361
Views
0
CrossRef citations to date
0
Altmetric
Drug Discovery Case History

The preclinical discovery and development of deucravacitinib for the treatment of psoriasis

, , , ORCID Icon, , , ORCID Icon & show all
Pages 1201-1208 | Received 18 May 2023, Accepted 08 Aug 2023, Published online: 13 Aug 2023

References

  • Rendon A, Schäkel K. Psoriasis pathogenesis and treatment. Int J Mol Sci. 2019 Mar 23;20(6):1475. PMID: 30909615; PMCID: PMC6471628. doi: 10.3390/ijms20061475
  • Menter A. Psoriasis and psoriatic arthritis overview. Am J Manag Care. 2016;22:s216–24.
  • Armstrong AW, Pathophysiology RC. Clinical presentation, and treatment of psoriasis: a review. JAMA. 2020 May 19;323:1945–1960. doi: 10.1001/jama.2020.4006
  • Veale DJ, Fearon U. The pathogenesis of psoriatic arthritis. Lancet. 2018 Jun 2;391(10136):2273–2284. doi: 10.1016/S0140-6736(18)30830-4
  • Feldman SR, Krueger GG. Psoriasis assessment tools in clinical trials. Ann Rheum Dis. 2005;64:ii65–8. discussion ii69-73. doi: 10.1136/ard.2004.031237
  • Kim WB, Jerome D, Yeung J. Diagnosis and management of psoriasis. Can Fam Physician. 2017;63:278–285.
  • Elmets CA, Korman NJ, Prater EF, et al. Joint AAD-NPF guidelines of care for the management and treatment of psoriasis with topical therapy and alternative medicine modalities for psoriasis severity measures. J Am Acad Dermatol. 2021;84:432–470. doi: 10.1016/j.jaad.2020.07.087
  • Kaushik SB, Lebwohl MG. Psoriasis: which therapy for which patient: psoriasis comorbidities and preferred systemic agents. J Am Acad Dermatol. 2019;80:27–40. doi: 10.1016/j.jaad.2018.06.057
  • Słuczanowska-Głąbowska S, Ziegler-Krawczyk A, Szumilas K, et al. Role of janus kinase inhibitors in therapy of psoriasis. J Clin Med. 2021;10(19):4307. doi: 10.3390/jcm10194307
  • Krueger JG, McInnes IB, Blauvelt A. Tyrosine kinase 2 and janus kinase‒signal transducer and activator of transcription signaling and inhibition in plaque psoriasis. J Am Acad Dermatol. 2022;86(1):148–157. doi: 10.1016/j.jaad.2021.06.869
  • Nestle FO, Conrad C, Tun-Kyi A, et al. Plasmacytoid predendritic cells initiate psoriasis through interferon-alpha production. J Exp Med. 2005;202:135–143.
  • Kobayashi M, Fitz L, Ryan M, et al. Identification and purification of natural killer cell stimulatory factor (NKSF), a cytokine with multiple biologic effects on human lymphocytes. J Exp Med. 1989;170:827–846. doi: 10.1084/jem.170.3.827
  • Kubin M, Kamoun M, Trinchieri G. Interleukin-12 synergizes with B7/CD28 interaction in inducing efficient proliferation and cytokine production of human T cells. J Exp Med. 1994;180:211–222. doi: 10.1084/jem.180.1.211
  • Chan SH, b P, Gupta JW, et al. Induction of IFN-[gamma] production by NK-cell stimulatory factor (NKSF): characterization of the responder cells and synergy with other inducers. J Exp Med. 1991;173:869–879. doi: 10.1084/jem.173.4.869
  • Chiricozzi A, Saraceno R, Chimenti MS, et al. Role of IL-23 in the pathogenesis of psoriasis: a novel potential therapeutic target? Expert Opin Ther Targets. 2014;18(5):513–525. doi: 10.1517/14728222.2014.889686
  • Trinchieri G. Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat Rev Immunol. 2003;3(2):133–146. doi: 10.1038/nri1001
