827
Views
0
CrossRef citations to date
0
Altmetric
Perspective

Recent advances in measurement of metabolic clearance, metabolite profile and reaction phenotyping of low clearance compounds

Pages 1209-1219 | Received 05 Apr 2023, Accepted 17 Jul 2023, Published online: 01 Aug 2023

References

  • Di L, Kerns EH. Drug-Like Properties: concepts, Structure Design, and Methods. London (UK): Elevier; 2016.
  • van De Waterbeemd H, Smith DA, Beaumont K, et al. Property-based design: optimization of drug absorption and pharmacokinetics. J Med Chem. 2001 Apr 26;44(9):1313–1333. doi: 10.1021/jm000407e
  • Waring MJ, Arrowsmith J, Leach AR, et al. An analysis of the attrition of drug candidates from four major pharmaceutical companies. Nat Rev Drug Discov. 2015 Jul 01;14(7):475–486.
  • Sun D, Gao W, Hu H, et al. Why 90% of clinical drug development fails and how to improve it? Acta Pharm Sin B. 2022 Jul 01;12(7):3049–3062.
  • Smith DA, van de Waterbeemd H, Walker DK. Pharmacokinetics and Metabolism in Drug Design. Second. Weinheim: Wiley-VCH Verlag GmbH & Co, KGaA. Weinheim: Wiley-VCH Verlag GmbH & Co, KGaA; 2006. Copyright © 2023.
  • Di L, Kerns EH, Ma XJ, et al. Applications of high throughput microsomal stability assay in drug discovery. Comb Chem High Throughput Screening. 2008;11(6):469–476. doi: 10.2174/138620708784911429
  • Hop CECA, Cole MJ, Davidson RE, et al. High throughput ADME screening: practical considerations, impact on the portfolio and enabler of in silico ADME models. Curr Drug Metab. 2008;9(9):847–853. doi: 10.2174/138920008786485092
  • Kerns EH, Di L. Pharmaceutical profiling in drug discovery. Drug Discov Today. 2003 Apr 1;8(7):316–323. doi: 10.1016/S1359-6446(03)02649-7
  • Shou WZ. Current status and future directions of high-throughput ADME screening in drug discovery. J Pharm Anal. 2020 Jun;10(3):201–208. doi: 10.1016/j.jpha.2020.05.004
  • Kassel DB. Applications of high-throughput ADME in drug discovery. Curr Opin Chem Biol. 2004 Jun 01;8(3):339–345.
  • Wan H, Holmen AG. High throughput screening of physicochemical properties and in vitro ADME profiling in drug discovery. Comb Chem High Throughput Screen. 2009;12(3):315–329. doi: 10.2174/138620709787581701
  • Di L, Kerns EH. Profiling drug-like properties in discovery research. Curr Opin Chem Biol. 2003 Jun;7(3):402–408. doi: 10.1016/S1367-5931(03)00055-3
  • Kerns EH. High throughput physicochemical profiling for drug discovery [10.1002/jps.11/01;90(11): 1838-185834]. J Pharmaceut sci. 2001;2001(11):1838–1858. doi: 10.1002/jps.1134
  • Balakin KV, Ivanenkov YA, Savchuk NP, et al. Comprehensive computational assessment of ADME properties using mapping techniques. Curr Drug Discov Technol. 2005 Jun;2(2):99–113.
  • Yu H, Adedoyin A. ADME-Tox in drug discovery: integration of experimental and computational technologies. Drug Discov Today. 2003 Sep 15;8(18):852–861. doi: 10.1016/S1359-6446(03)02828-9
  • Egan WJ. Chapter 29 computational models for ADME. In: Macor J, editor. Annual Reports in Medicinal Chemistry. Vol. 42, Academic Press; 2007. p. 449–467. doi: 10.1016/S0065-7743(07)42029-2.
