156
Views
0
CrossRef citations to date
0
Altmetric
Review

Exploring the current use of animal models in glaucoma drug discovery: where are we in 2023?

, &
Pages 1287-1300 | Received 25 May 2023, Accepted 08 Aug 2023, Published online: 22 Aug 2023

References

  • Agarwal R, Gupta SK, Agarwal P, et al. Current concepts in the pathophysiology of glaucoma. Indian J Ophthalmol. 2009;57(4):257–266. doi: 10.4103/0301-4738.53049
  • Zhang N, Wang J, Chen B, et al. Prevalence of primary angle closure glaucoma in the last 20 years: a meta-analysis and systematic review. Front Med. 2021;7:624179. doi: 10.3389/fmed.2020.624179
  • Zhang N, Wang J, Li Y, et al. Prevalence of primary open angle glaucoma in the last 20 years: a meta-analysis and systematic review. Sci Rep. 2021;11(1):13762. doi: 10.1038/s41598-021-92971-w
  • Agarwal R, Agarwal P. Rodent models of glaucoma and their applicability for drug discovery. Expert Opin Drug Discov. 2017;12(3):261–270. doi: 10.1080/17460441.2017.1281244
  • Pang IH, Clark AF. Rodent models for glaucoma retinopathy and optic neuropathy. J Glaucoma. 2007 Aug;16(5):483–505. doi: 10.1097/IJG.0b013e3181405d4f
  • Fernandes KA, Harder JM, Williams PA, et al. Using genetic mouse models to gain insight into glaucoma: past results and future possibilities. Exp Eye Res. 2015:141;42–56. doi: 10.1016/j.exer.2015.06.019. .
  • Biswas S, Wan KH. Review of rodent hypertensive glaucoma models. Acta Ophthalmol. 2019;97(3):e331–e340. doi: 10.1111/aos.13983
  • Evangelho K, Mastronardi CA, de-la-Torre A. Experimental models of glaucoma: a powerful translational tool for the future development of new therapies for glaucoma in humans: a review of the literature. Med (Kaunas). 2019 Jun 17;55(6):280. doi: 10.3390/medicina55060280
  • Chen L, Zhao Y, Zhang H. Comparative anatomy of the trabecular meshwork, the optic nerve head and the inner retina in rodent and primate models used for glaucoma research. Vision (Basel). 2016;1(1):4. doi: 10.3390/vision1010004.
  • Li Y, Semaan SJ, Schlamp CL, et al. Dominant inheritance of retinal ganglion cell resistance to optic nerve crush in mice. BMC Neurosci. 2007;8(1):19. doi: 10.1186/1471-2202-8-19
  • Templeton JP, Nassr M, Vazquez-Chona F, et al. Differential response of C57BL/6J mouse and DBA/2J mouse to optic nerve crush. BMC Neurosci. 2009;10:90. doi: 10.1186/1471-2202-10-90
  • Burroughs SL, Kaja S, Koulen P. Quantification of deficits in spatial visual function of mouse models for glaucoma. Invest Ophthalmol Vis Sci. 2011;52(6):3654–3659. doi: 10.1167/iovs.10-7106
  • Savinova OV, Sugiyama F, Martin JE, et al. Intraocular pressure in genetically distinct mice: an update and strain survey. BMC Genet. 2001;2:12. doi: 10.1186/1471-2156-2-12
  • Bryant CD. The blessings and curses of C57BL/6 substrains in mouse genetic studies. Ann N Y Acad Sci. 2011;1245(1):31–33. doi: 10.1111/j.1749-6632.2011.06325.x
  • Vajaranant TS, Nayak S, Wilensky JT, et al. Gender and glaucoma: what we know and what we need to know. Curr Opin Ophthalmol. 2010;21(2):91–99. doi: 10.1097/ICU.0b013e3283360b7e
  • Rodrigo MJ, Martinez-Rincon T, Subias M, et al. Influence of sex on neuroretinal degeneration: six-month follow-up in rats with chronic glaucoma. Invest Ophthalmol Vis Sci. 2021;62(13):9. doi: 10.1167/iovs.62.13.9
  • Institute of Medicine (US). Committee on understanding the biology of sex and gender differences. exploring the biological contributions to human health: does sex matter? Wizemann TM, Pardue ML, editors. (WA) (DC): National Academies Press (US); 2001.
