165
Views
0
CrossRef citations to date
0
Altmetric
Review

Mapping strategies towards improved external validity in preclinical translational research

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1273-1285 | Received 24 Feb 2023, Accepted 22 Aug 2023, Published online: 10 Sep 2023

References

  • Leenaars CHC, Kouwenaar C, Stafleu FR, et al. Animal to human translation: a systematic scoping review of reported concordance rates. J Transl Med. 2019;17:223. doi: 10.1186/s12967-019-1976-2
  • Goodman SN, Fanelli D, Ioannidis JPA. What does research reproducibility mean? Sci Transl Med. 2016;8:341. doi: 10.1126/scitranslmed.aaf5027
  • Jarvis MF, Williams M. Irreproducibility in preclinical biomedical research: perceptions, uncertainties, and knowledge gaps. Trends Pharmacol Sci. 2016;37:290–302. doi: 10.1016/j.tips.2015.12.001
  • Bishop D. Rein in the four horsemen of irreproducibility. Nature. 2019;568:435–435. doi: 10.1038/d41586-019-01307-2
  • Dirnagl U, Bannach-Brown A, McCann S. External validity in translational biomedicine: understanding the conditions enabling the cause to have an effect. EMBO Mol Med. 2022;14:e14334. doi: 10.15252/emmm.202114334
  • Vollert J, Schenker E, Macleod M, et al. Systematic review of guidelines for internal validity in the design, conduct and analysis of preclinical biomedical experiments involving laboratory animals. BMJ Open Sci. 2020;4:e100046. doi: 10.1136/bmjos-2019-100046
  • Drude NI, Gamboa LM, Danziger M, et al. Science forum: improving preclinical studies through replications. Elife. 2021;10:e62101. doi: 10.7554/eLife.62101
  • Lesko CR, Ackerman B, Webster-Clark M, et al. Target validity: bringing treatment of external validity in line with internal validity. Curr Epidemiol Rep. 2020;7:117–124. doi: 10.1007/s40471-020-00239-0
  • Punt A, Bouwmeester H, Blaauboer BJ, et al. New approach methodologies (NAMs) for human-relevant biokinetics predictions: meeting the paradigm shift in toxicology towards an animal-free chemical risk assessment. ALTEX. 2020;37:607–622. doi: 10.14573/altex.2003242
  • Stucki AO, Barton-Maclaren TS, Bhuller Y, et al. Use of new approach methodologies (NAMs) to meet regulatory requirements for the assessment of industrial chemicals and pesticides for effects on human health. Front Toxicol. 2022;4:964553. doi: 10.3389/ftox.2022.964553
  • Crabbe JC, Wahlsten D, Dudek BC. Genetics of mouse behavior: Interactions with laboratory environment. Science. 1999;284(5420):1670. doi: 10.1126/science.284.5420.1670
  • van der Staay FJ, Steckler T, van der Staay FJ. Behavioural phenotyping of mouse mutants. Behav Brain Res. 2001;125:3–12. doi: 10.1016/S0166-4328(01)00278-9
  • Würbel H. Behaviour and the standardization fallacy. Nat Genet. 2000;26(3):263–263. doi: 10.1038/81541
  • Richter SH, Garner JP, Würbel H. Environmental standardization: cure or cause of poor reproducibility in animal experiments? Nat Methods. 2009;6(4):257–261. doi: 10.1038/nmeth.1312
  • Wahlsten D. Standardizing tests of mouse behavior: reasons, recommendations, and reality. Physiol Behav. 2001;73:695–704. doi: 10.1016/S0031-9384(01)00527-3
  • Voelkl B, Altman NS, Forsman A, et al. Reproducibility of animal research in light of biological variation. Nat Rev Neurosci. 2020;21:384–393. doi: 10.1038/s41583-020-0313-3
  • Josef van der Staay F., Arndt SS, Nordquist RE, et al. The standardization–generalization dilemma: a way out. Genes Brain Behav. 2010;9:849–855. doi: 10.1111/j.1601-183X.2010.00628.x
  • Witjes VM, Boleij A, Halffman W. Reducing versus Embracing variation as strategies for reproducibility: the microbiome of laboratory mice. Animals. 2020;10:2415. doi: 10.3390/ani10122415
  • van der Staay FJ, van der Staay FJ. Animal models of behavioral dysfunctions: basic concepts and classifications, and an evaluation strategy. Brain Res Rev. 2006;52:131–159. doi: 10.1016/j.brainresrev.2006.01.006
  • Würbel H, Garner JP. Refinement of rodent research through environmental enrichment and systematic randomization. NC3Rs. 2007;9:9.