  • Anup N, Gadeval A, Rajpoot K, et al. Chapter 24 - Software used in ADME computation. In: Tekade Reditor Biopharmaceutics and Pharmacokinetics ConsiderationsVol. 1. Academic Press;2021. p. 699–708. 10.1016/B978-0-12-814425-1.00006-1
  • Delisle KR, Lowrie FJ, Hobbs WD, et al. Computational ADME/Tox modeling: aiding understanding and enhancing decision making in drug design. Curr Comput Aided Drug Des. 2005;1(4):325–345. doi: 10.2174/157340905774330309
  • Shin HK, Kang Y-M, No KT, et al. Predicting ADME Properties of Chemicals. In: Leszczynski J, Kaczmarek-Kedziera A Puzyn Teditors. Handbook of Computational Chemistry. Cham: Springer International Publishing; 2017. p. 2265–2301.
  • Prentis RA, Lis Y, Walker SR. Pharmaceutical innovation by the seven UK-owned pharmaceutical companies (1964-1985). Br J Clin Pharmacol. 1988;25(3):387–396. doi: 10.1111/j.1365-2125.1988.tb03318.x
  • Kennedy T. Managing the drug discovery/development interface. Drug Discovery Today. 1997 Oct 01;2(10):436–444.
  • Williams JA, Hyland R, Jones BC, et al. Drug-drug interactions for UDP-glucuronosyltransferase substrates: A pharmacokinetic explanation for typically observed low exposure (AUCi/AUC) ratios [10.1124/dmd.104.000794]. Drug Metab Dispos. 2004;32(11):1201–1208. doi: 10.1124/dmd.104.000794
  • Saravanakumar A, Sadighi A, Ryu R, et al. Physicochemical properties, biotransformation, and transport pathways of established and newly approved medications: a systematic review of the top 200 most prescribed drugs vs. the FDA-Approved drugs between 2005 and 2016 [10.1007/s40262-019-00750-8]. Clin Pharmacokinet. 2019;58(10):1281–1294. doi: 10.1007/s40262-019-00750-8
  • Smith DA, Beaumont K, Maurer TS, et al. Clearance in drug design [10.1021/acs.Jmedchem.8b01263]. J Med Chem. 2019;62(5):2245–2255. doi: 10.1021/acs.jmedchem.8b01263
  • Di L, Obach RS. Addressing the challenges of low clearance in drug research. Aaps J. 2015 Mar;17(2):352–357. doi: 10.1208/s12248-014-9691-7
  • Di L, Trapa P, Obach RS, et al. A novel relay method for determining low-clearance values [10.1124/dmd.112.046425]. Drug Metab Dispos. 2012;40(9):1860–1865. doi: 10.1124/dmd.112.046425
  • Lu AY, Wang RW, Lin JH. Cytochrome P450 in vitro reaction phenotyping: a re-evaluation of approaches used for P450 isoform identification. Drug Metab Dispos. 2003 Apr;31(4):345–350. doi: 10.1124/dmd.31.4.345
  • Lin C, Shi J, Moore A, et al. Prediction of drug clearance and drug-drug interactions in microscale cultures of human hepatocytes [10.1124/dmd.115.066027]. Drug Metab Dispos. 2016;44(1):127–136. doi: 10.1124/dmd.115.066027
  • Bonn B, Svanberg P, Janefeldt A, et al. Determination of human hepatocyte intrinsic clearance for slowly metabolized compounds: comparison of a primary hepatocyte/stromal cell co-culture with plated primary hepatocytes and HepaRG [10.1124/dmd.115.067769]. Drug Metab Dispos. 2016;44(4):527–533. doi: 10.1124/dmd.115.067769
  • Hultman I, Vedin C, Abrahamsson A, et al. Use of HμREL human coculture system for prediction of intrinsic clearance and metabolite formation for slowly metabolized compounds [10.1021/acs.Molpharmaceut.6b00396]. Mol Pharm. 2016;13(8):2796–2807. doi: 10.1021/acs.molpharmaceut.6b00396
