255
Views
0
CrossRef citations to date
0
Altmetric
Review

Tools and techniques for the discovery of therapeutic aptamers: recent advances

, , , , &
Pages 1393-1411 | Received 15 Mar 2023, Accepted 25 Sep 2023, Published online: 15 Oct 2023

References

  • Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science. 1990;249(4968):505–510. doi: 10.1126/science.2200121
  • Ellington AD, Szostak J. In vitro selection of RNA molecules that bind specific ligands. Nature. 1990;346(6287):818–822. doi: 10.1038/346818a0
  • Yang G, Li Z, Mohammed I, et al. Identification of SARS-CoV-2-against aptamer with high neutralization activity by blocking the RBD domain of spike protein 1. Signal Transduct Target Ther. 2021;6(1):227. doi: 10.1038/s41392-021-00649-6
  • Cheng EL, Cardle II, Kacherovsky N, et al. Discovery of a transferrin receptor 1-binding aptamer and its application in cancer cell depletion for adoptive T-cell therapy manufacturing. J Am Chem Soc query. 2022;144(30):13851–13864. doi: 10.1021/jacs.2c05349
  • Gao T, Pei R. Isolation of DNA aptamer targeting PD-1 with an antitumor immunotherapy effect. ACS Appl Bio Mater. 2020;3(10):7080–7086. doi: 10.1021/acsabm.0c00919
  • Patel DJ, Suri AK, Jiang F, et al. Structure, recognition and adaptive binding in RNA aptamer complexes. J Mol Biol. 1997;272(5):645–664. doi: 10.1006/jmbi.1997.1281
  • Jenison RD, Gill SC, Pardi A, et al. High-resolution molecular discrimination by RNA. Science. 1994;263(5152):1425–1429. doi: 10.1126/science.7510417
  • Mairal T, Ozalp VC, Lozano Sánchez P, et al. Aptamers: molecular tools for analytical applications. Anal Bioanal Chem. 2008;390(4):989–1007. doi: 10.1007/s00216-007-1346-4
  • Sefah K, Tang ZW, Shangguan DH, et al. Molecular recognition of acute myeloid leukemia using aptamers. Leukemia. 2009;23(2):235–244. doi: 10.1038/leu.2008.335
  • Bunka DH, Stockley PG. Aptamers come of age - at last. Nat Rev Microbiol. 2006;4(8):588–596. doi: 10.1038/nrmicro1458
  • Nakatsuka N, Yang KA, Abendroth JM, et al. Aptamer-field-effect transistors overcome Debye length limitations for small-molecule sensing. Science. 2018;362(6412):319–324. doi: 10.1126/science.aao6750
  • Lotz TS, Halbritter T, Kaiser C, et al. A light-responsive RNA aptamer for an azobenzene derivative. Nucleic Acids Res. 2019;47(4):2029–2040. doi: 10.1093/nar/gky1225
  • Arroyo-Currás N, Somerson J, Vieira PA, et al. Real-time measurement of small molecules directly in awake, ambulatory animals. Proc Natl Acad Sci U S A. 2017;114(4):645–650. doi: 10.1073/pnas.1613458114
  • Sefah K, Shangguan D, Xiong X, et al. Development of DNA aptamers using cell-SELEX. Nat Protoc. 2010;5(6):1169–1185. doi: 10.1038/nprot.2010.66
  • Wu X, Liu H, Han D, et al. Elucidation and structural modeling of CD71 as a molecular target for cell-specific aptamer binding. J Am Chem Soc. 2019;141(27):10760–10769. doi: 10.1021/jacs.9b03720
  • Wu X, Zhao Z, Bai H, et al. DNA aptamer selected against pancreatic ductal adenocarcinoma for in vivo imaging and clinical tissue recognition. Theranostics. 2015;5(9):985–994. doi: 10.7150/thno.11938
  • Li L, Wan J, Wen X, et al. Identification of a new DNA aptamer by tissue-SELEX for cancer recognition and imaging. Anal Chem. 2021;93(19):7369–7377. doi: 10.1021/acs.analchem.1c01445
  • Pu Y, Xiang J, Zhang X, et al. CD36 as a molecular target of functional DNA aptamer NAFLD01 selected against NAFLD cells. Anal Chem. 2021;93(8):3951–3958. doi: 10.1021/acs.analchem.0c04866
  • Zhou J, Rossi J. Aptamers as targeted therapeutics: current potential and challenges. Nat Rev Drug Discov. 2017;16(3):181–202. doi: 10.1038/nrd.2016.199
  • Berzal-Herranz A, Romero-López C. Two examples of RNA aptamers with antiviral activity. Are aptamers the wished antiviral drugs? Pharmaceuticals (Basel). 2020;13(8):157. doi: 10.3390/ph13080157
  • Sun M, Liu S, Wei X, et al. Aptamer blocking strategy inhibits SARS-CoV-2 virus infection. Angew Chem Int Ed. 2021;60(18):10266–10272. doi: 10.1002/anie.202100225
  • Wang L, Liang H, Sun J, et al. Bispecific aptamer induced artificial protein-pairing: a strategy for selective inhibition of receptor function. J Am Chem Soc. 2019;141(32):12673–12681. doi: 10.1021/jacs.9b05123
  • Jin B, Guo Z, Chen Z, et al. Aptamers in cancer therapy: problems and new breakthroughs. J Mater Chem B. 2023;11(8):1609–1627. doi: 10.1039/D2TB02579E
  • He J, Duan Q, Ran C, et al. Recent progress of aptamer‒drug conjugates in cancer therapy. Acta Pharm Sin B. 2023;13(4):1358–1370. doi: 10.1016/j.apsb.2023.01.017
  • Ng EW, Shima DT, Calias P, et al. Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease. Nat Rev Drug Discov. 2006;5(2):123–132. doi: 10.1038/nrd1955
  • Razlansari M, Jafarinejad S, Rahdar A, et al. Development and classification of RNA aptamers for therapeutic purposes: an updated review with emphasis on cancer. Mol Cell Biochem. 2023;478:1573–1598.
