113
Views
0
CrossRef citations to date
0
Altmetric
Review

New frontiers in the design and discovery of therapeutics that target calcium ion signaling: a novel approach in the fight against cancer

, &
Pages 1379-1392 | Received 15 May 2023, Accepted 22 Aug 2023, Published online: 01 Sep 2023

References

  • Prevarskaya N, Ouadid-Ahidouch H, Skryma R, et al. Remodelling of Ca2+transport in cancer: how it contributes to cancer hallmarks? Philos Trans R Soc B. 2014;369(1638):20130097. doi:10.1098/rstb.2013.0097
  • Berridge MJ, Bootman MD, Roderick HL. Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol. 2003 Jul;4(7):517–529. doi: 10.1038/nrm1155
  • Sharma A, Ramena GT, Elble RC. Advances in intracellular calcium signaling reveal untapped targets for cancer therapy. Biomedicines. 2021;9(9):1077. doi: 10.3390/biomedicines9091077
  • Prevarskaya N, Skryma R, Shuba Y. Targeting Ca2+transport in cancer: close reality or long perspective? Expert Opin Ther Targets. 2013;17(3):225–241. doi: 10.1517/14728222.2013.741594
  • Carafoli E. Calcium signaling: a tale for all seasons. Proc Nat Acad Sci. 2002;99(3):1115–1122. doi: 10.1073/pnas.032427999
  • Fels B, Bulk E, Petho Z, et al. The role of TRP channels in the metastatic cascade. Pharmaceuticals (Basel). 2018 May 17;11(2):48.
  • Shapovalov G, Ritaine A, Skryma R, et al. Role of TRP ion channels in cancer and tumorigenesis. Semin Immunopathol. 2016 May;38(3):357–369. doi: 10.1007/s00281-015-0525-1
  • Azimi I, Beilby H, Davis FM, et al. Altered purinergic receptor-Ca(2)(+) signaling associated with hypoxia-induced epithelial-mesenchymal transition in breast cancer cells. Mol Oncol. 2016 Jan;10(1):166–178. doi: 10.1016/j.molonc.2015.09.006
  • Stutzmann GE, Mattson MP. Endoplasmic reticulum Ca(2+) handling in excitable cells in health and disease. Pharmacol Rev. 2011 Sep;63(3):700–727. doi: 10.1124/pr.110.003814
  • Zhong T, Zhang W, Guo H, et al. The regulatory and modulatory roles of TRP family channels in malignant tumors and relevant therapeutic strategies. Acta Pharm Sin B. 2022;12(4):1761–1780. doi: 10.1016/j.apsb.2021.11.001
  • Zhang H, Chen Z, Zhang A, et al. The role of calcium signaling in melanoma. Int J Mol Sci. 2022;23(3):1010. doi: 10.3390/ijms23031010
  • Flourakis M, Prevarskaya N. Insights into Ca2+ homeostasis of advanced prostate cancer cells. Biochim Biophys Acta, Mol Cell Res. 2009;1793(6):1105–1109. doi: 10.1016/j.bbamcr.2009.01.009
  • Cui C, Merritt R, Fu L, et al. Targeting calcium signaling in cancer therapy. Acta Pharm Sin B. 2017;7(1):3–17. doi: 10.1016/j.apsb.2016.11.001
  • Pivovarov AS, Calahorro F, Walker RJ. Na+/k±pump and neurotransmitter membrane receptors. Invert Neurosci. 2018;19(1). doi: 10.1007/s10158-018-0221-7
  • Bortner CD, Cidlowski JA. Ion channels and apoptosis in cancer. Philos Trans R Soc B. 2014;369(1638):20130104. doi: 10.1098/rstb.2013.0104
  • Carruthers C, Suntzeff V. Calcium, copper, and zinc in the epidermal carcinogenesis of mouse and man. Cancer Res. 1946 Jun;6:296.
  • Borowiec AS, Bidaux G, Pigat N, et al. Calcium channels, external calcium concentration and cell proliferation. Eur J Pharmacol. 2014 Sep 15;739:19–25.
  • Alharbi A, Zhang Y, Parrington J. Deciphering the role of Ca2+ signalling in cancer metastasis: from the bench to the bedside. Cancers. 2021;13(2):179. doi: 10.3390/cancers13020179
  • Kadio B, Yaya S, Basak A, et al. Calcium role in human carcinogenesis: a comprehensive analysis and critical review of literature. Cancer Metastasis Rev. 2016 Sep;35(3):391–411. doi: 10.1007/s10555-016-9634-0
  • Peterlik M, Grant WB, Cross HS. Calcium, vitamin D and cancer. Anticancer Res. 2009 Sep;29(9):3687–3698.