  • Beery AK, Zucker I. Sex bias in neuroscience and biomedical research. Neurosci Biobehav Rev. 2011;35(3):565–572. doi: 10.1016/j.neubiorev.2010.07.002
  • Zucker I, Beery AK. Males still dominate animal studies. Nature. 2010;465(7299):690. doi: 10.1038/465690a
  • Lee SK. Sex as an important biological variable in biomedical research. BMB Rep. 2018;51(4):167–173. doi: 10.5483/BMBRep.2018.51.4.034
  • Beery AK. Inclusion of females does not increase variability in rodent research studies. Curr Opin Behav Sci. 2018;23:143–149. doi: 10.1016/j.cobeha.2018.06.016
  • Kilkenny C, Browne WJ, Cuthill IC, et al. Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol. 2010;8(6):e1000412. doi: 10.1371/journal.pbio.1000412
  • Jackson SJ, Andrews N, Ball D, et al. Does age matter? The impact of rodent age on study outcomes. Lab Anim. 2017;51(2):160–169. doi: 10.1177/0023677216653984
  • Flurkey K, Currer JM, Harrison DE. The mouse in aging research. In: The mouse in biomedical research (2nd ed). Fox J, et al, editor. Burlington, MA: American College Laboratory Animal Medicine (Elsevier); 2007. p. 637–672. doi: 10.1016/B978-012369454-6/50074-1
  • Sengupta P. The laboratory rat: relating its age with human’s. Int J Prev Med. 2013;4(6):624–630.
  • Zhao Y, Fu JL, Li YL, et al. Epidemiology and clinical characteristics of patients with glaucoma: an analysis of hospital data between 2003 and 2012. Indian J Ophthalmol. 2015;63(11):825–831. doi: 10.4103/0301-4738.171963
  • Xu Q, Rydz C, Nguyen Huu VA, et al. Stress induced aging in mouse eye. Aging Cell. 2022;21(12):e13737. doi: 10.1111/acel.13737
  • John SWM, Smith SS, Savinova RS, et al. Essential iris atrophy, pigment dispersion, and glaucoma in DBA/2J mice. Invest Ophthalmol Vis Sci. 1998;39:951–962.
  • Kawai S, Vora S, Das S, et al. Modeling of risk factors for the degeneration of retinal ganglion cells after ischemia/reperfusion in rats: effects of age, caloric restriction, diabetes, pigmentation. FASEB J. 2001;15:1285–1287. doi: 10.1096/fj.00-0666fje
  • Danias J, Lee KC, Zamora MF, et al. Quantitative analysis of retinal ganglion cell (RGC) loss in aging DBA/2NNia glaucomatous mice. Comparison with RGC loss in aging C57/BL6 mice. Invest Ophthalmol Vis Sci. 2003;44(12):5151–5162. doi: 10.1167/iovs.02-1101
  • Nishinaka A, Tanaka M, Aoshima K, et al. The pathological association between the anterior eye segment and the retina in a murine model of neovascular glaucoma. FASEB J. 2022;36(6):e22323. doi: 10.1096/fj.202101917R
  • Wan P, Huang S, Luo Y, et al. Reciprocal regulation between lncRNA ANRIL and p15 in steroid-induced glaucoma. Cells. 2022;11(9):1468. doi: 10.3390/cells11091468
  • Razali N, Agarwal R, Agarwal P, et al. Anterior and posterior segment changes in rat eyes with chronic steroid administration and their responsiveness to antiglaucoma drugs. Eur J Pharmacol. 2015;749:73–80. doi: 10.1016/j.ejphar.2014.11.029
  • Marcus AJ, Iezhitsa I, Agarwal R, et al. Intraocular pressure-lowering effects of imidazo[1,2-a]- and pyrimido[1,2-a]benzimidazole compounds in rats with dexamethasone-induced ocular hypertension. Eur J Pharmacol. 2019;850:75–87. doi: 10.1016/j.ejphar.2019.01.059