  • Riede J, Wollmann BM, Molden E, et al. Primary human hepatocyte spheroids as an in vitro tool for investigating drug compounds with low hepatic clearance. Drug Metab Dispos. 2021;49(7):501–508. doi: 10.1124/dmd.120.000340
  • Preiss LC, Lauschke VM, Georgi K, et al. Multi-well array culture of primary human hepatocyte spheroids for clearance extrapolation of slowly metabolized compounds. Aaps J. 2022 Mar 11;24(2):41. doi: 10.1208/s12248-022-00689-y
  • Kratochwil NA, Meille C, Fowler S, et al. Metabolic profiling of human long-term liver models and hepatic clearance predictions from in vitro data using nonlinear mixed-effects modeling [10.1208/s12248-016-0019-7]. Aaps J. 2017;19(2):534–550. doi: 10.1208/s12248-016-0019-7
  • Novik EI, Dwyer J, Morelli JK, et al. Long-enduring primary hepatocyte-based co-cultures improve prediction of hepatotoxicity [10.1016/j.Taap.2017.09.013]. Toxicol Appl Pharmacol. 2017;336:20–30.
  • Di L. Reaction phenotyping to assess victim drug-drug interaction risks [10.1080/17460441.2017.1367280]. Expert Opin Drug Discov. 2017;12(11):1105–1115. doi: 10.1080/17460441.2017.1367280
  • Lu C, Di L. In vitro and in vivo methods to assess pharmacokinetic drug- drug interactions in drug discovery and development [10.1002/bdd.2212]. Biopharm Drug Dispos. 2020;41(1–2):3–31. doi: 10.1002/bdd.2212
  • https://visikol.com/hurel-micro-livers/videos/.
  • Kazmi F, Barbara JE, Yerino P, et al. A long-standing mystery solved: the formation of 3-hydroxydesloratadine is catalyzed by CYP2C8 but prior glucuronidation of desloratadine by UDP-glucuronosyltransferase 2B10 is an obligatory requirement. Drug Metab Dispos. 2015 Apr;43(4):523–533.
  • Di L, Atkinson K, Orozco CC, et al. In vitro-in vivo correlation for low-clearance compounds using hepatocyte relay method [10.1124/dmd.113.053322]. Drug Metab Dispos. 2013;41(12):2018–2023. doi: 10.1124/dmd.113.053322
  • Yang X, Atkinson K, Di L. Novel cytochrome P450 reaction phenotyping for low-clearance compounds using the hepatocyte relay method. Drug Metab Dispos. 2016;44(3):460–465. doi: 10.1124/dmd.115.067876
  • Di L, Kerns EH, Gao N, et al. Experimental design on single-time-point high-throughput microsomal stability assay [10.1002/jps.20076]. J Pharm Sci. 2004;93(6):1537–1544. doi: 10.1002/jps.20076
  • Tess DA, Ryu S, Di L. In Vitro - in vivo extrapolation of hepatic clearance in preclinical species. Pharm Res. 2022 Jul;39(7):1615–1632. doi: 10.1007/s11095-022-03205-1
  • Tess D, Chang GC, Keefer C, et al. In vitro-in vivo extrapolation and scaling factors for clearance of human and preclinical species with liver microsomes and hepatocytes. AAPS journal. 2023;25(4):40. doi:10.1208/s12248-023-00800-x
  • Murgasova R. Further assessment of the relay hepatocyte assay for determination of intrinsic clearance of slowly metabolised compounds using radioactivity monitoring and LC–MS methods. Eur J Drug Metab Pharmacokinet. 2019 Dec;44(6):817–826. doi: 10.1007/s13318-019-00571-x
  • Brorson S-H. Bovine serum albumin (BSA) as a reagent against non-specific immunogold labeling on LR-White and epoxy resin. Micron. 1997 Jun 01;28(3):189–195.