  • Taylor JM, Simpson RU. Inhibition of cancer cell growth by calcium channel antagonists in the athymic mouse. Cancer Res. 1992 May 1;52(9):2413–2418.
  • Xu M, Seas A, Kiyani M, et al. A temporal examination of calcium signaling in cancer- from tumorigenesis, to immune evasion, and metastasis. Cell Biosci. 2018;8(1):25. doi: 10.1186/s13578-018-0223-5
  • Rao A. Signaling to gene expression: calcium, calcineurin and NFAT. Nat Immunol. 2009 Jan;10(1):3–5. doi: 10.1038/ni0109-3
  • Russa AD, Maesawa C, Satoh Y. Spontaneous [Ca2+]i oscillations in G1/S phase-synchronized cells. J Electron Microsc (Tokyo). 2009 Oct;58(5):321–329. doi: 10.1093/jmicro/dfp023
  • Villalobo A, Berchtold MW. The role of Calmodulin in tumor cell migration, Invasiveness, and metastasis. Int J Mol Sci. 2020;21(3):765. doi: 10.3390/ijms21030765
  • Parmer TG, Ward MD, Hait WN. Effects of rottlerin, an inhibitor of calmodulin-dependent protein kinase III, on cellular proliferation, viability, and cell cycle distribution in malignant glioma cells. Cell Growth Differ. 1997 Mar;8(3):327–334.
  • Parmer TG, Ward MD, Yurkow EJ, et al. Activity and regulation by growth factors of calmodulin-dependent protein kinase III (elongation factor 2-kinase) in human breast cancer. Br J Cancer. 1999 Jan;79(1):59–64. doi: 10.1038/sj.bjc.6690012
  • Gu Y, Zhang J, Ma X, et al. Stabilization of the c-Myc protein by CAMKIIgamma promotes T cell lymphoma. Cancer Cell. 2017 Jul 10;32(1):115–128 e7.
  • Yokokura S, Yurimoto S, Matsuoka A, et al. Calmodulin antagonists induce cell cycle arrest and apoptosis in vitro and inhibit tumor growth in vivo in human multiple myeloma. BMC Cancer. 2014 Nov 26;14(1):882.
  • Reddy GP, Reed WC, Sheehan E, et al. Calmodulin-specific monoclonal antibodies inhibit DNA replication in mammalian cells. Biochemistry. 1992 Nov 3;31(43):10426–10430.
  • Phan NN, Wang CY, Chen CF, et al. Voltage-gated calcium channels: novel targets for cancer therapy. Oncol Lett. 2017 Aug;14(2):2059–2074. doi: 10.3892/ol.2017.6457
  • Das A, Pushparaj C, Bahi N, et al. Functional expression of voltage-gated calcium channels in human melanoma. Pigment Cell Melanoma Res. 2012 Mar;25(2):200–212. doi: 10.1111/j.1755-148X.2012.00978.x
  • Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metastasis. Nat Med. 2013 Nov;19(11):1423–1437. doi: 10.1038/nm.3394
  • Oh-Hora M, Rao A. Calcium signaling in lymphocytes. Curr Opin Immunol. 2008;20(3):250–258. doi: 10.1016/j.coi.2008.04.004
  • Racioppi L, Nelson ER, Huang W, et al. CaMKK2 in myeloid cells is a key regulator of the immune-suppressive microenvironment in breast cancer. Nat Commun. 2019;10(1). doi: 10.1038/s41467-019-10424-5
  • Pulliam TL, Awad D, Han JJ, et al. Systemic ablation of camkk2 impairs metastatic colonization and improves insulin sensitivity in TRAMP mice: evidence for cancer cell-extrinsic CAMKK2 functions in prostate cancer. Cells. 2022;11(12):1890. doi: 10.3390/cells11121890
  • Sheng Q-J, Tian W-Y, Dou X-G, et al. Programmed death 1, ligand 1 and 2 correlated genes and their association with mutation, immune infiltration and clinical outcomes of hepatocellular carcinoma. World J Gastrointest Oncol. 2020;12(11):1255–1271. doi: 10.4251/wjgo.v12.i11.1255
  • Byun JK, Park M, Lee S, et al. Inhibition of Glutamine utilization synergizes with immune checkpoint inhibitor to promote antitumor immunity. Mol Cell. 2020 Nov 19;80(4):592–606 e8.
  • Tome M, Pappalardo A, Soulet F, et al. Inactivation of proprotein convertases in T cells inhibits PD-1 expression and creates a favorable immune microenvironment in Colorectal cancer. Cancer Res. 2019 Oct 1;79(19):5008–5021.