  • Der Staay FJV, Steckler T. The fallacy of behavioral phenotyping without standardisation. Genes Brain Behav. 2002;1:9–13. doi: 10.1046/j.1601-1848.2001.00007.x
  • Richter SH. Systematic heterogenization for better reproducibility in animal experimentation. Lab Anim. 2017;46:343–349. doi: 10.1038/laban.1330
  • Bodden C, von Kortzfleisch VT, Karwinkel F, et al. Heterogenising study samples across testing time improves reproducibility of behavioural data. Sci Rep. 2019;9:8247. doi: 10.1038/s41598-019-44705-2
  • Buch T, Moos K, Ferreira FM, et al. Benefits of a factorial design focusing on inclusion of female and male animals in one experiment. J Mol Med. 2019;97:871–877. doi: 10.1007/s00109-019-01774-0
  • Gur E, Waner T. The variability of organ weight background data in rats. Lab Anim. 1993;27:65–72. doi: 10.1258/002367793781082368
  • André V, Gau C, Scheideler A, et al. Laboratory mouse housing conditions can be improved using common environmental enrichment without compromising data. PLoS Biol. 2018;16:e2005019. doi: 10.1371/journal.pbio.2005019
  • Lewejohann L, Reinhard C, Schrewe A, et al. Environmental bias? Effects of housing conditions, laboratory environment and experimenter on behavioral tests. Genes Brain Behav. 2006;5:64–72. doi: 10.1111/j.1601-183X.2005.00140.x
  • Paylor R. Questioning standardization in science. Nat Methods. 2009;6:253–254. doi: 10.1038/nmeth0409-253
  • Lewejohann L, Zipser B, Sachser N. Personality” in laboratory mice used for biomedical research: A way of understanding variability? Dev Psychobiol. 2011;53:624–630. doi: 10.1002/dev.20553
  • Willmann R, De Luca A, Benatar M, et al. Enhancing translation: Guidelines for standard pre-clinical experiments in mdx mice. Neuromuscular Disorders. 2012;22:43–49. doi: 10.1016/j.nmd.2011.04.012
  • Robinson L, Spruijt B, Riedel G. Between and within laboratory reliability of mouse behaviour recorded in home-cage and open-field. J Neurosci Methods. 2018;300:10–19. doi: 10.1016/j.jneumeth.2017.11.019
  • Corrigan JK, Ramachandran D, He Y, et al. A big-data approach to understanding metabolic rate and response to obesity in laboratory mice. Elife. 2020;9:e53560. doi: 10.7554/eLife.53560
  • Chesler EJ, Wilson SG, Lariviere WR, et al. Influences of laboratory environment on behavior. Nat Neurosci. 2002;5:1101–1102. doi: 10.1038/nn1102-1101
  • Chesler EJ, Wilson SG, Lariviere WR, et al. Identification and ranking of genetic and laboratory environment factors influencing a behavioral trait, thermal nociception, via computational analysis of a large data archive. Neurosci Biobehav Rev. 2002;26:907–923. doi: 10.1016/S0149-7634(02)00103-3
  • Festing MFW. Refinement and reduction through the control of variation. Altern Lab Anim. 2004;32:259–263. doi: 10.1177/026119290403201s43
  • Izídio GS, Lopes DM, Spricigo JL, et al. Common variations in the pretest environment influence genotypic comparisons in models of anxiety. Genes Brain Behav. 2005;4:412–419. doi: 10.1111/j.1601-183X.2005.00121.x
  • Valdar W, Solberg LC, Gauguier D, et al. Genetic and environmental effects on complex Traits in mice. Genetics. 2006;174:959–984. doi: 10.1534/genetics.106.060004
  • Bailoo JD, Reichlin TS, Würbel H. Refinement of experimental design and conduct in laboratory animal research. ILAR J. 2014;55:383–391. doi: 10.1093/ilar/ilu037
  • Clayton JA, Collins FS. Policy: NIH to balance sex in cell and animal studies. Nature. 2014;509:282–283. doi: 10.1038/509282a
  • Miller LR, Marks C, Becker JB, et al. Considering sex as a biological variable in preclinical research. FASEB J. 2017;31:29–34. doi: 10.1096/fj.201600781r
  • Richter SH, Spinello C, Macrì S. Improving External Validity of Experimental Animal Data. In: Martic-Kehl M Schubiger P, editors. Anim Models of Human Cancer. John Wiley & Sons, Ltd; 2016. p. 41–60. doi: 10.1002/9783527695881.ch4
  • Clayton JA. Applying the new SABV (sex as a biological variable) policy to research and clinical care. Physiol Behav. 2018;187:2–5. doi: 10.1016/j.physbeh.2017.08.012
  • Tannenbaum C, Ellis RP, Eyssel F, et al. Sex and gender analysis improves science and engineering. Nature. 2019;575:137–146. doi: 10.1038/s41586-019-1657-6
  • Usui T, Macleod MR, McCann SK, et al. Meta-analysis of variation suggests that embracing variability improves both replicability and generalizability in preclinical research. PLoS Biol. 2021;19(5):e3001009. doi: 10.1371/journal.pbio.3001009
  • Gärtner K. A third component causing random variability beside environment and genotype. A reason for the limited success of a 30 year long effort to standardize laboratory animals? Lab Anim. 1990;24:71–77. doi: 10.1258/002367790780890347
  • Beynen AC, Festing MFW, van Montfort MAJ. Design of animal experiments. In: van Zutphen LFM, Baumans V Beynen AC, editors Principles of laboratory animal science. Elsevier; 2001.