  • Mohd Nasir NA, Agarwal R, Krasilnikova A, et al. Effect of dexamethasone on the expression of MMPs, adenosine A1 receptors and NFKB by human trabecular meshwork cells. J Basic Clin Physiol Pharmacol. 2020;31(6): doi: 10.1515/jbcpp-2019-0373
  • Lee KM, Song DY, Kim SH. Effect of strain on rodent glaucoma models: magnetic bead injection versus hydrogel injection versus circumlimbal suture. Transl Vis Sci Technol. 2022;11(9):31. doi: 10.1167/tvst.11.9.31
  • Zahavi A, Friedman Gohas M, Sternfeld A, et al. Histological and molecular characterization of glaucoma model induced by one or two injections of microbeads to the anterior chamber of mice. Int Ophthalmol. 2022;42(12):3763–3775. doi: 10.1007/s10792-022-02372-9
  • Gupta V, Chitranshi N, Gupta V, et al. TrkB receptor agonist 7,8 dihydroxyflavone is protective against the inner retinal deficits induced by experimental glaucoma. Neuroscience. 2022;490:36–48. doi: 10.1016/j.neuroscience.2022.01.020
  • Mysona BA, Zhao J, De Greef O, et al. Sigma-1 receptor agonist, (+)-pentazocine, is neuroprotective in a Brown Norway rat microbead model of glaucoma. Exp Eye Res. 2023;226:109308. doi: 10.1016/j.exer.2022.109308
  • Sappington RM, Carlson BJ, Crish SD, et al. The microbead occlusion model: a paradigm for induced ocular hypertension in rats and mice. Invest Ophthalmol Vis Sci. 2010 Jan;51(1):207–216. doi: 10.1167/iovs.09-3947
  • Rodrigo MJ, Bravo-Osuna I, Subias M, et al. Tunable degrees of neurodegeneration in rats based on microsphere-induced models of chronic glaucoma. Sci Rep. 2022;12(1):20622. doi: 10.1038/s41598-022-24954-4
  • Aragón-Navas A, Rodrigo MJ, Garcia-Herranz D, et al. Mimicking chronic glaucoma over 6 months with a single intracameral injection of dexamethasone/fibronectin-loaded PLGA microspheres. Drug Deliv. 2022;29(1):2357–2374. doi: 10.1080/10717544.2022.2096712
  • Tan Z, Guo Y, Shrestha M, et al. Microglia depletion exacerbates retinal ganglion cell loss in a mouse model of glaucoma. Exp Eye Res. 2022;225:109273. doi: 10.1016/j.exer.2022.109273
  • Guo M, Zhu Y, Shi Y, et al. Inhibition of ferroptosis promotes retina ganglion cell survival in experimental optic neuropathies. Redox Biol. 2022;58:102541. doi: 10.1016/j.redox.2022.102541
  • Nam MH, Stankowska DL, Johnson GA, et al. Peptains block retinal ganglion cell death in animal models of ocular hypertension: implications for neuroprotection in glaucoma. Cell Death Dis. 2022;13(11):958. doi: 10.1038/s41419-022-05407-2
  • Visuvanathan S, Baker AN, Lagali PS, et al. XIAP gene therapy effects on retinal ganglion cell structure and function in a mouse model of glaucoma. Gene Ther. 2022;29(3–4):147–156. doi: 10.1038/s41434-021-00281-7
  • Wang DD, Gao FJ, Zhang XJ, et al. Nobiletin protects retinal ganglion cells in models of ocular hypertension in vivo and hypoxia in vitro. Lab Invest. 2022;102(11):1225–1235. doi: 10.1038/s41374-022-00813-8
  • Madhoun S, Martins MTC, Korneva A, et al. Effects of experimental glaucoma in Lama1nmf223 mutant mice. Exp Eye Res. 2023;226:109341. doi: 10.1016/j.exer.2022.109341