  • Sullivan MR, Ugolini GS, Sarkar S, et al. Quantifying the efficacy of checkpoint inhibitors on CD8+ cytotoxic T cells for immunotherapeutic applications via single-cell interaction. Cell Death Dis. 2020;11(11). doi: 10.1038/s41419-020-03173-7
  • Pla AF, Avanzato D, Munaron L, et al. Ion channels and transporters in cancer. 6. Vascularizing the tumor: TRP channels as molecular targets. Am J Physiol Cell Physiol. 2012;302(1):C9–C15. doi: 10.1152/ajpcell.00280.2011
  • Chigurupati S, Venkataraman R, Barrera D, et al. Receptor channel TRPC6 is a key mediator of notch-driven glioblastoma growth and Invasiveness. Cancer Res. 2010;70(1):418–427. doi: 10.1158/0008-5472.CAN-09-2654
  • Fiorio Pla A, Ong HL, Cheng KT, et al. TRPV4 mediates tumor-derived endothelial cell migration via arachidonic acid-activated actin remodeling. Oncogene. 2011;31(2):200–212. doi: 10.1038/onc.2011.231
  • Z-J L, Semenza GL, Zhang H-F. Hypoxia-inducible factor 1 and breast cancer metastasis. J Zhejiang Univ Sci B. 2015;16(1):32–43.
  • Li Y, Guo B, Xie Q, et al. STIM1 mediates hypoxia-driven hepatocarcinogenesis via interaction with HIF-1. Cell Rep. 2015;12(3):388–395. doi: 10.1016/j.celrep.2015.06.033
  • Elmore S. Apoptosis: A review of programmed cell death. Toxicol Pathol. 2016;35(4):495–516. doi: 10.1080/01926230701320337
  • Danese A, Marchi S, Vitto VAM, et al. Cancer-related increases and decreases in calcium signaling at the endoplasmic reticulum-mitochondria interface (MAMs). Organelles in disease. Rev Physiol Biochem Pharmacol. 2020;185:153–193. doi: 10.1007/112_2020_43
  • Kerkhofs M, Bittremieux M, Morciano G, et al. Emerging molecular mechanisms in chemotherapy: Ca2+ signaling at the mitochondria-associated endoplasmic reticulum membranes. Cell Death Dis. 2018;9(3). doi: 10.1038/s41419-017-0179-0
  • Vervliet T, Parys JB, Bultynck G. Bcl-2 proteins and calcium signaling: complexity beneath the surface. Oncogene. 2016;35(39):5079–5092. doi: 10.1038/onc.2016.31
  • Rong Y-P, Aromolaran AS, Bultynck G, et al. Targeting Bcl-2-IP3 receptor interaction to reverse Bcl-2‘s inhibition of apoptotic calcium signals. Molecular Cell. 2008;31(2):255–265. doi: 10.1016/j.molcel.2008.06.014
  • Marchi S, Marinello M, Bononi A, et al. Selective modulation of subtype III IP3R by Akt regulates ER Ca2+ release and apoptosis. Cell Death Dis. 2012;3(5):e304–e304. doi: 10.1038/cddis.2012.45
  • Kuchay S, Giorgi C, Simoneschi D, et al. PTEN counteracts FBXL2 to promote IP3R3- and Ca2±mediated apoptosis limiting tumour growth. Nature. 2017;546(7659):554–558. doi: 10.1038/nature22965
  • Pinton P, Giorgi C, Pandolfi PP. The role of PML in the control of apoptotic cell fate: a new key player at ER–mitochondria sites. Cell Death Diff. 2011;18(9):1450–1456. doi: 10.1038/cdd.2011.31
  • Zheng W, Li M, Lin Y, et al. Encapsulation of verapamil and doxorubicin by MPEG-PLA to reverse drug resistance in ovarian cancer. Biomed Pharmacother. 2018 Dec;108:565–573.