  • Darmostuk M, Rimpelova S, Gbelcova H, et al. Current approaches in SELEX: an update to aptamer selection technology. Biotechnol Adv. 2015;33(6 Pt 2):1141–1161. doi: 10.1016/j.biotechadv.2015.02.008
  • Guo KT, Ziemer G, Paul A, et al. CELL-SELEX: novel perspectives of aptamer-based therapeutics. Int J Mol Sci. 2008;9(4):668–678. doi: 10.3390/ijms9040668
  • Klett-Mingo JI, Pinto-Díez C, Cambronero-Plaza J, et al. Potential therapeutic use of aptamers against HAT1 in lung cancer. Cancers (Basel). 2022;15(1):227. doi: 10.3390/cancers15010227
  • Bala J, Bhaskar A, Varshney A, et al. In vitro selected RNA aptamer recognizing glutathione induces ROS mediated apoptosis in the human breast cancer cell line MCF 7. RNA Biol. 2011;8(1):101–111. doi: 10.4161/rna.8.1.14116
  • Fortenberry Y, Abdulameer Z, Barak M, et al. Antithrombin-specific RNA aptamers as a potential therapy to restore hemostatic balance in hemophilia patients. Blood. 2022;140(Supplement 1):11275–11275. doi: 10.1182/blood-2022-166896
  • Tsukakoshi K, Abe K, Sode K, et al. Selection of DNA aptamers that recognize α-synuclein oligomers using a competitive screening method. Anal Chem. 2012;84(13):5542–5547. doi: 10.1021/ac300330g
  • Rahimi F, Bitan G. Selection of aptamers for amyloid beta-protein, the causative agent of Alzheimer’s disease. J Vis Exp. 2010;39:1955–1955. doi: 10.3791/1955
  • Jang KJ, Lee NR, Yeo WS, et al. Isolation of inhibitory RNA aptamers against severe acute respiratory syndrome (SARS) coronavirus NTPase/Helicase. Biochem Biophys Res Commun. 2008;366(3):738–744. doi: 10.1016/j.bbrc.2007.12.020
  • Lai YT, DeStefano JJ. DNA aptamers to human immunodeficiency virus reverse transcriptase selected by a primer-free SELEX method: characterization and comparison with other aptamers. Nucleic Acid Ther. 2012;22(3):162–176. doi: 10.1089/nat.2011.0327
  • Feng H, Beck J, Nassal M, et al. A SELEX-screened aptamer of human hepatitis B virus RNA encapsidation signal suppresses viral replication. PLoS One. 2011;6(11):e27862. doi: 10.1371/journal.pone.0027862
  • Joshi P, Prasad VR. Potent inhibition of human immunodeficiency virus type 1 replication by template analog reverse transcriptase inhibitors derived by SELEX (systematic evolution of ligands by exponential enrichment). J Virol. 2002;76(13):6545–6557. doi: 10.1128/JVI.76.13.6545-6557.2002
  • Lai YT, DeStefano JJ. A primer-free method that selects high-affinity single-stranded DNA aptamers using thermostable RNA ligase. Anal Biochem. 2011;414(2):246–253. doi: 10.1016/j.ab.2011.03.018
  • Graham JC, Zarbl H, Deutsch E. Use of cell-SELEX to generate DNA aptamers as molecular probes of HPV-associated cervical cancer cells. PLoS One. 2012;7(4):e36103. doi: 10.1371/journal.pone.0036103
  • Maimaitiyiming Y, Yang C, Wang Y, et al. Selection and characterization of novel DNA aptamer against colorectal carcinoma caco-2 cells. Biotechnol Appl Biochem. 2019;66(3):412–418. doi: 10.1002/bab.1737
  • Rong Y, Chen H, Zhou XF, et al. Identification of an aptamer through whole cell-SELEX for targeting high metastatic liver cancers. Oncotarget. 2016;7(7):8282–8294. doi: 10.18632/oncotarget.6988
  • Shi H, Cui W, He X, et al. Whole cell-SELEX aptamers for highly specific fluorescence molecular imaging of carcinomas in vivo. PLoS One. 2013;8(8):e70476. doi: 10.1371/journal.pone.0070476
  • Wang Y, Luo Y, Bing T, et al. DNA aptamer evolved by cell-SELEX for recognition of prostate cancer. PLoS One. 2014;9(6):e100243. doi: 10.1371/journal.pone.0100243
  • Wu Q, Wang Y, Wang H, et al. DNA aptamers from whole-cell SELEX as new diagnostic agents against glioblastoma multiforme cells. Analyst. 2018;143(10):2267–2275. doi: 10.1039/C8AN00271A
  • Zhang K, Sefah K, Tang L, et al. A novel aptamer developed for breast cancer cell internalization. ChemMedchem. 2012;7(1):79–84. doi: 10.1002/cmdc.201100457
  • He J, Wang J, Zhang N, et al. In vitro selection of DNA aptamers recognizing drug-resistant ovarian cancer by cell-SELEX. Talanta. 2019;194:437–445. doi: 10.1016/j.talanta.2018.10.028
  • Esposito CL, Passaro D, Longobardo I, et al. A neutralizing RNA aptamer against EGFR causes selective apoptotic cell death. PLoS One. 2011;6(9):e24071. doi: 10.1371/journal.pone.0024071
  • Tang Z, Parekh P, Turner P, et al. Generating aptamers for recognition of virus-infected cells. Clin Chem. 2009;55(4):813–822. doi: 10.1373/clinchem.2008.113514
  • Liang HR, Liu Q, Zheng XX, et al. Aptamers targeting rabies virus-infected cells inhibit viral replication both in vitro and in vivo. Virus Res. 2013;173(2):398–403. doi: 10.1016/j.virusres.2012.12.017