  • Parham C, Chirica M, Timans J, et al. A receptor for the heterodimeric cytokine IL-23 is composed of IL-12Rβ1 and a novel cytokine receptor subunit, IL-23R. J Immunol. 2002;168:5699–5708. doi: 10.4049/jimmunol.168.11.5699
  • Bacon CM, Petricoin EF, Ortaldo JR, et al. Interleukin 12 induces tyrosine phosphorylation and activation of STAT4 in human lymphocytes. Proc Natl Acad Sci U S A. 1995;92(16):7307–7311. doi: 10.1073/pnas.92.16.7307
  • Thierfelder WE, Van Deursen JM, Yamamoto K, et al. Requirement for STAT4 in Interleukin 12-mediated responses of natural killer and T cells. Nature. 1996;382:171–174. doi: 10.1038/382171a0
  • Aggarwal S, Ghilardi N, Xie MH, et al. Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17. J Biol Chem. 2003;278(3):1910–1914. doi: 10.1074/jbc.M207577200
  • Yawalkar N, Karlen S, Hunger R, et al. Expression of interleukin-12 is increased in psoriatic skin. J Invest Dermatol. 1998;111(6):1053–1057. doi: 10.1046/j.1523-1747.1998.00446.x
  • Trepicchio W, Ozawa M, Walters IB, et al. Interleukin-11 therapy selectively down- regulates type I cytokine proinflammatory pathways in psoriasis lesions. J Clin Invest. 1999;104:1527–1537. doi: 10.1172/JCI6910
  • Chan JR, Blumenschein W, Murphy E, et al. IL-23 stimulates epidermal hyperplasia via TNF and IL-20R2-dependent mechanisms with implications for psoriasis pathogenesis. J Exp Med. 2006;203:2577–2587. doi: 10.1084/jem.20060244
  • Johnson-Huang LM, Suárez-Fariñas M, Sullivan-Whalen M. Effective narrow-band UVB radiation therapy suppresses the IL-23/IL-17 axis in normalized psoriasis plaques. J Invest Dermatol. 2010;130(11):2654–2663. doi: 10.1038/jid.2010.166
  • Harden JL, Johnson-Huang LM, Chamian MF, et al. Humanized anti-IFN-γ (HuZAF) in the treatment of psoriasis. J Allergy Clin Immunol. 2015;135:553–556.
  • Wechter T, Cline A, Feldman SR. Targeting p19 as a treatment option for psoriasis: an evidence-based review of guselkumab. Ther Clin Risk Manag. 2018;14:1489–1497. doi: 10.2147/TCRM.S177127
  • Martin G. Novel therapies in plaque psoriasis: a review of tyrosine kinase 2 inhibitors. Dermatol Ther (Heidelb). 2023;13(2):417–435. doi: 10.1007/s13555-022-00878-9
  • Hu X, Li J, Fu M, et al. The JAK/STAT signaling pathway: from bench to clinic. Signal Transduct Target Ther. 2021;6(1):402. doi: 10.1038/s41392-021-00791-1
  • Müller M, Briscoe J, Laxton C, et al. The protein tyrosine kinase JAK1 complements defects in interferon-alpha/beta and -gamma signal transduction. Nature. 1993;366:129–135. doi: 10.1038/366129a0
  • Howell MD, Kuo FI, Smith PA. Targeting the janus kinase family in autoimmune skin diseases. Front Immunol. 2019;10:2342. doi: 10.3389/fimmu.2019.02342
  • Rusiñol L, Puig L. Tyk2 targeting in immune-mediated inflammatory diseases. Int J Mol Sci. 2023;24(4):3391. doi: 10.3390/ijms24043391
  • Burke JR, Cheng L, Gillooly KM, et al. Autoimmune pathways in mice and humans are blocked by pharmacological stabilization of the TYK2 pseudokinase domain. Sci Transl Med. 2019;11(502):eaaw1736. doi: 10.1126/scitranslmed.aaw1736
  • Ishizaki M, Muromoto R, Akimoto T, et al. Tyk2 is a therapeutic target for psoriasis-like skin inflammation. Int Immunol. 2014;26(5):257–267. doi: 10.1093/intimm/dxt062