  • Wong P-P, Demircioglu F, Ghazaly E, et al. Dual-action combination therapy enhances angiogenesis while reducing tumor growth and spread. Cancer Cell. 2015;27(1):123–137. doi: 10.1016/j.ccell.2014.10.015
  • Kondo S, Yin D, Morimura T, et al. Combination therapy with cisplatin and nifedipine induces apoptosis in cisplatin-sensitive and cisplatin-resistant human glioblastoma cells. Br J Cancer. 1995 Feb;71(2):282–289. doi: 10.1038/bjc.1995.57
  • Chovancova B, Liskova V, Miklikova S, et al. Calcium signaling affects migration and proliferation differently in individual cancer cells due to nifedipine treatment. Biochem Pharmacol. 2020;171:171. doi: 10.1016/j.bcp.2019.113695
  • Chiu L-Y, Ko J-L, Lee Y-J, et al. L-type calcium channel blockers reverse docetaxel and vincristine-induced multidrug resistance independent of ABCB1 expression in human lung cancer cell lines. Toxicol Lett. 2010;192(3):408–418. doi: 10.1016/j.toxlet.2009.11.018
  • Liang D, Thurman RG. Protective effects of the calcium antagonists diltiazem and TA3090 against hepatic injury due to hypoxia. Biochem Pharmacol. 1992;44(11):2207–2211. doi: 10.1016/0006-2952(92)90348-M
  • Dziegielewska B, Casarez EV, Yang WZ, et al. T-Type Ca2+ channel inhibition sensitizes ovarian cancer to carboplatin. Mol Cancer Ther. 2016;15(3):460–470. doi: 10.1158/1535-7163.MCT-15-0456
  • Li W, Zhang S-L, Wang N, et al. Blockade of T-type Ca2+channels inhibits human Ovarian cancer cell proliferation. Cancer Invest. 2011;29(5):339–346. doi: 10.3109/07357907.2011.568565
  • Rim H-K, Lee H-W, Choi IS, et al. T-type Ca2+ channel blocker, KYS05047 induces G1 phase cell cycle arrest by decreasing intracellular Ca2+ levels in human lung adenocarcinoma A549 cells. Bioorganic Med Chem Lett. 2012;22(23):7123–7126. doi: 10.1016/j.bmcl.2012.09.076
  • Kim KH, Kim D, Park JY, et al. NNC 55-0396, a T-type Ca2+ channel inhibitor, inhibits angiogenesis via suppression of hypoxia-inducible factor-1α signal transduction. J Mol Med. 2014;93(5):499–509. doi: 10.1007/s00109-014-1235-1
  • Yoshida J, Ishibashi T, Nishio M. G1 cell cycle arrest by amlodipine, a dihydropyridine Ca2+ channel blocker, in human epidermoid carcinoma A431 cells. Biochem Pharmacol. 2007 Apr 1;73(7):943–953.
  • Parkash J, Felty Q, Roy D. Estrogen exerts a spatial and temporal influence on reactive oxygen species generation that precedes calcium uptake in high-capacity mitochondria: implications for rapid nongenomic signaling of cell growth. Biochemistry. 2006;45(9):2872–2881. doi: 10.1021/bi051855x
  • Wasilewski A, Krajewska U, Owczarek K, et al. Fatty acid amide hydrolase (FAAH) inhibitor PF-3845 reduces viability, migration and invasiveness of human colon adenocarcinoma Colo-205 cell line: an in vitro study. Acta Biochimica Polonica. 2017;64(3):519–525. doi: 10.18388/abp.2017_1520
  • Slominski AT, Olivan-Viguera A, Garcia-Otin AL, et al. Pharmacological activation of TRPV4 produces immediate cell damage and induction of apoptosis in human melanoma cells and HaCaT keratinocytes. PLoS One. 2018;13(1):e0190307. doi: 10.1371/journal.pone.0190307
  • AWI L, Bowen CV, DeBay D, et al. In vivo detection of human TRPV6-rich tumors with anti-cancer peptides derived from Soricidin. PLoS One. 2013;8(3):e58866. doi: 10.1371/journal.pone.0058866
  • Fu S, Hirte H, Welch S, et al. First-in-human phase I study of SOR-C13, a TRPV6 calcium channel inhibitor, in patients with advanced solid tumors. Invest New Drugs. 2017;35(3):324–333. doi: 10.1007/s10637-017-0438-z
  • Xue H, Wang Y, MacCormack TJ, et al. Inhibition of transient receptor potential vanilloid 6 channel, elevated in human ovarian cancers, reduces tumour growth in a xenograft model. J Cancer. 2018;9(17):3196–3207. doi: 10.7150/jca.20639