  • Ribeiro M, McGrady NR, Baratta RO, et al. Intraocular delivery of a collagen mimetic peptide repairs retinal ganglion cell axons in chronic and acute injury models. Int J Mol Sci. 2022;23(6):2911. doi: 10.3390/ijms23062911
  • Zhu T, Huang X, Peng S, et al. Ultrasound targeted microbubble destruction promotes the therapeutic effect of HUMSC transplantation on glaucoma-caused optic nerve injury in rabbits. Transl Vis Sci Technol. 2022;11(5):12. doi: 10.1167/tvst.11.5.12
  • Morgan JE, Tribble JR. Microbead models in glaucoma. Exp Eye Res. 2015;141:9–14. doi: 10.1016/j.exer.2015.06.020
  • Frankfort BJ, Khan AK, Tse DY, et al. Elevated intraocular pressure causes inner retinal dysfunction before cell loss in a mouse model of experimental glaucoma. Invest Ophthalmol Vis Sci. 2013;54(1):762–770. doi: 10.1167/iovs.12-10581
  • Rodrigo MJ, Garcia-Herranz D, Subias M, et al. Chronic glaucoma using biodegradable microspheres to induce intraocular pressure elevation. Six-month follow-up. Biomedicines. 2021 Jun 16;9(6):682. doi: 10.3390/biomedicines9060682
  • Hughes E, Spry P, Diamond J. 24-hour monitoring of intraocular pressure in glaucoma management: a retrospective review. J Glaucoma. 2003 Jun;12(3):232–236. doi: 10.1097/00061198-200306000-00009
  • Asrani S, Zeimer R, Wilensky J, et al. Large diurnal fluctuations in intraocular pressure are an independent risk factor in patients with glaucoma. J Glaucoma. 2000 Apr;9(2):134–142. doi: 10.1097/00061198-200004000-00002.
  • Arfuzir NN, Lambuk L, Jafri AJ, et al. Protective effect of magnesium acetyltaurate against endothelin-induced retinal and optic nerve injury. Neuroscience. 2016;325:153–164. doi: 10.1016/j.neuroscience.2016.03.041
  • Arfuzir NNN, Agarwal R, Iezhitsa I, et al. Dose-dependent effects of endothelin-1 on retinal and optic nerve morphology in Sprague Dawley rats. Neurochem J. 2019;13:73–80. doi: 10.1134/S1819712419010045
  • Nor Arfuzir NN, Agarwal R, Iezhitsa I, et al. Effect of magnesium acetyltaurate and taurine on endothelin1-induced retinal nitrosative stress in rats. Curr Eye Res. 2018;43(8):1032–1040. doi: 10.1080/02713683.2018.1467933
  • Nor Arfuzir NN, Agarwal R, Iezhitsa I, et al. Taurine protects against retinal and optic nerve damage induced by endothelin-1 in rats via antioxidant effects. Neural Regen Res. 2018;13(11):2014–2021. doi: 10.4103/1673-5374.239450
  • Smedowski A, Pietrucha-Dutczak M, Kaarniranta K, et al. A rat experimental model of glaucoma incorporating rapid-onset elevation of intraocular pressure. Sci Rep. 2014;4:5910. doi: 10.1038/srep05910
  • Wang N, Yang Y, Liu Y, et al. Magnolol limits NFκB-dependent inflammation by targeting PPARγ relieving retinal ischemia/reperfusion injury. Int Immunopharmacol. 2022;112:109242. doi: 10.1016/j.intimp.2022.109242
  • Zhang X, Zhang R, Wu J. Inhibition of the NR2B-PSD95 interaction exerts neuroprotective effects on retinal ischemia-reperfusion injury. Neuroscience. 2022;490:89–99. doi: 10.1016/j.neuroscience.2022.02.030
  • Rahimi M, Leahy S, Matei N, et al. Impairments of retinal hemodynamics and oxygen metrics in ocular hypertension-induced ischemia-reperfusion. Exp Eye Res. 2022;225:109278. doi: 10.1016/j.exer.2022.109278