  • Haghighi M, Khanahmad H, Palizban A. Selection and characterization of single-stranded DNA aptamers binding human B-cell surface protein CD20 by cell-SELEX. Molecules. 2018;23(4):715. doi: 10.3390/molecules23040715
  • Moghadam M, Sankian M, Abnous K, et al. Cell-SELEX-based selection and characterization of a G-quadruplex DNA aptamer against mouse dendritic cells. Int Immunopharmacol. 2016;36:324–332. doi: 10.1016/j.intimp.2016.04.042
  • Gao T, Mao Z, Li W, et al. Anti-PD-L1 DNA aptamer antagonizes the interaction of PD-1/PD-L1 with antitumor effect. J Mater Chem B. 2021;9(3):746–756. doi: 10.1039/D0TB01668C
  • Kim Y, Liu C, Tan W. Aptamers generated by cell SELEX for biomarker discovery. Biomarker Med. 2009;3(2):193–202. doi: 10.2217/bmm.09.5
  • Bing T, Zhang N, Shangguan D. Cell-SELEX, an effective way to the discovery of biomarkers and unexpected molecular events. Adv Biosyst. 2019;3(12):e1900193. doi: 10.1002/adbi.201900193
  • McNamara JO, Andrechek ER, Wang Y, et al. Cell type-specific delivery of siRnas with aptamer-siRNA chimeras. Nat Biotechnol. 2006;24(8):1005–1015. doi: 10.1038/nbt1223
  • Huang YZ, Hernandez FJ, Gu B, et al. RNA aptamer-based functional ligands of the neurotrophin receptor, TrkB. Mol Pharmacol. 2012;82(4):623–635. doi: 10.1124/mol.112.078220
  • Thiel KW, Hernandez LI, Dassie JP, et al. Delivery of chemo-sensitizing siRnas to HER2+-breast cancer cells using RNA aptamers. Nucleic Acids Res. 2012;40(13):6319–6337. doi: 10.1093/nar/gks294
  • Thiel WH, Thiel KW, Flenker KS, et al. Cell-internalization SELEX: method for identifying cell-internalizing RNA aptamers for delivering siRnas to target cells. Methods Mol Biol. 2015;1218:187–199.
  • Ranches G, Lukasser M, Schramek H, et al. In vitro selection of cell-internalizing DNA aptamers in a model system of inflammatory kidney disease. Mol Ther Nucleic Acids. 2017;8:198–210. doi: 10.1016/j.omtn.2017.06.018
  • Chen K, Cai J, Wang S, et al. Aptamer inhibits tumor growth by leveraging cellular proteasomal degradation system to degrade c-met in mice. Angew Chem Int Ed. 2023;62(2):e202208451. doi: 10.1002/anie.202208451
  • Haisler WL, Timm DM, Gage JA, et al. Three-dimensional cell culturing by magnetic levitation. Nat Protoc. 2013;8(10):1940–1949. doi: 10.1038/nprot.2013.125
  • Zümrüt HE, Batool S, Van N, et al. Structural optimization of an aptamer generated from ligand-guided selection (LIGS) resulted in high affinity variant toward mIgm expressed on Burkitt’s lymphoma cell lines. Biochim Biophys Acta Gen Subj. 2017;1861(7):1825–1832. doi: 10.1016/j.bbagen.2017.03.020
  • Chen L, He W, Jiang H, et al. In vivo SELEX of bone targeting aptamer in prostate cancer bone metastasis model. Int J Nanomedicine. 2019;14:149–159. doi: 10.2147/IJN.S188003
  • Cheng C, Chen YH, Lennox KA, et al. In vivo SELEX for identification of brain-penetrating aptamers. Mol Ther Nucleic Acids. 2013;2(1):e67. doi: 10.1038/mtna.2012.59
  • Mendonsa SD, Bowser MT. In vitro selection of aptamers with affinity for neuropeptide Y using capillary electrophoresis. J Am Chem Soc. 2005;127(26):9382–9383. doi: 10.1021/ja052406n
  • Dong L, Tan Q, Ye W, et al. Screening and identifying a novel ssDNA aptamer against alpha-fetoprotein using CE-SELEX. Sci Rep. 2015;5(1):15552. doi: 10.1038/srep15552
  • Lai HC, Wang CH, Liou TM, et al. Influenza a virus-specific aptamers screened by using an integrated microfluidic system. Lab Chip. 2014;14(12):2002–2013. doi: 10.1039/C4LC00187G
  • Stoltenburg R, Reinemann C, Strehlitz B. FluMag-SELEX as an advantageous method for DNA aptamer selection. Anal Bioanal Chem. 2005;383(1):83–91. doi: 10.1007/s00216-005-3388-9
  • Komarova N, Andrianova M, Glukhov S, et al. Selection, characterization, and application of ssDNA aptamer against Furaneol. Molecules. 2018;23(12):3159. doi: 10.3390/molecules23123159
  • Paniel N, Istamboulié G, Triki A, et al. Selection of DNA aptamers against penicillin G using capture-SELEX for the development of an impedimetric sensor. Talanta. 2017;162:232–240. doi: 10.1016/j.talanta.2016.09.058
  • Stoltenburg R, Nikolaus N, Strehlitz B. Capture-SELEX: selection of DNA aptamers for aminoglycoside antibiotics. J Anal Methods Chem. 2012;2012:415697. doi: 10.1155/2012/415697
  • Leblebici P, Leirs K, Spasic D, et al. Encoded particle microfluidic platform for rapid multiplexed screening and characterization of aptamers against influenza a nucleoprotein. Anal Chim Acta. 2019;1053:70–80. doi: 10.1016/j.aca.2018.11.055
  • Hung LY, Fu CY, Wang CH, et al. Microfluidic platforms for rapid screening of cancer affinity reagents by using tissue samples. Biomicrofluidics. 2018;12(5):054108. doi: 10.1063/1.5050451