  • Landowski CP, Bolanz KA, Suzuki Y, et al. Chemical inhibitors of the calcium entry channel TRPV6. Pharm Res. 2010;28(2):322–330. doi: 10.1007/s11095-010-0249-9
  • Bomben VC, Sontheimer HW. Inhibition of transient receptor potential canonical channels impairs cytokinesis in human malignant gliomas. Cell Proliferation. 2008;41(1):98–121. doi: 10.1111/j.1365-2184.2007.00504.x
  • Jing Z, Sui X, Yao J, et al. SKF-96365 activates cytoprotective autophagy to delay apoptosis in colorectal cancer cells through inhibition of the calcium/CaMKIIγ/AKT-mediated pathway. Cancer Lett. 2016;372(2):226–238. doi: 10.1016/j.canlet.2016.01.006
  • Zhang Y, Zhang Y, Fan H, et al. Study on the role of transient receptor potential C6 channels in esophageal squamous cell carcinoma radiosensitivity. J Thoracic Dis. 2017;9(10):3802–3809. doi: 10.21037/jtd.2017.09.108
  • Peters AA, Jamaludin SYN, Yapa KTDS, et al. Oncosis and apoptosis induction by activation of an overexpressed ion channel in breast cancer cells. Oncogene. 2017;36(46):6490–6500. doi: 10.1038/onc.2017.234
  • Genovesi S, Moro R, Vignoli B, et al. Trpm8 expression in human and mouse castration resistant prostate adenocarcinoma paves the way for the preclinical development of TRPM8-based targeted therapies. Biomolecules. 2022;12(2):193. doi: 10.3390/biom12020193
  • Hwang JA, Hwang MK, Jang Y, et al. 20-O-β-d-glucopyranosyl-20(S)-protopanaxadiol, a metabolite of ginseng, inhibits colon cancer growth by targeting TRPC channel-mediated calcium influx. J Nutr Biochem. 2013;24(6):1096–1104. doi: 10.1016/j.jnutbio.2012.08.008
  • Alanazi R, Nakatogawa H, Wang H, et al. Inhibition of TRPM7 with carvacrol suppresses glioblastoma functions in vivo. Eur J Neurosci. 2022;55(6):1483–1491. doi: 10.1111/ejn.15647
  • Díaz-Laviada I. Effect of capsaicin on prostate cancer cells. Future Oncol. 2010;6(10):1545–1550. doi: 10.2217/fon.10.117
  • Liang AL, Gingher EL, Coleman JS. Medical cannabis for gynecologic pain conditions. Obstet & Gynecol. 2022;139(2):287–296. doi: 10.1097/AOG.0000000000004656
  • Larsen EC, Devidas M, Chen S, et al. Dexamethasone and high-dose methotrexate improve outcome for children and young adults with high-risk B-acute lymphoblastic leukemia: a report from children’s oncology group study AALL0232. J Clin Oncol. 2016;34(20):2380–2388. doi: 10.1200/JCO.2015.62.4544
  • Moreau P, Dimopoulos M-A, Mikhael J, et al. Isatuximab, carfilzomib, and dexamethasone in relapsed multiple myeloma (IKEMA): a multicentre, open-label, randomised phase 3 trial. Lancet. 2021;397(10292):2361–2371. doi: 10.1016/S0140-6736(21)00592-4
  • Carson C, Raman P, Tullai J, et al. Englerin a agonizes the TRPC4/C5 cation channels to inhibit tumor cell line proliferation. PLoS One. 2015;10(6):e0127498. doi: 10.1371/journal.pone.0127498
  • Hussain MM, Kotz H, Minasian L, et al. Phase II trial of carboxyamidotriazole in patients with relapsed epithelial ovarian cancer. J Clin Oncol. 2003;21(23):4356–4363. doi: 10.1200/JCO.2003.04.136
  • Johnson EA, Marks RS, Mandrekar SJ, et al. Phase III randomized, double-blind study of maintenance CAI or placebo in patients with advanced non-small cell lung cancer (NSCLC) after completion of initial therapy (NCCTG 97-24-51). Lung Cancer. 2008;60(2):200–207. doi: 10.1016/j.lungcan.2007.10.003
  • Chang Y, Funk M, Roy S, et al. Developing a Mathematical model of intracellular calcium dynamics for evaluating combined anticancer effects of Afatinib and RP4010 in esophageal cancer. Int J Mol Sci. 2022;23(3):1763. doi: 10.3390/ijms23031763