  • Arroyo-Araujo M, Graf R, Maco M, et al. Reproducibility via coordinated standardization: a multi-center study in a Shank2 genetic rat model for Autism Spectrum Disorders. Sci Rep. 2019;9:11602. doi: 10.1038/s41598-019-47981-0
  • Richter SH, Garner JP, Auer C, et al. Systematic variation improves reproducibility of animal experiments. Nat Methods. 2010;7:167–168. doi: 10.1038/nmeth0310-167
  • Richter SH, Garner JP, Zipser B, et al. Effect of population heterogenization on the reproducibility of mouse behavior: a multi-laboratory study. PLoS One. 2011;6:e16461. doi: 10.1371/journal.pone.0016461
  • Jonker RM, Guenther A, Engqvist L, et al. Does systematic variation improve the reproducibility of animal experiments? Nat Methods. 2013;10:373–373. doi: 10.1038/nmeth.2439
  • Wolfinger RD. Reanalysis of Richter et al.(2010) on reproducibility. Nat Methods. 2013;10:373–374. doi: 10.1038/nmeth.2438
  • Beynen AC, Gärtner K, van Zutphen LFM. Standardization of animal experimentation. In: van Zutphen LFM, Baumans V Beynen AC, editors Principles of laboratory animal science. Elsevier; 2001.
  • Kafkafi N, Benjamini Y, Sakov A, et al. Genotype–environment interactions in mouse behavior: a way out of the problem. Proc Natl Acad Sci. 2005;102:4619–4624. doi: 10.1073/pnas.0409554102
  • Sundberg JP, Schofield PN. Living inside the box: environmental effects on mouse models of human disease. Dis Model Mech. 2018;11:dmm035360. doi: 10.1242/dmm.035360
  • Servick K. Of mice and microbes. Science. 2016;353:741–743. doi: 10.1126/science.353.6301.741
  • Nigri M, Åhlgren J, Wolfer DP, et al. Role of environment and experimenter in reproducibility of behavioral studies with laboratory mice. Front Behav Neurosci. 2022;16. doi: 10.3389/fnbeh.2022.835444
  • Jaric I, Voelkl B, Clerc M, et al. The rearing environment persistently modulates mouse phenotypes from the molecular to the behavioural level. PLoS Biol. 2022;20:e3001837. doi: 10.1371/journal.pbio.3001837
  • Würbel H. Behavioral phenotyping enhanced – beyond (environmental) standardization. Genes Brain Behav. 2002;1:3–8. doi: 10.1046/j.1601-1848.2001.00006.x
  • Martin LB, Hanson HE, Hauber ME, et al. Genes, environments, and phenotypic Plasticity in Immunology. Trends Immunol. 2021;42:198–208. doi: 10.1016/j.it.2021.01.002
  • von Kortzfleisch VT, Ambrée O, Karp NA, et al. Do multiple experimenters improve the reproducibility of animal studies? PLoS Biol. 2022;20:e3001564. doi: 10.1371/journal.pbio.3001564
  • Georgiou P, Zanos P, Mou T-C, et al. Experimenters’ sex modulates mouse behaviors and neural responses to ketamine via corticotropin releasing factor. Nat Neurosci. 2022;25:1191–1200. doi: 10.1038/s41593-022-01146-x
  • von Kortzfleisch VT, Karp NA, Palme R, et al. Improving reproducibility in animal research by splitting the study population into several ‘mini-experiments’. Sci Rep. 2020;10:16579.