  • Sinha A, Gopinathan P, Chung YD, et al. An integrated microfluidic platform to perform uninterrupted SELEX cycles to screen affinity reagents specific to cardiovascular biomarkers. Biosens Bioelectron. 2018;122:104–112. doi: 10.1016/j.bios.2018.09.040
  • Nitsche A, Kurth A, Dunkhorst A, et al. One-step selection of vaccinia virus-binding DNA aptamers by MonoLEX. BMC Biotechnol. 2007;7(1):48. doi: 10.1186/1472-6750-7-48
  • Yue Y, Zhang D, Tian K, et al. Screening and evaluation of thiamethoxam aptamer based on pressurized GO-SELEX and its sensor application. Biosens (Basel). 2023;13(2):155. doi: 10.3390/bios13020155
  • Kwon J, Narayan C, Kim C, et al. Development of a subtype-specific diagnostic system for influenza virus H3N2 using a novel virus-based Systematic evolution of ligands by exponential enrichment (viro-SELEX). J Biomed Nanotechnol. 2019;15(7):1609–1621. doi: 10.1166/jbn.2019.2789
  • Narayan C, Kwon J, Kim C, et al. Virus-based SELEX (viro-SELEX) allows development of aptamers targeting knotty proteins. Analyst. 2020;145(4):1473–1482. doi: 10.1039/C9AN01943J
  • Guo S, Xu Z, Lin L, et al. Using CIVT-SELEX to select aptamers as genetic parts to regulate gene circuits in a cell-free system. Int J Mol Sci. 2023;24(3):2833. doi: 10.3390/ijms24032833
  • Dupont DM, Larsen N, Jensen JK, et al. Characterisation of aptamer-target interactions by branched selection and high-throughput sequencing of SELEX pools. Nucleic Acids Res. 2015;43(21):e139. doi: 10.1093/nar/gkv700
  • Eaton RM, Shallcross JA, Mael LE, et al. Selection of DNA aptamers for ovarian cancer biomarker HE4 using CE-SELEX and high-throughput sequencing. Anal Bioanal Chem. 2015;407(23):6965–6973. doi: 10.1007/s00216-015-8665-7
  • Beier R, Pahlke C, Quenzel P, et al. Selection of a DNA aptamer against norovirus capsid protein VP1. FEMS Microbiol Lett. 2014;351(2):162–169. doi: 10.1111/1574-6968.12366
  • Setlem K, Mondal B, Ramlal S, et al. Immuno affinity SELEX for simple, rapid, and cost-effective aptamer enrichment and identification against aflatoxin B1. Front Microbiol. 2016;7:1909. doi: 10.3389/fmicb.2016.01909
  • Liu H, Zhou Y, Xu Q, et al. Selection of DNA aptamers for subcellular localization of RBSDV P10 protein in the midgut of small brown planthoppers by emulsion PCR-based SELEX. Viruses. 2020;12(11):1239. doi: 10.3390/v12111239
  • Matsunaga KI, Kimoto M, Lim VW, et al. High-affinity five/six-letter DNA aptamers with superior specificity enabling the detection of dengue NS1 protein variants beyond the serotype identification. Nucleic Acids Res. 2021;49(20):11407–11424. doi: 10.1093/nar/gkab515
  • Tanaka K, Okuda T, Kasahara Y, et al. Base-modified aptamers obtained by cell-internalization SELEX facilitate cellular uptake of an antisense oligonucleotide. Mol Ther Nucleic Acids. 2021;23:440–449. doi: 10.1016/j.omtn.2020.11.016
  • Vaught JD, Bock C, Carter J, et al. Expanding the chemistry of DNA for in vitro selection. J Am Chem Soc. 2010;132(12):4141–4151. doi: 10.1021/ja908035g
  • Moore MD, Bunka DHJ, Forzan M, et al. Generation of neutralizing aptamers against herpes simplex virus type 2: potential components of multivalent microbicides. J Gen Virol. 2011;92(Pt 7):1493–1499. doi: 10.1099/vir.0.030601-0
  • Han SR, Lee SW. Inhibition of Japanese encephalitis virus (JEV) replication by specific RNA aptamer against JEV methyltransferase. Biochem Biophys Res Commun. 2017;483(1):687–693. doi: 10.1016/j.bbrc.2016.12.081
  • Zuker M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 2003;31(13):3406–3415. doi: 10.1093/nar/gkg595
  • Akitomi J, Kato S, Yoshida Y, et al. ValFold: program for the aptamer truncation process. Bioinformation. 2011;7(1):38–40. doi: 10.6026/97320630007038
  • Iwano N, Adachi T, Aoki K, et al. Generative aptamer discovery using RaptGen. Nat Compu Sci. 2022;2(6):378–386. doi: 10.1038/s43588-022-00249-6
  • Jalali T, Salehi-Vaziri M, Pouriayevali MH, et al. Aptamer based diagnosis of crimean-congo hemorrhagic fever from clinical specimens. Sci Rep. 2021;11(1):12639. doi: 10.1038/s41598-021-91826-8
  • Puton T, Kozlowski LP, Rother KM, et al. CompaRNA: a server for continuous benchmarking of automated methods for RNA secondary structure prediction. Nucleic Acids Res. 2013;41(7):4307–4323. doi: 10.1093/nar/gkt101
  • Sükösd Z, Knudsen B, Vaerum M, et al. Multithreaded comparative RNA secondary structure prediction using stochastic context-free grammars. BMC Bioinf. 2011;12(1):103. doi: 10.1186/1471-2105-12-103
  • Bernhart SH, Hofacker IL, Will S, et al. Rnaalifold: improved consensus structure prediction for RNA alignments. BMC Bioinf. 2008;9(1):474. doi: 10.1186/1471-2105-9-474
  • Kiessling LL, Lamann AC. Multivalency of biological systems. In: Schneider MP, editor. Chemical probes in biology. Vol. 129. Springer Netherlands; 2003. p. 345–357.