  • Gilbert SM, Gidley Baird A, Glazer S, et al. A phase I clinical trial demonstrates that nfP2X7-targeted antibodies provide a novel, safe and tolerable topical therapy for basal cell carcinoma. Br J Dermatol. 2017;177(1):117–124. doi: 10.1111/bjd.15364
  • Hu L-P, Zhang X-X, Jiang S-H, et al. Targeting purinergic receptor P2Y2 prevents the growth of pancreatic ductal adenocarcinoma by inhibiting cancer cell glycolysis. Clin Cancer Res. 2019;25(4):1318–1330. doi: 10.1158/1078-0432.CCR-18-2297
  • Kondratskyi A, Yassine M, Slomianny C, et al. Identification of ML-9 as a lysosomotropic agent targeting autophagy and cell death. Cell Death Dis. 2014;5(4):e1193–e1193. doi: 10.1038/cddis.2014.156
  • Sehn LH, Chua N, Mayer J, et al. Obinutuzumab plus bendamustine versus bendamustine monotherapy in patients with rituximab-refractory indolent non-Hodgkin lymphoma (GADOLIN): a randomised, controlled, open-label, multicentre, phase 3 trial. Lancet Oncol. 2016;17(8):1081–1093. doi: 10.1016/S1470-2045(16)30097-3
  • Hallek M, Al‐Sawaf O. Chronic lymphocytic leukemia: 2022 update on diagnostic and therapeutic procedures. Am J Hematol. 2021;96(12):1679–1705. doi: 10.1002/ajh.26367
  • Li Q-J, He M-K, Chen H-W, et al. Hepatic arterial infusion of oxaliplatin, fluorouracil, and leucovorin versus transarterial chemoembolization for large hepatocellular carcinoma: a randomized phase III trial. J Clin Oncol. 2022;40(2):150–160. doi: 10.1200/JCO.21.00608
  • Mahalingam D, Peguero J, Cen P, et al. A phase II, multicenter, single-arm study of mipsagargin (G-202) as a second-line therapy following sorafenib for adult patients with progressive advanced hepatocellular carcinoma. Cancers. 2019;11(6):833. doi: 10.3390/cancers11060833
  • Isaacs JT, Brennen WN, Christensen SB, et al. Mipsagargin: the beginning—not the end—of thapsigargin prodrug-based cancer therapeutics. Molecules. 2021;26(24):7469. doi: 10.3390/molecules26247469
  • Giordano. Tommonaro. Curcumin and cancer. Nutrients. 2019;11(10):2376. doi: 10.3390/nu11102376
  • Muscella A, Vetrugno C, Migoni D, et al. Antitumor activity of [Pt(o,o’-acac)(γ-acac)(DMS)] in mouse xenograft model of breast cancer. Cell Death Dis. 2014;5(1):e1014–e1014. doi: 10.1038/cddis.2013.554
  • Zaffaroni N, Beretta GL. Resveratrol and prostate cancer: the power of phytochemicals. Curr Med Chem. 2021;28(24):4845–4862. doi: 10.2174/0929867328666201228124038
  • Kim BJ, Park EJ, Lee JH, et al. Suppression of transient receptor potential melastatin 7 channel induces cell death in gastric cancer. Cancer Sci. 2008;99(12):2502–2509. doi: 10.1111/j.1349-7006.2008.00982.x
  • Zhu L, Chen L. Progress in research on paclitaxel and tumor immunotherapy. Cell Mol Biol Lett. 2019;24(1). doi: 10.1186/s11658-019-0164-y
  • Jaimovich E, Mattei C, Liberona JL, et al. Xestospongin B, a competitive inhibitor of IP3-mediated Ca2+signalling in cultured rat myotubes, isolated myonuclei, and neuroblastoma (NG108-15) cells. FEBS Lett. 2005;579(10):2051–2057. doi: 10.1016/j.febslet.2005.02.053
  • Akl M, Ayoub N, Ebrahim H, et al. Araguspongine C induces autophagic death in breast cancer cells through suppression of c-met and HER2 receptor Tyrosine kinase signaling. Mar Drugs. 2015;13(1):288–311. doi: 10.3390/md13010288
  • Lanfranco F, Baldi M, Cassoni P, et al. Ghrelin and prostate cancer. Vitamins & Hormones. 2008;77:301–324. doi:10.1016/S0083-6729(06)77013-3
  • Stadler S, Nguyen CH, Schachner H, et al. Colon cancer cell-derived 12(S)-HETE induces the retraction of cancer-associated fibroblast via MLC2, RHO/ROCK and Ca2+ signalling. Cell Mol Life Sci. 2016;74(10):1907–1921. doi: 10.1007/s00018-016-2441-5
  • Pinton P, Giorgi C, Siviero R, et al. Calcium and apoptosis: ER-mitochondria Ca2+ transfer in the control of apoptosis. Oncogene. 2008 Oct 27;27(50):6407–6418.