  • Miller VM, Reckelhoff JF. Sex as a biological variable: Now What?! Physiology. 2016;31:78–80. doi: 10.1152/physiol.00058.2015
  • Denfeld QE, Lee CS, Habecker BA. A primer on incorporating sex as a biological variable into the conduct and reporting of basic and clinical research studies. Am J Physiol Heart Circ Physiol. 2022;322:H350–H354. doi: 10.1152/ajpheart.00605.2021
  • Sex in experimental design – MRC [Internet]. UK Research And Innovation. 2022 [cited 2022 Sep 14]. Available from: https://www.ukri.org/councils/mrc/guidance-for-applicants/policies-and-guidance-for-researchers/sex-in-experimental-design/
  • Collins FS, Tabak LA. Policy: NIH plans to enhance reproducibility. Nature. 2014;505:612–613. doi: 10.1038/505612a
  • Beery AK. Inclusion of females does not increase variability in rodent research studies. Curr Opin Behav Sci. 2018;23:143–149. doi: 10.1016/j.cobeha.2018.06.016
  • Arnegard ME, Whitten LA, Hunter C, et al. Sex as a biological variable: a 5-year progress report and call to action. J Womens Health. 2020;29:858–864. doi: 10.1089/jwh.2019.8247
  • Kretlow JD, Jin Y-Q, Liu W, et al. Donor age and cell passage affects differentiation potential of murine bone marrow-derived stem cells. BMC Cell Biol. 2008;9:60. doi: 10.1186/1471-2121-9-60
  • Mazzocca AD, Chowaniec D, McCarthy MB, et al. In vitro changes in human tenocyte cultures obtained from proximal biceps tendon: multiple passages result in changes in routine cell markers. Knee Surg Sports Traumatol Arthrosc. 2012;20:1666–1672. doi: 10.1007/s00167-011-1711-x
  • Dokukin ME, Guz NV, Sokolov I. Mechanical properties of cancer cells depend on number of passages: Atomic force microscopy indentation study. Jpn J Appl Phys. 2017;56:08LB01. doi: 10.7567/JJAP.56.08LB01
  • Norden DM, Devine R, McCarthy DO, et al. Storage conditions and passages alter IL-6 secretion in C26 adenocarcinoma cell lines. MethodsX. 2015;2:53–58. doi: 10.1016/j.mex.2015.02.001
  • Howells DW, Sena ES, Macleod MR. Bringing rigour to translational medicine. Nat Rev Neurol. 2014;10:37–43. doi: 10.1038/nrneurol.2013.232
  • Gagliese L, Melzack R. Age differences in nociception and pain behaviours in the rat. Neurosci Biobehav Rev. 2000;24:843–854. doi: 10.1016/S0149-7634(00)00041-5
  • Barker-Haliski M. How do we choose the appropriate animal model for antiseizure therapy development? Expert Opin Drug Discov. 2019;14:947–951. doi: 10.1080/17460441.2019.1636782
  • Tam WY, Cheung K-K. Phenotypic characteristics of commonly used inbred mouse strains. J Mol Med. 2020;98:1215–1234. doi: 10.1007/s00109-020-01953-4
  • Mekada K, Yoshiki A. Substrains matter in phenotyping of C57BL/6 mice. Exp Anim. 2021;70:145–160. doi: 10.1538/expanim.20-0158
  • Glass AM, Coombs W, Taffet SM. Spontaneous Cardiac Calcinosis in BALB/cByJ mice. Comp Med. 2013;63:29–37.
  • Marchelli JL Strategies to minimize genetic drift and maximize experimental reproducibility in mouse research [Internet]. Charles River Laboratories International, Inc; 2017 [cited 2023 Feb 1]. Available from: https://p.widencdn.net/26bl5m/RM-CS-strategies-to-minimize-genetic-drift-and-maximize-experimental-reproducibility-in-mouse-research.