  • Wang Z, Yang X, Lee NZ, et al. Multivalent aptamer approach: designs, strategies, and applications. Micromachines (Basel). 2022;13(3):436. doi: 10.3390/mi13030436
  • Lin M, Zhang J, Wan H, et al. Rationally designed multivalent aptamers targeting cell surface for biomedical applications. ACS Appl Mater Interfaces. 2021;13(8):9369–9389. doi: 10.1021/acsami.0c15644
  • McNamara JO, Kolonias D, Pastor F, et al. Multivalent 4-1BB binding aptamers costimulate CD8+ T cells and inhibit tumor growth in mice. J Clin Invest. 2008;118(1):376–386. doi: 10.1172/JCI33365
  • Li X, Yang Y, Zhao H, et al. Enhanced in vivo blood-brain barrier penetration by circular tau-transferrin receptor bifunctional aptamer for tauopathy therapy. J Am Chem Soc. 2020;142(8):3862–3872. doi: 10.1021/jacs.9b11490
  • Ai L, Peng T, Li Y, et al. A dual-targeting circular aptamer strategy enables the recognition of different leukemia cells with enhanced binding ability. Angew Chem Int Ed. 2022;61(33):e202109500. doi: 10.1002/anie.202109500
  • Yang Y, Sun X, Xu J, et al. Circular bispecific aptamer-mediated artificial intercellular recognition for targeted T cell immunotherapy. ACS Nano. 2020;14(8):9562–9571. doi: 10.1021/acsnano.9b09884
  • Sun Y, Mo L, Hu X, et al. Bispecific aptamer-based recognition-then-conjugation strategy for PD1/PDL1 axis blockade and enhanced immunotherapy. ACS Nano. 2022;16(12):21129–21138. doi: 10.1021/acsnano.2c09093
  • Miao Y, Gao Q, Mao M, et al. Bispecific aptamer chimeras enable targeted protein degradation on cell membranes. Angew Chem Int Ed. 2021;60(20):11267–11271. doi: 10.1002/anie.202102170
  • Topalian SL. MHC class II restricted tumor antigens and the role of CD4+ T cells in cancer immunotherapy. Curr Opin Immunol. 1994;6(5):741–745. doi: 10.1016/0952-7915(94)90078-7
  • Knutson KL, Disis ML. Tumor antigen-specific T helper cells in cancer immunity and immunotherapy. Cancer Immunol Immunother. 2005;54(8):721–728. doi: 10.1007/s00262-004-0653-2
  • Kampen KR. Membrane proteins: the key players of a cancer cell. J Membr Biol. 2011;242(2):69–74. doi: 10.1007/s00232-011-9381-7
  • Yin H, Flynn AD. Drugging membrane protein interactions. Annu Rev Biomed Eng. 2016;18(1):51–76. doi: 10.1146/annurev-bioeng-092115-025322
  • Zhou F, Wang P, Peng Y, et al. Molecular engineering-based aptamer-drug conjugates with accurate tunability of drug ratios for drug combination targeted cancer therapy. Angew Chem Int Ed. 2019;58(34):11661–11665. doi: 10.1002/anie.201903807
  • Kuai H, Zhao Z, Mo L, et al. Circular bivalent aptamers enable in vivo stability and recognition. J Am Chem Soc. 2017;139(27):9128–9131. doi: 10.1021/jacs.7b04547
  • Sun M, Wu Z, Zhang J, et al. Spherical neutralizing aptamer suppresses SARS-CoV-2 omicron escape. Nano Today. 2022;44:101499. doi: 10.1016/j.nantod.2022.101499
  • Wang Z, Xie S, Wu L, et al. Aptamer-functionalized nanodevices for dynamic manipulation of membrane receptor signaling in living cells. Nano Lett. 2022;22(19):7853–7859. doi: 10.1021/acs.nanolett.2c02522
  • Chen S, Li J, Liang H, et al. Light-induced activation of c-Met signalling by photocontrolled DNA assembly. Chemistry A European J. 2018;24(60):15988–15992. doi: 10.1002/chem.201803868
  • Fan S, Ma YX, Wang JA, et al. The cytokine hepatocyte growth factor/scatter factor inhibits apoptosis and enhances DNA repair by a common mechanism involving signaling through phosphatidyl inositol 3’ kinase. Oncogene. 2000;19(18):2212–2223. doi: 10.1038/sj.onc.1203566
  • Derksen PW, de Gorter DJ, Meijer HP, et al. The hepatocyte growth factor/Met pathway controls proliferation and apoptosis in multiple myeloma. Leukemia. 2003;17(4):764–774. doi: 10.1038/sj.leu.2402875
  • Xiao GH, Jeffers M, Bellacosa A, et al. Anti-apoptotic signaling by hepatocyte growth factor/Met via the phosphatidylinositol 3-kinase/Akt and mitogen-activated protein kinase pathways. Proc Natl Acad Sci U S A. 2001;98(1):247–252. doi: 10.1073/pnas.98.1.247
  • Ueki R, Atsuta S, Ueki A, et al. Nongenetic reprogramming of the ligand specificity of growth factor receptors by bispecific DNA aptamers. J Am Chem Soc. 2017;139(19):6554–6557. doi: 10.1021/jacs.7b02411
  • Chen S, Xu Z, Yang W, et al. Logic-gate-actuated DNA-controlled receptor assembly for the programmable modulation of cellular signal transduction. Angew Chem Int Ed. 2019;58(50):18186–18190. doi: 10.1002/anie.201908971
  • Chen S, Xu Z, Li S, et al. Systematic interrogation of cellular signaling in live cells using a membrane-anchored DNA multitasking processor. Angew Chem Int Ed. 2022;61(11):e202113795. doi: 10.1002/anie.202113795
  • Liu S, Li S, Lin J, et al. Aptamer-induced-dimerization strategy attenuates AβO toxicity through modulating the trophic activity of PrP(C) signaling. J Am Chem Soc. 2022;144(21):9264–9270. doi: 10.1021/jacs.2c00287
  • Zhou F, Wang P, Chen J, et al. A photochemically covalent lock stabilizes aptamer conformation and strengthens its performance for biomedicine. Nucleic Acids Res. 2022;50(16):9039–9050. doi: 10.1093/nar/gkac703