  • Muscella A, Calabriso N, Vetrugno C, et al. The platinum (II) complex [Pt(o,o′-acac)(γ-acac)(DMS)] alters the intracellular calcium homeostasis in MCF-7 breast cancer cells. Biochem Pharmacol. 2011;81(1):91–103. doi: 10.1016/j.bcp.2010.09.012
  • Pan Z, Damron D, Nieminen A-L, et al. Depletion of intracellular Ca2+ by caffeine and ryanodine induces apoptosis of Chinese hamster ovary cells transfected with Ryanodine receptor. J Biol Chem. 2000;275(26):19978–19984. doi: 10.1074/jbc.M908329199
  • Jaskulska A, Janecka AE, Gach-Janczak K. Thapsigargin—from traditional medicine to anticancer drug. Int J Mol Sci. 2020;22(1):4. doi: 10.3390/ijms22010004
  • Denmeade SR, Mhaka AM, Rosen DM, et al. Engineering a prostate-specific membrane antigen–activated tumor endothelial cell prodrug for cancer therapy. Sci, Trans Med. 2012;4(140). doi: 10.1126/scitranslmed.3003886
  • Catterall WA. Structure and regulation of voltage-gated Ca2+ channels. Annu Rev Cell Dev Biol. 2000;16(1):521–555. doi: 10.1146/annurev.cellbio.16.1.521
  • Antal L, Martin-Caraballo M. T-type calcium channels in cancer. Cancers. 2019;11(2):134. doi: 10.3390/cancers11020134
  • Bruce JI, Elliott AC. Pharmacological evaluation of the role of cytochrome P450 in intracellular calcium signalling in rat pancreatic acinar cells. Br J Pharmacol. 2000 Oct;131(4):761–771. doi: 10.1038/sj.bjp.0703631
  • Bui PH, Quesada A, Handforth A, et al. The Mibefradil derivative NNC55-0396, a specific T-Type calcium channel Antagonist, Exhibits Less CYP3A4 inhibition than Mibefradil. Drug Metabolism And Disposition. 2008;36(7):1291–1299. Drug Metab Dispos. doi: 10.1124/dmd.107.020115
  • Zhu Y, Lu Y, Qu C, et al. Identification and optimization of 2-aminobenzimidazole derivatives as novel inhibitors of TRPC4 and TRPC5 channels. Br J Pharmacol. 2015;172(14):3495–3509. doi: 10.1111/bph.13140
  • Song M, Chen D, Yu SP. The TRPC channel blocker SKF 96365 inhibits glioblastoma cell growth by enhancing reverse mode of the Na+/Ca2+exchanger and increasing intracellular Ca2+. Br J Pharmacol. 2014;171(14):3432–3447. doi: 10.1111/bph.12691
  • Thorneloe KS, Sulpizio AC, Lin Z, et al. N-((1S)-1-{[4-((2S)-2-{[(2,4-Dichlorophenyl)sulfonyl]amino}-3-hydroxypropanoyl)-1-piperazinyl]carbonyl}-3-methylbutyl)-1-benzothiophene-2-carboxamide (GSK1016790A), a novel and potent transient receptor potential vanilloid 4 channel agonist induces urinary bladder contraction and hyperactivity: part I. J Pharmacol Exp Ther. 2008;326(2):432–442. doi: 10.1124/jpet.108.139295
  • Adapala RK, Thoppil RJ, Ghosh K, et al. Activation of mechanosensitive ion channel TRPV4 normalizes tumor vasculature and improves cancer therapy. Oncogene. 2015;35(3):314–322. doi: 10.1038/onc.2015.83
  • Liu Y, Qin N. TRPM8 in health and disease: cold sensing and beyond. Transient receptor potential channels. Adv Exp Med Biol. 2011;704:185–208. doi: 10.1007/978-94-007-0265-3_10
  • Fonseca BM, Correia-da-Silva G, Teixeira NA. Cannabinoid-induced cell death in endometrial cancer cells: involvement of TRPV1 receptors in apoptosis. J Physiol Biochem. 2018 May;74(2):261–272. doi: 10.1007/s13105-018-0611-7
  • Contassot E, Tenan M, Schnuriger V, et al. Arachidonyl ethanolamide induces apoptosis of uterine cervix cancer cells via aberrantly expressed vanilloid receptor-1. Gynecol Oncol. 2004 Apr;93(1):182–188. doi: 10.1016/j.ygyno.2003.12.040
  • Lau JK, Brown KC, Dom AM, et al. Capsaicin induces apoptosis in human small cell lung cancer via the TRPV6 receptor and the calpain pathway. Apoptosis. 2014 Aug;19(8):1190–1201. doi: 10.1007/s10495-014-1007-y
  • Yang S, Zhang JJ, Huang XY. Orai1 and STIM1 are critical for breast tumor cell migration and metastasis. Cancer Cell. 2009 Feb 3;15(2):124–134.
  • Zhu H, Zhang H, Jin F, et al. Elevated Orai1 expression mediates tumor-promoting intracellular Ca2+ oscillations in human esophageal squamous cell carcinoma. Oncotarget. 2014 Jun 15;5(11):3455–3471.
  • Sadaghiani AM, Lee SM, Odegaard JI, et al. Identification of Orai1 channel inhibitors by using minimal functional domains to screen small molecule microarrays. Chem Biol. 2014 Oct 23;21(10):1278–1292.
  • Smyth JT, Dehaven WI, Bird GS, et al. Ca2±store-dependent and -independent reversal of Stim1 localization and function. J Cell Sci. 2008 Mar 15;121(Pt 6):762–772.