  • Ahirwar R, Bariar S, Balakrishnan A, et al. BSA blocking in enzyme-linked immunosorbent assays is a non-mandatory step: a perspective study on mechanism of BSA blocking in common ELISA protocols [10.1039/C5RA20750A]. RSC Adv. 2015;5(121):100077–100083. doi: 10.1039/C5RA20750A
  • Cai X, Madari S, Walker A, et al. Addition of optimized bovine serum albumin level in a high-throughput Caco-2 assay enabled accurate permeability assessment for lipophilic compounds. Slas Discovery. 2019 Aug 01;24(7):738–744.
  • Tátrai P, Schweigler P, Poller B, et al. A Systematic in vitro Investigation of the Inhibitor Preincubation Effect on Multiple Classes of Clinically Relevant Transporters. Drug Metab Dispos. 2019 Jul;47(7):768–778.
  • Farajollahi MM, Cook DB, Hamzehlou S, et al. Reduction of non-specific binding in immunoassays requiring long incubations. Scand J Clin Lab Invest. 2012 Nov;72(7):531–539.
  • Zhang B, Wang X, Liu F, et al. Effective Reduction of Nonspecific Binding by Surface Engineering of Quantum Dots with Bovine Serum Albumin for Cell-Targeted Imaging. Langmuir. 2012 Dec 04;28(48):16605–16613.
  • Ballard TE, Orozco CC, Obach RS. Generation of major human excretory and circulating drug metabolites using a hepatocyte relay method. Drug Metab Dispos. 2014 May;42(5):899–902. doi: 10.1124/dmd.114.057026
  • Yang X, Ryu S, Di L. Dasotraline as a selective cytochrome 2B6 inhibitor for reaction phenotyping [10.1002/bdd.2207]. Biopharm Drug Dispos. 2019;40(9):358–361. doi: 10.1002/bdd.2207
  • Yang X, Johnson N, Di L. Evaluation of Cytochrome P450 Selectivity for Hydralazine as an Aldehyde Oxidase Inhibitor for Reaction Phenotyping [10.1016/j.Xphs.2018.11.007. J Pharm Sci. 2019;108(4):1627–1630. Philadelphia PA, U: S)
  • Peng C-C, Doshi U, Prakash C, et al. A Novel Plated Hepatocyte Relay Assay (PHRA) for in vitro Evaluation of Hepatic Metabolic Clearance of Slowly Metabolized Compounds. Drug Metab Lett. 2016;10(1):3–15. doi: 10.2174/1872312809666150818111500
  • de Vries LE, Jansen PAM, Barcelo C, et al. Preclinical characterization and target validation of the antimalarial pantothenamide MMV693183. Nat Commun. 2022 Apr 20;13(1):2158.
  • St Jean PL, Xue Z, Carter N, et al. Tafenoquine treatment of Plasmodium vivax malaria: suggestive evidence that CYP2D6 reduced metabolism is not associated with relapse in the Phase 2b DETECTIVE trial. Malar J. 2016 Feb 18;15(1):97. doi: 10.1186/s12936-016-1145-5
  • Vries R, Jacobs F, Mannens G, et al. Apalutamide Absorption, Metabolism, and Excretion in Healthy Men, and Enzyme Reaction in Human Hepatocytes. Drug Metab Dispos. 2019;47(5):453–464. doi: 10.1124/dmd.118.084517
  • Tess D, Chang GC, Keefer C, et al. In Vitro-In Vivo Extrapolation and Scaling Factors for Clearance of Human and Preclinical Species with Liver Microsomes and Hepatocytes. Aaps J. 2023 Apr 13;25(3):40.