  • Zhang J, Wang D, Chen H, et al. A pH-responsive covalent nanoscale device enhancing temporal and force stability for specific tumor imaging. Nano Lett. 2022;22(23):9441–9449. doi: 10.1021/acs.nanolett.2c03487
  • Yang Y, Xu J, Sun Y, et al. Aptamer-based logic computing reaction on living cells to enable non-antibody immune checkpoint blockade therapy. J Am Chem Soc. 2021;143(22):8391–8401. doi: 10.1021/jacs.1c02016
  • Wang D, Zhang J, Huang Z, et al. Robust covalent aptamer strategy enables sensitive detection and enhanced inhibition of SARS-CoV-2 proteins. ACS Cent Sci. 2023;9(1):72–83. doi: 10.1021/acscentsci.2c01263
  • Ciechanover A, Orian A, Schwartz AL. Ubiquitin-mediated proteolysis: biological regulation via destruction. BioEssays. 2000;22(5):442–451. doi: 10.1002/(SICI)1521-1878(200005)22:5<442:AID-BIES6>3.0.CO;2-Q
  • Zhou QQ, Xiao HT, Yang F, et al. Advancing targeted protein degradation for metabolic diseases therapy. Pharmacol Res. 2023;188:106627. doi: 10.1016/j.phrs.2022.106627
  • Zhao L, Zhao J, Zhong K, et al. Targeted protein degradation: mechanisms, strategies and application. Signal Transduct Target Ther. 2022;7(1):113. doi: 10.1038/s41392-022-00966-4
  • Békés M, Langley DR, Crews CM. PROTAC targeted protein degraders: the past is prologue. Nat Rev Drug Discov. 2022;21(3):181–200. doi: 10.1038/s41573-021-00371-6
  • Zou Y, Ma D, Wang Y. The PROTAC technology in drug development. Cell Biochem Funct. 2019;37(1):21–30. doi: 10.1002/cbf.3369
  • He S, Gao F, Ma J, et al. Aptamer-PROTAC conjugates (APCs) for tumor-specific targeting in breast cancer. Angew Chem Int Ed. 2021;60(43):23299–23305. doi: 10.1002/anie.202107347
  • Zhang L, Li L, Wang X, et al. Development of a novel PROTAC using the nucleic acid aptamer as a targeting ligand for tumor selective degradation of nucleolin. Mol Ther Nucleic Acids. 2022;30:66–79. doi: 10.1016/j.omtn.2022.09.008
  • Banik SM, Pedram K, Wisnovsky S, et al. Lysosome-targeting chimaeras for degradation of extracellular proteins. Nature. 2020;584(7820):291–297. doi: 10.1038/s41586-020-2545-9
  • Zhang H, Han Y, Yang Y, et al. Covalently engineered nanobody chimeras for targeted membrane protein degradation. J Am Chem Soc. 2021;143(40):16377–16382. doi: 10.1021/jacs.1c08521
  • Wu Y, Lin B, Lu Y, et al. Aptamer-LYTACs for targeted degradation of extracellular and membrane proteins. Angew Chem Int Ed. 2023;62(15):e202218106. doi: 10.1002/anie.202218106
  • Passariello M, Camorani S, Vetrei C, et al. Novel human bispecific aptamer-antibody conjugates for efficient cancer cell killing. Cancers (Basel). 2019;11(9):1268. doi: 10.3390/cancers11091268
  • Tang R, Fu YH, Gong B, et al. A chimeric conjugate of antibody and programmable DNA nanoassembly smartly activates T cells for precise cancer cell targeting. Angew Chem Int Ed. 2022;61(36):e202205902. doi: 10.1002/anie.202205902
  • Lambert JM. Antibody-drug conjugates (ADCs): magic bullets at last! Mol Pharm. 2015;12(6):1701–1702. doi: 10.1021/acs.molpharmaceut.5b00302
  • Huang YF, Shangguan D, Liu H, et al. Molecular assembly of an aptamer-drug conjugate for targeted drug delivery to tumor cells. Chembiochem. 2009;10(5):862–868. doi: 10.1002/cbic.200800805
  • Carvalho C, Santos RX, Cardoso S, et al. Doxorubicin: the good, the bad and the ugly effect. Curr Med Chem. 2009;16(25):3267–3285. doi: 10.2174/092986709788803312
  • Bagalkot V, Farokhzad OC, Langer R, et al. An aptamer-doxorubicin physical conjugate as a novel targeted drug-delivery platform. Angew Chem Int Ed. 2006;45(48):8149–8152. doi: 10.1002/anie.200602251
  • Zeng Z, Qi J, Wan Q, et al. Aptamers with self-loading drug payload and pH-controlled drug release for targeted chemotherapy. Pharmaceutics. 2021;13(8):1221. doi: 10.3390/pharmaceutics13081221
  • Zhu G, Meng L, Ye M, et al. Self-assembled aptamer-based drug carriers for bispecific cytotoxicity to cancer cells. Chem Asian J. 2012;7(7):1630–1636. doi: 10.1002/asia.201101060
  • He J, Peng T, Peng Y, et al. Molecularly engineering triptolide with aptamers for high specificity and cytotoxicity for triple-negative breast cancer. J Am Chem Soc. 2020;142(6):2699–2703. doi: 10.1021/jacs.9b10510
  • Li Y, Peng Y, Tan Y, et al. A new paradigm for artesunate anticancer function: considerably enhancing the cytotoxicity via conjugating artesunate with aptamer. Signal Transduct Target Ther. 2021;6(1):327. doi: 10.1038/s41392-021-00671-8
  • Huang Z, Wang D, Long CY, et al. Regulating the anticancer efficacy of Sgc8-combretastatin A4 conjugates: a case of recognizing the significance of Linker chemistry for the design of aptamer-based targeted drug delivery strategies. J Am Chem Soc. 2021;143(23):8559–8564. doi: 10.1021/jacs.1c03013
  • Yang Q, Deng Z, Wang D, et al. Conjugating aptamer and mitomycin C with reductant-responsive linker leading to synergistically enhanced anticancer effect. J Am Chem Soc. 2020;142(5):2532–2540. doi: 10.1021/jacs.9b12409
