1728. doi: 10.1021/acschembio.6b00001
  • Zhang P, Park HJ, Zhang J, et al. Translation of the intrinsically disordered protein α-synuclein is inhibited by a small molecule targeting its structured mRNA. Proc Natl Acad Sci U S A. 2020;117(3):1457–1467. doi: 10.1073/pnas.1905057117
  • Kumari D, Gazy I, Usdin K. PharmacolOgical reactivation of the silenced FMR1 gene as a targeted therapeutic approach for Fragile X syndrome. Brain Sci. 2019;9(2):39. doi: 10.3390/brainsci9020039
  • Spiegel J, Cromm PM, Zimmermann G, et al. Small-molecule modulation of Ras signaling. Nat Chem Biol. 2014;10(8):613–622. doi: 10.1038/nchembio.1560
  • Dang C, Reddy EP, Shokat KM, et al. Drugging the “undruggable” cancer targets. Nat Rev Cancer. 2017;17(8):502–508. doi: 10.1038/nrc.2017.36
  • Kieft JS, Costantino DA, Filbin ME, et al. Structural methods for studying IRES function. Methods Enzymol. 2007;430:333–371.
  • Chao Y, Li L, Girodat D, et al. In Vivo cleavage map illuminates the central role of RNase E in coding and non-coding RNA Pathways. Mol Cell. 2017;65(1):39–51. doi: 10.1016/j.molcel.2016.11.002
  • Nagarajan VK, Jones CI, Newbury SF, et al. XRN 5’→3’ exoribonucleases: structure, mechanisms and functions. Biochim Biophys Acta. 2013;1829(6–7):590–603. doi: 10.1016/j.bbagrm.2013.03.005
  • Morita Y, Shibutani T, Nakanishi N, et al. Human endonuclease V is a ribonuclease specific for inosine-containing RNA. Nat Commun. 2013;4(1):2273. doi: 10.1038/ncomms3273
  • Houser WM, Butterer A, Addepalli B, et al. Combining recombinant ribonuclease U2 and protein phosphatase for RNA modification mapping by liquid chromatography–mass spectrometry. Anal Biochem. 2015;478:52–58. doi: 10.1016/j.ab.2015.03.016
  • Ward JA, Perez-Lopez C, Mayor-Ruiz C. Biophysical and computational approaches to study ternary complexes: a ‘cooperative relationship’ to rationalize targeted protein degradation. Chembiochem. 2023;24(10):e202300163. doi: 10.1002/cbic.202300163
  • Lipinski CA, Lombardo F, Dominy BW, et al. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings 1PII of original article: s0169-409X(96)00423-1. The article was originally published in advanced drug delivery reviews 23 (1997) 3–25. 1. Adv Drug Deliv Rev. 2001;46(1–3):3–26. doi: 10.1016/S0169-409X(00)00129-0

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.