  • Zhang M, Yang J, Ji K, et al. Inhibition of p66Shc attenuates retinal ischemia-reperfusion injury-induced damage by activating the akt pathway. Exp Eye Res. 2022;220:109082. doi: 10.1016/j.exer.2022.109082
  • Lee D, Nakai A, Miwa Y, et al. Retinal degeneration induced in a mouse model of ischemia-reperfusion injury and its management by pemafibrate treatment. FASEB J. 2022;36(9):e22497. doi: 10.1096/fj.202200455RRR
  • Yao F, Peng J, Zhang E, et al. Pathologically high intraocular pressure disturbs normal iron homeostasis and leads to retinal ganglion cell ferroptosis in glaucoma. Cell Death Differ. 2023;30(1):69–81. doi: 10.1038/s41418-022-01046-4
  • Bui BV, Batcha AH, Fletcher E, et al. Relationship between the magnitude of intraocular pressure during an episode of acute elevation and retinal damage four weeks later in rats. Plos One. 2013;8(7):e70513. doi: 10.1371/journal.pone.0070513
  • Hu L, Xu Y, Meng H. Development and evaluation of puerarin loaded-albumin nanoparticles thermoresponsive in situ gel for ophthalmic delivery. Drug Des Devel Ther. 2022;16:3315–3326. doi: 10.2147/DDDT.S374061
  • Kodati B, McGrady NR, Jefferies HB, et al. Oral administration of a dual ETA/ETB receptor antagonist promotes neuroprotection in a rodent model of glaucoma. Mol Vis. 2022;28:165–177.
  • Jiang J, Xu J, Tao Y, et al. A novel and reversible experimental primate ocular hypertension model: blocking Schlemm’s canal. Ophthalmic Res. 2022;354–366.
  • Tonner H, Hunn S, Auler N, et al. A monoclonal anti-HMGB1 antibody attenuates neurodegeneration in an experimental animal model of glaucoma. Int J Mol Sci. 2022;23(8):4107. doi: 10.3390/ijms23084107
  • Tonner H, Hunn S, Auler N, et al. Dynamin-like protein 1 (DNML1) as a molecular target for antibody-based immunotherapy to treat glaucoma. Int J Mol Sci. 2022;23(21):13618. doi: 10.3390/ijms232113618
  • Gao Y, Liu L, Zhang Z. TYRP1 protects against the apoptosis and oxidative stress of retinal ganglion cells by binding to PMEL. Ocul Immunol Inflamm. 2022;31(5):1–11. doi: 10.1080/09273948.2022.2081862
  • Léger-Charnay E, Gambert S, Martine L, et al. Retinal cholesterol metabolism is perturbated in response to experimental glaucoma in the rat. Plos One. 2022;17(3):e0264787. doi: 10.1371/journal.pone.0264787
  • Chaudhary P, Stowell C, Reynaud J, et al. Optic nerve head myelin-related protein, GFAP, and Iba1 alterations in non-human primates with early to moderate experimental glaucoma. Invest Ophthalmol Vis Sci. 2022;63(11):9. doi: 10.1167/iovs.63.11.9
  • Gu L, Kwong JM, Caprioli J, et al. DNA and RNA oxidative damage in the retina is associated with ganglion cell mitochondria. Sci Rep. 2022;12(1):8705. doi: 10.1038/s41598-022-12770-9
  • Moshiri A, Fang F, Zhuang P, et al. Silicone oil-induced glaucomatous neurodegeneration in rhesus macaques. Int J Mol Sci. 2022;23(24):15896. doi: 10.3390/ijms232415896
  • Huang S, Huang P, Yu H, et al. Hydrogen sulfide supplement preserves mitochondrial function of retinal ganglion cell in a rat glaucoma model. Cell Tissue Res. 2022;389(2):171–185. doi: 10.1007/s00441-022-03640-x