  • Derler I, Schindl R, Fritsch R, et al. The action of selective CRAC channel blockers is affected by the Orai pore geometry. Cell Calcium. 2013;53(2):139–151. doi: 10.1016/j.ceca.2012.11.005
  • Ramos S, Grigoryev S, Rogers E, et al. CM3457, a potent and selective oral CRAC channel inhibitor, suppresses T and mast cell function and is efficacious in rat models of arthritis and asthma (72.3). J Immunol. 2012;188(1_Supplement):.72.3–.72.3. doi: 10.4049/jimmunol.188.Supp.72.3
  • Lin F-F, Elliott R, Colombero A, et al. Generation and characterization of fully human monoclonal antibodies against human orai1 for autoimmune disease. J Pharmacol Exp Ther. 2013;345(2):225–238. doi: 10.1124/jpet.112.202788
  • Pietropaolo M, Cox JH, Hussell S, et al. Antibody-mediated targeting of the Orai1 calcium channel inhibits T cell function. PLoS One. 2013;8(12):e82944. doi: 10.1371/journal.pone.0082944
  • Marchi S, Lupini L, Patergnani S, et al. Downregulation of the mitochondrial calcium uniporter by cancer-related miR-25. Curr Biol. 2013;23(1):58–63. doi: 10.1016/j.cub.2012.11.026
  • Misso G, Di Martino MT, De Rosa G, et al. Mir-34: a new weapon against cancer? Mol Ther Nucleic Acids. 2014;3:3. doi: 10.1038/mtna.2014.47
  • Chaudhuri AD, Choi DC, Kabaria S, et al. MicroRNA-7 regulates the function of mitochondrial permeability transition pore by targeting VDAC1 expression. J Biol Chem. 2016;291(12):6483–6493. doi: 10.1074/jbc.M115.691352
  • Yu C, Wang Y, Peng J, et al. Mitochondrial calcium uniporter as a target of microRNA-340 and promoter of metastasis via enhancing the Warburg effect. Oncotarget. 2017;8(48):83831–83844. doi: 10.18632/oncotarget.19747
  • Hong Z, Chen K-H, DasGupta A, et al. MicroRNA-138 and MicroRNA-25 down-regulate mitochondrial calcium uniporter, causing the pulmonary arterial hypertension cancer phenotype. Am J Respir Crit Care Med. 2017;195(4):515–529. doi: 10.1164/rccm.201604-0814OC
  • Hong S, Lee J, Seo H-H, et al. Na±Ca2+ exchanger targeting miR-132 prevents apoptosis of cardiomyocytes under hypoxic condition by suppressing Ca2+ overload. Biochem Biophys Res Commun. 2015;460(4):931–937. doi: 10.1016/j.bbrc.2015.03.129
  • Zaglia T, Ceriotti P, Campo A, et al. Content of mitochondrial calcium uniporter (MCU) in cardiomyocytes is regulated by microRNA-1 in physiologic and pathologic hypertrophy. Proc Nat Acad Sci. 2017;114(43). doi: 10.1073/pnas.1708772114
  • Malam Y, Loizidou M, Seifalian AM. Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer. Trends Pharmacol Sci. 2009 Nov;30(11):592–599. doi: 10.1016/j.tips.2009.08.004
  • Sahoo SK, Labhasetwar V. Nanotech approaches to drug delivery and imaging. Drug Discov Today. 2003 Dec 15;8(24):1112–1120.
  • Zhu G, Wang K, Qin H, et al. Internal cross-linked polymeric nanoparticles with dual sensitivity for combination therapy of muscle-invasive bladder cancer. J Nanobiotechnology. 2020 Sep 4;18(1):124.
  • Guo Z, Sui J, Ma M, et al. pH-Responsive charge switchable PEGylated epsilon-poly-l-lysine polymeric nanoparticles-assisted combination therapy for improving breast cancer treatment. J Control Release. 2020 Oct 10;326:350–364.
  • Das M, Mohanty C, Sahoo SK. Ligand-based targeted therapy for cancer tissue. Expert Opin Drug Deliv. 2009 Mar;6(3):285–304. doi: 10.1517/17425240902780166
  • Wang H, Ke F, Mararenko A, et al. Responsive polymer-fluorescent carbon nanoparticle hybrid nanogels for optical temperature sensing, near-infrared light-responsive drug release, and tumor cell imaging. Nanoscale. 2014 Jul 7;6(13):7443–7452.
  • Shen S, Wang S, Zheng R, et al. Magnetic nanoparticle clusters for photothermal therapy with near-infrared irradiation. Biomaterials. 2015 Jan;39:67–74.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.