  • Aizu K, Li W, Yajima T, et al. An important role of Tyk2 in APC function of dendritic cells for priming CD8+ T cells producing IFN-gamma. Eur J Immunol. 2006;36:3060–3070. doi: 10.1002/eji.200636173
  • Simonovic N, Witalisz-Siepracka A, Meissl K, et al. NK cells require cell-extrinsic and -intrinsic TYK2 for full functionality in tumor surveillance and antibacterial immunity. J Immunol. 2019;202(6):1724–1734. doi: 10.4049/jimmunol.1701649
  • Shimoda K, Tsutsui H, Aoki K, et al. Partial impairment of interleukin-12 (IL-12) and IL-18 signaling in Tyk2-deficient mice. Blood. 2002;99:2094–2099. doi: 10.1182/blood.V99.6.2094
  • SOTYKU FDA approval history; [cited 2023 Apr 16]. Available from: https://www.drugs.com/history/sotyktu.html
  • Nogueira M, Puig L, Torres T. JAK inhibitors for treatment of psoriasis: focus on selective TYK2 inhibitors. Drugs. 2020;80(4):341–352. doi: 10.1007/s40265-020-01261-8
  • Chimalakonda A, Burke J, Cheng L, et al. Selectivity profile of the tyrosine kinase 2 inhibitor deucravacitinib compared with Janus kinase 1/2/3 inhibitors. Dermatol Ther (Heidelb). 2021;11(5):1763–1776. doi: 10.1007/s13555-021-00596-8
  • Sohn SJ, Barrett K, Van Abbema A, et al. A restricted role for TYK2 catalytic activity in human cytokine responses revealed by novel TYK2-selective inhibitors. J Immunol. 2013;191(5):2205–2216. doi: 10.4049/jimmunol.1202859
  • Bellinato F, Gisondi P, Girolomoni G. Latest advances for the treatment of chronic plaque psoriasis with biologics and oral small molecules. Biologics. 2021;15:247–253. doi: 10.2147/BTT.S290309
  • Zhang L, Guo L, Wang L, et al. The efficacy and safety of tofacitinib, peficitinib, solcitinib, baricitinib, abrocitinib and deucravacitinib in plaque psoriasis - a network meta-analysis. J Eur Acad Dermatol Venereol. 2022;36:1937–1946. doi: 10.1111/jdv.18263
  • Strober B, Thaçi D, Sofen H, et al. Deucravacitinib versus placebo and apremilast in moderate to severe plaque psoriasis: efficacy and safety results from the 52-week, randomized, double-blinded, phase 3 program for evaluation of TYK2 inhibitor psoriasis second trial. J Am Acad Dermatol. 2023;88(1):40–51. doi: 10.1016/j.jaad.2022.08.061
  • Hoy SM. Deucravacitinib: first approval. Drugs. 2022;82:1671–1679. doi: 10.1007/s40265-022-01796-y
  • Xie JH, Gillooly K, Zhang Y, et al. BMS-986165 is a highly potent and selective allosteric inhibitor of Tyk2, blocks Il-12, Il-23 and type I interferon signaling and provides for robust efficacy in preclinical models of inflammatory bowel disease [abstract no. 349]. Gastroenterology. 2018;154(6):S–1357. doi: 10.1016/S0016-5085(18)34439-1
  • Dendrou CA, Cortes A, Shipman L, et al. Resolving TYK2 locus genotype-to-phenotype differences in autoimmunity. Sci Transl Med. 2016;8(363):363ra149. doi: 10.1126/scitranslmed.aag1974
  • Braun D, Caramalho I, Demengeot J. IFN-alpha/beta enhances BCR-dependent B cell responses. Int Immunol. 2002;14:411–419. doi: 10.1093/intimm/14.4.411
  • Catlett IM, Hu Y, Gao L, et al. Molecular and clinical effects of selective tyrosine kinase 2 inhibition with deucravacitinib in psoriasis. J Allergy Clin Immunol. 2022;149(6):2010–2020.e8. doi: 10.1016/j.jaci.2021.11.001