  • Pan X, Yang Y, Li L, et al. A bispecific circular aptamer tethering a built-in universal molecular tag for functional protein delivery. Chem Sci. 2020;11(35):9648–9654. doi: 10.1039/D0SC02279A
  • Jiang Y, Pan X, Chang J, et al. Supramolecularly engineered circular bivalent aptamer for enhanced functional protein delivery. J Am Chem Soc. 2018;140(22):6780–6784. doi: 10.1021/jacs.8b03442
  • Wu Y, Zhang L, Cui C, et al. Enhanced targeted gene transduction: AAV2 vectors conjugated to multiple aptamers via reducible disulfide linkages. J Am Chem Soc. 2018;140(1):2–5. doi: 10.1021/jacs.7b08518
  • Esposito CL, Nuzzo S, Catuogno S, et al. STAT3 gene silencing by aptamer-siRNA chimera as selective therapeutic for glioblastoma. Mol Ther Nucleic Acids. 2018;10:398–411. doi: 10.1016/j.omtn.2017.12.021
  • Shi X, Song P, Tao S, et al. Silencing RORγt in human CD4(+) T cells with CD30 aptamer-RORγt shRNA chimera. Sci Rep. 2019;9(1):10375. doi: 10.1038/s41598-019-46855-9
  • Liu HY, Yu X, Liu H, et al. Co-targeting EGFR and survivin with a bivalent aptamer-dual siRNA chimera effectively suppresses prostate cancer. Sci Rep. 2016;6(1):30346. doi: 10.1038/srep30346
  • Yu X, Ghamande S, Liu H, et al. Targeting EGFR/HER2/HER3 with a three-in-one aptamer-siRNA chimera confers superior activity against HER2(+) breast cancer. Mol Ther Nucleic Acids. 2018;10:317–330. doi: 10.1016/j.omtn.2017.12.015
  • Yoo H, Jung H, Kim SA, et al. Multivalent comb-type aptamer-siRNA conjugates for efficient and selective intracellular delivery. Chem Commun (Camb). 2014;50(51):6765–6767. doi: 10.1039/c4cc01620c
  • Nuzzo S, Roscigno G, Affinito A, et al. Potential and challenges of aptamers as specific carriers of therapeutic oligonucleotides for precision medicine in cancer. Cancers (Basel). 2019;11(10):1521. doi: 10.3390/cancers11101521
  • Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 1986;46(12 Pt 1):6387–6392.
  • Xu X, Ho W, Zhang X, et al. Cancer nanomedicine: from targeted delivery to combination therapy. Trends Mol Med. 2015;21(4):223–232. doi: 10.1016/j.molmed.2015.01.001
  • Gerlowski LE, Jain RK. Microvascular permeability of normal and neoplastic tissues. Microvasc Res. 1986;31(3):288–305. doi: 10.1016/0026-2862(86)90018-X
  • Wilhelm S, Tavares A, Dai Q, et al. Analysis of nanoparticle delivery to tumours. Nat Rev Mater. 2016;1(5):1–12. doi: 10.1038/natrevmats.2016.14
  • Lee H, Shields AF, Siegel BA, et al. (64)Cu-MM-302 positron emission tomography quantifies variability of enhanced permeability and retention of nanoparticles in relation to treatment response in patients with metastatic breast cancer. Clin Cancer Res. 2017;23(15):4190–4202. doi: 10.1158/1078-0432.CCR-16-3193
  • Ramanathan RK, Korn RL, Raghunand N, et al. Correlation between ferumoxytol uptake in tumor lesions by MRI and response to nanoliposomal irinotecan in patients with advanced solid tumors: a pilot study. Clin Cancer Res. 2017;23(14):3638–3648. doi: 10.1158/1078-0432.CCR-16-1990
  • Hu Q, Li H, Wang L, et al. DNA nanotechnology-enabled drug delivery systems. Chem Rev. 2019;119(10):6459–6506. doi: 10.1021/acs.chemrev.7b00663
  • Fan Q, He Z, Xiong J, et al. Smart drug delivery systems based on DNA nanotechnology. Chempluschem. 2022;87(3):e202100548. doi: 10.1002/cplu.202100548
  • Zhu G, Zheng J, Song E, et al. Self-assembled, aptamer-tethered DNA nanotrains for targeted transport of molecular drugs in cancer theranostics. Proc Natl Acad Sci U S A. 2013;110(20):7998–8003. doi: 10.1073/pnas.1220817110
  • Zhang L, Wang S, Yang Z, et al. An aptamer-nanotrain assembled from six-letter DNA delivers doxorubicin selectively to liver cancer cells. Angew Chem Int Ed. 2020;59(2):663–668. doi: 10.1002/anie.201909691
  • Zhang L, Abdullah R, Hu X, et al. Engineering of bioinspired, size-controllable, self-degradable cancer-targeting DNA nanoflowers via the incorporation of an artificial sandwich base. J Am Chem Soc. 2019;141(10):4282–4290. doi: 10.1021/jacs.8b10795
  • Xue C, Zhang S, Yu X, et al. Periodically ordered, nuclease-resistant DNA nanowires decorated with cell-specific aptamers as selective theranostic agents. Angew Chem Int Ed. 2020;59(40):17540–17547. doi: 10.1002/anie.202004805
  • Li J, Zheng C, Cansiz S, et al. Self-assembly of DNA nanohydrogels with controllable size and stimuli-responsive property for targeted gene regulation therapy. J Am Chem Soc. 2015;137(4):1412–1415. doi: 10.1021/ja512293f
  • Xuan W, Xia Y, Li T, et al. Molecular self-assembly of bioorthogonal aptamer-prodrug conjugate micelles for hydrogen peroxide and pH-independent cancer chemodynamic therapy. J Am Chem Soc. 2020;142(2):937–944. doi: 10.1021/jacs.9b10755
  • Li S, Jiang Q, Liu S, et al. A DNA nanorobot functions as a cancer therapeutic in response to a molecular trigger in vivo. Nat Biotechnol. 2018;36(3):258–264. doi: 10.1038/nbt.4071