  • Colman K. Impact of the genetics and source of preclinical safety animal models on study design, results, and interpretation. Toxicol Pathol. 2017;45:94–106. doi: 10.1177/0192623316672743
  • Biggers JD, Claringbold PJ. Why use inbred lines? Nature. 1954;174:596–597. doi: 10.1038/174596a0
  • Tuttle AH, Philip VM, Chesler EJ, et al. Comparing phenotypic variation between inbred and outbred mice. Nat Methods. 2018;15:994–996. doi: 10.1038/s41592-018-0224-7
  • Festing MFW. Evidence should trump intuition by preferring inbred strains to outbred Stocks in preclinical research. ILAR J. 2014;55:399–404. doi: 10.1093/ilar/ilu036
  • Ratuski AS, Weary DM. Environmental enrichment for rats and mice Housed in laboratories: a metareview. Animals. 2022;12:414. doi: 10.3390/ani12040414
  • Official Journal of the European Union. DIRECTIVE 2010/63/EU of the EUROPEAN PARLIAMENT and of the COUNCIL of 22 September 2010 on the protection of animals used for scientific purposes [Internet]. Sep 22, 2010. Available from: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2010:276:0033:0079:en:PDF
  • Kentner AC, Speno AV, Doucette J, et al. The Contribution of environmental enrichment to phenotypic variation in mice and rats. eNeuro. 2021;8(2):ENEURO.0539–20.2021. doi: 10.1523/ENEURO.0539-20.2021
  • Nelson RJ, Bumgarner JR, Liu JA, et al. Time of day as a critical variable in biology. BMC Biol. 2022;20:142. doi: 10.1186/s12915-022-01333-z
  • Dallmann R, Okyar A, Lévi F. Dosing-time makes the Poison: Circadian Regulation and Pharmacotherapy. Trends Mol Med. 2016;22:430–445. doi: 10.1016/j.molmed.2016.03.004
  • Fujioka A, Takashima N, Shigeyoshi Y. Circadian rhythm generation in a glioma cell line. Biochem Biophys Res Commun. 2006;346:169–174. doi: 10.1016/j.bbrc.2006.05.094
  • Webb AB, Angelo N, Huettner JE, et al. Intrinsic, nondeterministic circadian rhythm generation in identified mammalian neurons. Proc Natl Acad Sci. 2009;106:16493–16498. doi: 10.1073/pnas.0902768106
  • Sil A, Bespalov A, Dalla C, et al. PEERS — an open science “platform for the exchange of experimental research standards” in biomedicine. Front Behav Neurosci. 2021;15:755812. doi: 10.3389/fnbeh.2021.755812
  • Hair K, Macleod MR, Sena ES, et al. A randomised controlled trial of an intervention to improve compliance with the ARRIVE guidelines (IICARus). Res Integr Peer Rev. 2019;4:12. doi: 10.1186/s41073-019-0069-3
  • Leung V, Rousseau-Blass F, Beauchamp G, et al. ARRIVE has not ARRIVEd: support for the ARRIVE (animal research: reporting of in vivo experiments) guidelines does not improve the reporting quality of papers in animal welfare, analgesia or anesthesia. PLoS One. 2018;13(5):e0197882. doi: 10.1371/journal.pone.0197882
  • Voelkl B, Würbel H, Krzywinski M, et al. The standardization fallacy. Nat Methods. 2021;18(1):5–7. doi: 10.1038/s41592-020-01036-9
  • Karp NA, Fry D. What is the optimum design for my animal experiment? BMJ Open Sci. 2021;5(1):e100126. doi: 10.1136/bmjos-2020-100126
  • R Core Team. R: A Language And Environment For Statistical Computing [Internet]. Vienna, Austria: R Foundation for Statistical Computing; 2021. Available from: https://www.R-project.org/
  • Zhang Z, Mai Y. WebPower: Basic and Advanced statistical power analysis [Internet]. 2022 [cited 2022 Sep 15]. Available from: https://CRAN.R-project.org/package=WebPower
  • Sommet N, Weissman DL, Cheutin N, et al. How many participants do i need to test an interaction? Conducting an appropriate power analysis and achieving sufficient power to detect an interaction. OSF Preprints. 2023. Available from. doi: 10.31219/osf.io/xhe3u
  • Drude N, Martinez-Gamboa L, Danziger M, et al. Planning preclinical confirmatory multicenter trials to strengthen translation from basic to clinical research – a multi-stakeholder workshop report. Trans Med Commun. 2022;7(24). doi: 10.1186/s41231-022-00130-8
  • Karp NA, Wilson Z, Stalker E, et al. A multi-batch design to deliver robust estimates of efficacy and reduce animal use – a syngeneic tumour case study. Sci Rep. 2020;10:6178. doi: 10.1038/s41598-020-62509-7