  • Armstrong AW, Gooderham M, Warren RB, et al. Deucravacitinib versus placebo and apremilast in moderate to severe plaque psoriasis: efficacy and safety results from the 52-week, randomized, double-blinded, placebo-controlled phase 3 POETYK PSO-1 trial. J Am Acad Dermatol. 2023;88(1):29–39. doi: 10.1016/j.jaad.2022.07.002
  • Truong TM, Pathak GN, Singal A, et al. Deucravacitinib: the first FDA-Approved oral TYK2 inhibitor for moderate to severe plaque psoriasis. Ann Pharmacother. 2023 Jun 21;10600280231153863. Epub ahead of print. PMID: 37341177. doi: 10.1177/10600280231153863
  • Potestio L, Ruggiero A, Fabbrocini G, et al. Effectiveness and safety of deucravacitinib for the management of psoriasis: a review of the current literature. Psoriasis (Auckl) PMID: 37168605; PMCID: PMC10166089 2023 May 4;13:19–26. doi: 10.2147/PTT.S407647
  • Sotyktu. European medicines Agency. [cited 2023 Apr 16]. Available from: https://www.ema.europa.eu/en/medicines/human/EPAR/sotyktu
  • Macchi P, Villa A, Giliani S, et al. Mutations of Jak- 3 gene in patients with autosomal severe combined immune deficiency (SCID). Nature. 1995;377(6544):65–68. doi: 10.1038/377065a0
  • Xeljanz FDA Approval History. Drugs.Com. [cited 2023 Jul 26]. Available from: https://www.drugs.com/history/xeljanz.html
  • Olumiant FDA Approval History. Drugs.Com. [cited 2023 Jul 26]. Available from: https://www.drugs.com/history/olumiant.html
  • Jakafi FDA Approval History. Drugs.Com. [cited 2023 Jul 26]. Available from: https://www.drugs.com/history/jakafi.html
  • Janus kinase inhibitors (JAKi). European Medicines Agency. [cited 2023 Jul 27]. Available from: https://www.ema.europa.eu/en/medicines/human/referrals/janus-kinase-inhibitors-jaki
  • Spencer S, Kostel Bal S, Egner W, et al. Loss of the interleukin-6 receptor causes immunodeficiency, atopy, and abnormal inflam- matory responses. J Exp Med. 2019;216:1986–1998. doi: 10.1084/jem.20190344
  • Bristol-Myers Squibb. Efficacy and safety of BMS-986165 compared with placebo in participants with active psoriatic arthritis (PsA). ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). 2000. [cited 2023 Aug 8]. Available from: https://classic.clinicaltrials.gov/ct2/show/NCT03881059. NLM Identifier: NCT03881059.
  • Bristol-Myers Squibb. An investigational study to evaluate experimental medication BMS-986165 compared to placebo and a currently Available treatment in Participants with moderate-to-severe plaque psoriasis (POETYK-PSO-2). ClinicalTrials.Gov [Internet]. Bethesda (MD): National Library of Medicine (US). 2000. [cited 2023 Aug 8]. Available from: https://classic.clinicaltrials.gov/ct2/show/NCT03611751. NLM Identifier: NCT03611751.
  • U.S. Food and Drug Administration Approves Sotyktu™ (deucravacitinib), Oral Treatment for Adults with Moderate-to-Severe Plaque Psoriasis. Bristol-Myers Squibb. [cited 2023 Apr 16]. Available from: https://news.bms.com/news/details/2022/U.S.-Food-and-Drug-Administration-Approves-Sotyktu-deucravacitinib-Oral-Treatment-for-Adults-with-Moderate-to-Severe-Plaque-Psoriasis/default.aspx
  • Catlett IM, Aras U, Hansen L, et al. First-in-human study of deucravacitinib: a selective, potent, allosteric small-molecule inhibitor of tyrosine kinase 2. Clin Transl Sci. 2023;16(1):151–164. doi: 10.1111/cts.13435

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.