  • Ouyang C, Zhang S, Xue C, et al. Precision-guided missile-like DNA nanostructure containing warhead and guidance control for aptamer-based targeted drug delivery into cancer cells in vitro and in vivo. J Am Chem Soc. 2020;142(3):1265–1277. doi: 10.1021/jacs.9b09782
  • Wang D, Li S, Zhao Z, et al. Engineering a second-order DNA logic-gated nanorobot to sense and release on live cell membranes for multiplexed diagnosis and synergistic therapy. Angew Chem Int Ed. 2021;60(29):15816–15820. doi: 10.1002/anie.202103993
  • Mahmoudpour M, Ding S, Lyu Z, et al. Aptamer functionalized nanomaterials for biomedical applications: recent advances and new horizons. Nano Today. 2021;39:101177. doi: 10.1016/j.nantod.2021.101177
  • Deng Z, Yang Q, Peng Y, et al. Polymeric engineering of aptamer-drug conjugates for targeted cancer therapy. Bioconjug Chem. 2020;31(1):37–42. doi: 10.1021/acs.bioconjchem.9b00715
  • Akuma P, Okagu O, Udenigwe CC. Naturally occurring exosome vesicles as potential delivery vehicle for bioactive compounds. Front Sustain Food Syst. 2019;3:23. doi: 10.3389/fsufs.2019.00023
  • Liu Q, Bi C, Li J, et al. Generating giant membrane vesicles from live cells with preserved cellular properties. Research. 2019;2019:6523970. doi: 10.34133/2019/6523970
  • Zou J, Shi M, Liu X, et al. Aptamer-functionalized exosomes: elucidating the cellular uptake mechanism and the potential for cancer-targeted chemotherapy. Anal Chem. 2019;91(3):2425–2430. doi: 10.1021/acs.analchem.8b05204
  • Luo C, Hu X, Peng R, et al. Biomimetic carriers based on giant membrane vesicles for targeted drug delivery and photodynamic/photothermal synergistic therapy. ACS Appl Mater Interfaces. 2019;11(47):43811–43819. doi: 10.1021/acsami.9b11223
  • Esfahani K, Roudaia L, Buhlaiga NA, et al. A review of cancer immunotherapy: from the past, to the present, to the future. Curr Oncol. 2020;27(s2):87–97. doi: 10.3747/co.27.5223
  • van de Veerdonk FL, Giamarellos-Bourboulis E, Pickkers P, et al. A guide to immunotherapy for COVID-19. Nat Med. 2022;28(1):39–50. doi: 10.1038/s41591-021-01643-9
  • Weber EW, Maus M, Mackall CL. The emerging landscape of immune cell therapies. Cell. 2020;181(1):46–62. doi: 10.1016/j.cell.2020.03.001
  • Rosenberg SA, Restif N, Yang JC, et al. Adoptive cell transfer: a clinical path to effective cancer immunotherapy. Nat Rev Cancer. 2008;8(4):299–308. doi: 10.1038/nrc2355
  • R K. Cancer immunoediting: from immune surveillance to immune escape. Cancer Immunother. 2007;9:27.
  • Xiong X, Liu H, Zhao Z, et al. DNA aptamer‐mediated cell targeting. Angew Chem Int Ed. 2013;152(5):1512–1516. doi: 10.1002/ange.201207063
  • Shi P, Wang X, Davis B, et al. In situ synthesis of an aptamer-based polyvalent antibody mimic on the cell surface for enhanced interactions between immune and cancer cells. Angew Chem Int Ed. 2020;59(29):11892–11897. doi: 10.1002/anie.202004206
  • Zhang D, Zheng Y, Lin Z, et al. Equipping natural killer cells with specific targeting and checkpoint blocking aptamers for enhanced adoptive immunotherapy in solid tumors. Angew Chem Int Ed. 2020;59(29):12022–12028. doi: 10.1002/anie.202002145
  • Belgiovine C, Digifico E, Anfray C, et al. Targeting tumor-associated macrophages in anti-cancer therapies: convincing the traitors to do the right thing. J Clin Med. 2020;9(10):3226. doi: 10.3390/jcm9103226
  • Xia Y, Rao L, Yao H, et al. Engineering macrophages for cancer immunotherapy and drug delivery. Adv Mater. 2020;32(40):e2002054. doi: 10.1002/adma.202002054
  • Qian H, Fu Y, Guo M, et al. Dual-aptamer-engineered M1 macrophage with enhanced specific targeting and checkpoint blocking for solid-tumor immunotherapy. Mol Ther. 2022;30(8):2817–2827. doi: 10.1016/j.ymthe.2022.04.015
  • Maru B, Nadeau L, McKeague M. Enhancing CAR-T cell therapy with functional nucleic acids. ACS Pharmacol Transl Sci. 2021;4(6):1716–1727. doi: 10.1021/acsptsci.1c00188
  • Liu CG, Wang Y, Liu P, et al. Aptamer-T cell targeted therapy for tumor treatment using sugar metabolism and click chemistry. ACS Chem Biol. 2020;15(6):1554–1565. doi: 10.1021/acschembio.0c00164
  • Wang T, Chen C, Larcher LM, et al. Three decades of nucleic acid aptamer technologies: lessons learned, progress and opportunities on aptamer development. Biotechnol Adv. 2019;37(1):28–50. doi: 10.1016/j.biotechadv.2018.11.001
  • Zhao L, Qi X, Yan X, et al. Engineering aptamer with enhanced affinity by triple helix-based terminal fixation. J Am Chem Soc. 2019;141(44):17493–17497. doi: 10.1021/jacs.9b09292
  • Yoshikawa AM, Rangel A, Feagin T, et al. Discovery of indole-modified aptamers for highly specific recognition of protein glycoforms. Nat Commun. 2021;12(1):7106. doi: 10.1038/s41467-021-26933-1
  • Yue H, Chen J, Chen X, et al. Systematic screening and optimization of single-stranded DNA aptamer specific for N-acetylneuraminic acid: A comparative study. Sens Actuators B Chem. 2021;344:130270. doi: 10.1016/j.snb.2021.130270

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.