  • Hunniford VT, Grudniewicz A, Fergusson DA, et al. A systematic assessment of preclinical multilaboratory studies and a comparison to single laboratory studies [Internet]. OSF Preprints. 2021. Available from. doi: 10.31219/osf.io/92u7d
  • Voelkl B, Würbel H. A reaction norm perspective on reproducibility. Theory Biosci. 2021;140:169–176. doi: 10.1007/s12064-021-00340-y
  • Voelkl B, Vogt L, Sena ES, et al. Reproducibility of preclinical animal research improves with heterogeneity of study samples. PLoS Biol. 2018;16(2):e2003693. doi: 10.1371/journal.pbio.2003693
  • Nosek BA, Errington TM. What is replication? PLoS Biol. 2020;18(3):e3000691. doi: 10.1371/journal.pbio.3000691
  • Borenstein M, Hedges LV, Higgins JPT, et al. How a meta-analysis works. Introduction to meta-analysis [Internet]. John Wiley & Sons, Ltd; 2009. p. 1–7. doi: 10.1002/9780470743386
  • Stappenbeck TS, Virgin HW. Accounting for reciprocal host–microbiome interactions in experimental science. Nature. 2016;534:191–199. doi: 10.1038/nature18285
  • Rosshart SP, Herz J, Vassallo BG, et al. Laboratory mice born to wild mice have natural microbiota and model human immune responses. Science. 2019;365:eaaw4361. doi: 10.1126/science.aaw4361
  • Rodrigues J, Heinrich MA, Teixeira LM, et al. 3D in vitro model (R)evolution: unveiling tumor–stroma interactions. Trends Cancer. 2021;7:249–264. doi: 10.1016/j.trecan.2020.10.009
  • Foo MA, You M, Chan SL, et al. Clinical translation of patient-derived tumour organoids- bottlenecks and strategies. Biomark Res. 2022;10:10. doi: 10.1186/s40364-022-00356-6
  • Tang X-Y, Wu S, Wang D, et al. Human organoids in basic research and clinical applications. Sig Transduct Target Ther. 2022;7:1–17. doi: 10.1038/s41392-022-01024-9
  • Kimmelman J, Mogil JS, Dirnagl U, et al. Distinguishing between exploratory and confirmatory preclinical research will improve translation. PLoS Biol. 2014;12(5):e1001863. doi: 10.1371/journal.pbio.1001863
  • Ritskes-Hoitinga M, Leenaars C, Beumer W, et al. Improving translation by Identifying evidence for more human-relevant preclinical strategies. Animals. 2020;10:1170. doi: 10.3390/ani10071170
  • Denayer T, Stöhr T, Van Roy M. Animal models in translational medicine: Validation and prediction. New Horizons In Transl Med. 2014;2:5–11. doi: 10.1016/j.nhtm.2014.08.001
  • Hua S, de Matos MBC, Metselaar JM, et al. Current Trends and challenges in the clinical translation of nanoparticulate nanomedicines: pathways for translational development and commercialization. Front Pharmacol. 2018;9:790. doi: 10.3389/fphar.2018.00790
  • Wagner J, Dahlem AM, Hudson LD, et al. A dynamic map for learning, communicating, navigating and improving therapeutic development. Nat Rev Drug Discov. 2018;17:150–150. doi: 10.1038/nrd.2017.217
  • Danziger M, Dirnagl U, Toelch U. Increasing discovery rates in preclinical research through optimised statistical decision criteria. bioRxiv. 2022. doi: 10.1101/2022.01.17.476585. 2022.01.17.476585.
  • Heinl C, Scholman-Végh AMD, Mellor D, et al. Declaration of common standards for the preregistration of animal research—speeding up the scientific progress. PNAS Nexus. 2022;1:c016. doi: 10.1093/pnasnexus/pgac016
  • Candelario-Jalil E, Paul S. Impact of aging and comorbidities on ischemic stroke outcomes in preclinical animal models: a translational perspective. Exp Neurol. 2021;335:113494. doi: 10.1016/j.expneurol.2020.113494
  • Bareham B, Georgakopoulos N, Matas-Céspedes A, et al. Modeling human tumor-immune environments in vivo for the preclinical assessment of immunotherapies. Cancer Immunol Immunother. 2021;70:2737–2750. doi: 10.1007/s00262-021-02897-5
  • du SN, Hurst V, Ahluwalia A, et al. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. PLoS Biol. 2020;18:e3000410. doi: 10.1371/journal.pbio.3000410
  • Carneiro CFD, Queiroz VGS, Moulin TC, et al. Comparing quality of reporting between preprints and peer-reviewed articles in the biomedical literature. Res Integ Peer Rev. 2020;5:16. doi: 10.1186/s41073-020-00101-3

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.