  • Khetani SR, Bhatia SN. Microscale culture of human liver cells for drug development. Nature Biotechnol. 2008 Jan 01;26(1):120–126. doi: 10.1038/nbt1361
  • Chan TS, Yu H, Moore A, et al. Meeting the challenge of predicting hepatic clearance of compounds slowly metabolized by cytochrome P450 using a novel hepatocyte model, HepatoPac [10.1124/dmd.113.053397]. Drug Metab Dispos. 2019;47(1):58–66. doi: 10.1124/dmd.113.053397fullarticlecorrection
  • Da-Silva F, Boulenc X, Vermet H, et al. Improving Prediction of Metabolic Clearance Using Quantitative Extrapolation of Results Obtained from Human Hepatic Micropatterned Cocultures Model and by Considering the Impact of Albumin Binding. J Pharmaceut sci. 2018 Jul 01;107(7):1957–1972.
  • Lin C, Shi J, Moore A, et al. Prediction of Drug Clearance and Drug-Drug Interactions in Microscale Cultures of Human Hepatocytes. Drug Metab Dispos. 2016 Jan;44(1):127–136.
  • Docci L, Klammers F, Ekiciler A, et al. In Vitro to in vivo Extrapolation of Metabolic Clearance for UGT Substrates Using Short-Term Suspension and Long-Term Co-cultured Human Hepatocytes. Aaps J. 2020 Oct 13;22(6):131. doi: 10.1208/s12248-020-00482-9
  • Wang WW, Khetani SR, Krzyzewski S, et al. Assessment of a micropatterned hepatocyte coculture system to generate major human excretory and circulating drug metabolites [10.1124/dmd.110.034876]. Drug Metab Dispos. 2010;38(10):1900–1905. doi: 10.1124/dmd.110.034876
  • Ballard TE, Kratochwil NA, Cox LM, et al. Simplifying the Execution of HepatoPac MetID Experiments: Metabolite Profile and Intrinsic Clearance Comparisons. Drug Metab Dispos. 2020;48(9):DMD-AR-2020–000013. doi: 10.1124/dmd.120.000013
  • Ballard TE, Wang S, Cox LM, et al. Application of a Micropatterned Cocultured Hepatocyte System to Predict Preclinical and Human-Specific Drug Metabolism. Drug Metab Dispos. 2016;44(2):172–179. doi: 10.1124/dmd.115.066688
  • Smith SR, Lyman MJ, Ma B, et al. Reaction Phenotyping of Low-Turnover Compounds in Long-term Hepatocyte Cultures Through Persistent Selective Inhibition of Cytochromes P450. Drug Metab Dispos. 2021;49(11):DMD-AR-2021–000601. doi: 10.1124/dmd.121.000601
  • Klammers F, Goetschi A, Ekiciler A, et al. Estimation of fraction metabolized by cytochrome P450 (CYP) enzymes using long-term co-cultured human hepatocytes. Drug Metab Dispos. 2022;50(5):DMD-AR-2021–000765. doi: 10.1124/dmd.121.000765
  • Dixit V, Moore A, Tsao H, et al. Application of Micropatterned Cocultured Hepatocytes to Evaluate the Inductive Potential and Degradation Rate of Major Xenobiotic Metabolizing Enzymes. Drug Metab Dispos. 2016 Feb;44(2):250–261.
  • Ramsden D, Tweedie DJ, Chan TS, et al. Bridging in vitro and in vivo Metabolism and Transport of Faldaprevir in Human Using a Novel Cocultured Human Hepatocyte System, HepatoPac. Drug Metab Dispos. 2014;42(3):394–406. doi: 10.1124/dmd.113.055897
  • Ramsden D, Tweedie DJ, St George R, et al. Generating an in vitro-in vivo correlation for metabolism and liver enrichment of a hepatitis C virus drug, faldaprevir, using a rat hepatocyte model (HepatoPac). Drug Metab Dispos. 2014 Mar;42(3):407–414.