  • Noailles A, Kutsyr O, Mayordomo-Febrer A, et al. Sodium hyaluronate-induced ocular hypertension in rats damages the direction-selective circuit and inner/outer retinal plexiform layers. Invest Ophthalmol Vis Sci. 2022;63(5):2. doi: 10.1167/iovs.63.5.2
  • Pasák M, Vanišová M, Tichotová L, et al. Mitochondrial dysfunction in a high intraocular pressure-induced retinal ischemia minipig model. Biomolecules. 2022;12(10):1532. doi: 10.3390/biom12101532
  • Lin J, Xue J, Xu Q, et al. In situ-crosslinked hydrogel-induced experimental glaucoma model with persistent ocular hypertension and neurodegeneration. Biomater Sci. 2022;10(17):5006–5017. doi: 10.1039/d2bm00552b
  • Pu L, Zhou R, Li Q, et al. Distribution of pigment particles in aqueous drainage structures in a DBA/2J mouse model of pigmentary glaucoma. Invest Ophthalmol Vis Sci. 2022;63(6):2. doi: 10.1167/iovs.63.6.2
  • Muir ER, Chandra SB, Narayanan D, et al. Effects of chronic mild hyperoxia on retinal and choroidal blood flow and retinal function in the DBA/2J mouse model of glaucoma. Plos One. 2022;17(3):e0266192. doi: 10.1371/journal.pone.0266192
  • Smith JC, Zhang KY, Sladek A, et al. Loss of retinogeniculate synaptic function in the DBA/2J mouse model of glaucoma. eNeuro. 2022;9(6). ENEURO.0421-22.2022. doi: 10.1523/ENEURO.0421-22.2022
  • Fraenkl SA, Simon Q, Yucel Y, et al. Impact of cerebral hypoperfusion-reperfusion on optic nerve integrity and visual function in the DBA/2J mouse model of glaucoma. BMJ Open Ophthalmol. 2022;7(1):e001078. doi: 10.1136/bmjophth-2022-001078
  • Nishijima E, Honda S, Kitamura Y, et al. Vision protection and robust axon regeneration in glaucoma models by membrane-associated Trk receptors. Mol Ther. 2023;31(3):810–824. doi: 10.1016/j.ymthe.2022.11.018
  • Chen W, Liu P, Liu D, et al. Maprotiline restores ER homeostasis and rescues neurodegeneration via Histamine receptor H1 inhibition in retinal ganglion cells. Nat Commun. 2022;13(1):6796. doi: 10.1038/s41467-022-34682-y
  • Fang F, Zhuang P, Feng X, et al. NMNAT2 is downregulated in glaucomatous RGCs, and RGC-specific gene therapy rescues neurodegeneration and visual function. Mol Ther. 2022;30(4):1421–1431. doi: 10.1016/j.ymthe.2022.01.035
  • Xie F, Li Z, Yang N, et al. Inhibition of heat shock protein B8 alleviates retinal dysfunction and ganglion cells loss via autophagy suppression in mouse axonal damage. Invest Ophthalmol Vis Sci. 2022;63(6):28. doi: 10.1167/iovs.63.6.28
  • Peng J, Jin J, Su W, et al. High-mobility group box 1 inhibitor BoxA alleviates neuroinflammation-induced retinal ganglion cell damage in traumatic optic neuropathy. Int J Mol Sci. 2022;23(12):6715. doi: 10.3390/ijms23126715
  • Zhu Y, Zhang Y, Qi X, et al. GAD1 alleviates injury-induced optic neurodegeneration by inhibiting retinal ganglion cell apoptosis. Exp Eye Res. 2022;223:109201. doi: 10.1016/j.exer.2022.109201
  • Zloto O, Zahavi A, Richard S, et al. Neuroprotective effect of azithromycin following induction of optic nerve crush in wild type and immunodeficient mice. Int J Mol Sci. 2022;23(19):11872. doi: 10.3390/ijms231911872
  • Lypka KR, Carmy-Bennun T, Garces KN, et al. Assessment of outer retinal thickness and function in mice after experimental optic nerve trauma. BMC Ophthalmol. 2022;22(1):502. doi: 10.1186/s12886-022-02737-9
  • Olakowska E, Rodak P, Pacwa A, et al. Surgical menopause impairs retinal conductivity and worsens prognosis in an acute model of rat optic neuropathy. Cells. 2022;11(19):3062. doi: 10.3390/cells11193062
  • Li H, Behnammanesh G, Wu Z, et al. Echium amoenum L. ethanol extract protects retinal ganglion cell after glutamate and optic nerve crush injury. Dis Markers. 2022;2022:3631532. doi: 10.1155/2022/3631532
  • Wang P, Luo S, Shen C, et al. Protective effect of epothilone D against traumatic optic nerve injury in rats. Nan Fang Yi Ke Da Xue Xue Bao. 2022;42(4):575–583. doi: 10.12122/j.issn.1673-4254.2022.04.14
  • Lambuk L, Jafri AJ, Arfuzir NN, et al. Neuroprotective effect of magnesium acetyltaurate against NMDA-induced excitotoxicity in rat retina. Neurotox Res. 2017;31(1):31–45. doi: 10.1007/s12640-016-9658-9
  • Jafri AJA, Arfuzir NNN, Lambuk L, et al. Protective effect of magnesium acetyltaurate against NMDA-induced retinal damage involves restoration of minerals and trace elements homeostasis. J Trace Elem Med Biol. 2017;39:147–154. doi: 10.1016/j.jtemb.2016.09.005
  • Jafri AJA, Agarwal R, Iezhitsa I, et al. Taurine protects against NMDA-induced retinal damage by reducing retinal oxidative stress. Amino Acids. 2019;51(4):641–646. doi: 10.1007/s00726-019-02696-4
  • Lambuk L, Jafri AJA, Iezhitsa I, et al. Dose-dependent effects of NMDA on retinal and optic nerve morphology in rats. Int J Ophthalmol. 2019;12(5):746–753. doi: 10.18240/ijo.2019.05.08
  • Abd Ghapor AA, Iezhitsa I, Agarwal R, et al. Intravitreal trans-resveratrol ameliorates NMDA-Induced optic nerve and retinal injury. Curr Eye Res. 2022;47(6):866–873. doi: 10.1080/02713683.2022.2033270
  • Abd Ghapor AA, Abdul Nasir NA, Iezhitsa I, et al. Neuroprotection by trans-resveratrol in rats with N-methyl-D-aspartate (NMDA)–induced retinal injury: insights into the role of adenosine A1 receptors. Neurosci Res. 2023;193:S1–12. doi: 10.1016/j.neures.2023.02.004
  • Brahma MM, Takahashi K, Namekata K, et al. Genetic inhibition of collapsin response mediator protein-2 phosphorylation ameliorates retinal ganglion cell death in normal-tension glaucoma models. Genes Cells. 2022;27(8):526–536. doi: 10.1111/gtc.12971
  • Crossley NA, Sena E, Goehler J, et al. Empirical evidence of bias in the design of experimental stroke studies: a metaepidemiologic approach. Stroke. 2008;39(3):929–934. doi: 10.1161/STROKEAHA.107.498725
  • Pound P, Ebrahim S, Sandercock P, et al.; Reviewing Animal Trials Systematically (RATS) Group. Where is the evidence that animal research benefits humans? BMJ. 2004;328(7438):514–5147. doi: 10.1136/bmj.328.7438.514.
  • Pound P, Ritskes-Hoitinga M. Is it possible to overcome issues of external validity in preclinical animal research? Why most animal models are bound to fail. J Transl Med. 2018;16(1):304. doi: 10.1186/s12967-018-1678-1

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.