  • Hultman I, Vedin C, Abrahamsson A, et al. Use of HμREL Human Coculture System for Prediction of Intrinsic Clearance and Metabolite Formation for Slowly Metabolized Compounds. Mol Pharm. 2016 Aug 1;13(8):2796–2807. doi: 10.1021/acs.molpharmaceut.6b00396
  • Burton RD, Hieronymus T, Chamem T, et al. Assessment of the biotransformation of low-turnover drugs in the HµREL human hepatocyte coculture model. Drug Metab Dispos. 2018 Nov;46(11):1617–1625.
  • Mizoi K, Arakawa H, Yano K, et al. Utility of Three-Dimensional Cultures of Primary Human Hepatocytes (Spheroids) as Pharmacokinetic Models. Biomedicines. 2020 Sep 23;8(10):374. doi: 10.3390/biomedicines8100374
  • Kanebratt KP, Janefeldt A, Vilén L, et al. Primary Human Hepatocyte Spheroid Model as a 3D in vitro Platform for Metabolism Studies. J Pharm Sci. 2021 Jan;110(1):422–431.
  • Ingelman-Sundberg M, Lauschke VM. 3D human liver spheroids for translational pharmacology and toxicology. Basic Clin Pharma Tox. 2022 Jan;130 Suppl 1:5–15. doi: 10.1111/bcpt.13587
  • Hendriks DFG, Vorrink SU, Smutny T, et al. Clinically relevant cytochrome P450 3A4 induction mechanisms and drug screening in three-dimensional spheroid cultures of primary human hepatocytes. Clin Pharmacol Ther. 2020;108(4):844–855. doi: 10.1002/cpt.1860
  • Brown HS, Griffin M, Houston JB. Evaluation of cryopreserved human hepatocytes as an alternative in vitro system to microsomes for the prediction of metabolic clearance [10.1124/dmd.106.011569]. Drug Metab Dispos. 2007;35(2):293–301. doi: 10.1124/dmd.106.011569
  • Zhang H, Davis CD, Sinz MW, et al. Cytochrome P450 reaction-phenotyping: an industrial perspective. Expert Opin Drug Metab Toxicol. 2007 Oct 01;3(5):667–687.
  • Zhang D, Wang L, Chandrasena G, et al. Involvement of multiple cytochrome P450 and UDP-Glucuronosyltransferase enzymes in the in vitro metabolism of muraglitazar. Drug Metab Dispos. 2007;35(1):139–149. doi: 10.1124/dmd.106.011932
  • Bauman JN, Doran AC, King-Ahmad A, et al. The pharmacokinetics, metabolism, and clearance mechanisms of abrocitinib, a selective janus kinase inhibitor, in humans. Drug Metab Dispos. 2022;50(8):1106–1118. doi: 10.1124/dmd.122.000829
  • Huh Y, Smith DE, Feng MR. Interspecies scaling and prediction of human clearance: comparison of small- and macro-molecule drugs. Xenobiotica. 2011 Nov;41(11):972–987. doi: 10.3109/00498254.2011.598582
  • Mahmood I, Balian JD. Interspecies scaling: predicting clearance of drugs in humans. Three different approaches. Xenobiotica. 1996 Jan 01;26(9):887–895.
  • Tang H, Mayersohn M. A novel model for prediction of human drug clearance by allometric scaling. Drug Metab Dispos. 2005;33(9):1297–1303. doi: 10.1124/dmd.105.004143
  • Lai Y, Chu X, Di L, et al. Recent advances in the translation of drug metabolism and pharmacokinetics science for drug discovery and development. Acta Pharm Sin B. 2022 Jun 01;12(6):2751–2777.
  • Keefer C, Chang G, Carlo A, et al. Mechanistic insights on clearance and inhibition discordance between liver microsomes and hepatocytes when clearance in liver microsomes is higher than in hepatocytes [10.1016/j.ejps.2020.105541]. Eur J Pharm Sci. 2020;155:105541. doi: 10.1016/j.ejps.2020.105541

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.