142
Views
0
CrossRef citations to date
0
Altmetric
Review

Advances in the discovery of heterocyclic-based drugs against Alzheimer’s disease

, , &
Pages 1413-1428 | Received 01 Jun 2023, Accepted 26 Sep 2023, Published online: 06 Oct 2023

References

  • Lin P, Sun J, Cheng Q, et al. The development of pharmacological therapies for Alzheimer’s disease [review]. Neurol Ther. 2021;10(2):609–626.
  • Gong C-X, Dai C-L, Liu F, et al. Multi-targets: an unconventional drug development strategy for Alzheimer’s disease. Front Aging Neurosci. 2022;14:86.
  • González JF, Alcántara AR, Doadrio AL, et al. Developments with multi-target drugs for Alzheimer’s disease: an overview of the current discovery approaches [review]. Expert Opin Drug Discov. 2019;14(9):879–891. doi: 10.1080/17460441.2019.1623201
  • Tamagno E, Guglielmotto M, Vasciaveo V, et al. Oxidative stress and beta amyloid in Alzheimer’s disease. Which comes first: the chicken or the egg? Antioxidants. 2021;10(9):1479. doi: 10.3390/antiox10091479
  • Chaudhari V, Bagwe-Parab S, Buttar HS, et al. Challenges and opportunities of metal chelation therapy in trace metals overload-induced Alzheimer’s disease [review]. Neurotoxic Res. 2023;41(3):270–287. doi: 10.1007/s12640-023-00634-7
  • Martins MM, Branco PS, Ferreira LM. Enhancing the therapeutic effect in Alzheimer’s disease drugs: the role of polypharmacology and cholinesterase inhibitors [review]. ChemistrySelect. 2023;8(10). doi: 10.1002/slct.202300461
  • Kumari S, Maddeboina K, Bachu RD, et al. Pivotal role of nitrogen heterocycles in Alzheimer’s disease drug discovery [review]. Drug Discov Today. 2022;27(10):103322. doi: 10.1016/j.drudis.2022.07.007
  • Iliyasu MO, Musa SA, Oladele SB, et al. Amyloid-beta aggregation implicates multiple pathways in Alzheimer’s disease: understanding the mechanisms. Front Neurosci. 2023;17:17. doi: 10.3389/fnins.2023.1081938
  • Mondal AC. Role of GPCR signaling and calcium dysregulation in Alzheimer’s disease. Mol Cell Neurosci. 2019;101:103414.
  • Galla L, Redolfi N, Pozzan T, et al. Intracellular calcium dysregulation by the Alzheimer’s disease-linked protein presenilin 2. Int J Mol Sci. 2020;21(3):770. doi: 10.3390/ijms21030770
  • Ryan KC, Ashkavand Z, Norman KR. The role of mitochondrial calcium homeostasis in Alzheimer’s and related diseases. Int J Mol Sci. 2020;21(23):9153. doi: 10.3390/ijms21239153
  • Esteras N, Abramov AY. Mitochondrial calcium deregulation in the mechanism of beta-amyloid and tau pathology. Cells. 2020;9(9):2135. doi: 10.3390/cells9092135
  • Chidambaram H, Chinnathambi S. G-protein coupled receptors and tau-different roles in Alzheimer’s disease. Neuroscience. 2020;438:198–214. doi: 10.1016/j.neuroscience.2020.04.019
  • Giudice ML, Mihalik B, Dinnyés A, et al. The nervous system relevance of the calcium sensing receptor in health and disease. Molecules. 2019;24(14):2546. doi: 10.3390/molecules24142546
  • Eissa KI, Kamel MM, Mohamed LW, et al. Development of new Alzheimer’s disease drug candidates using donepezil as a key model [review]. Arch Pharm. 2023;356(1). doi: 10.1002/ardp.202200398
  • Mishra P, Kumar A, Panda G. Anti-cholinesterase hybrids as multi-target-directed ligands against Alzheimer’s disease (1998–2018) [review]. Bioorg Med Chem. 2019;27(6):895–930. doi: 10.1016/j.bmc.2019.01.025
  • Mathew S, Abraham TE, Zakaria ZA. Reactivity of phenolic compounds towards free radicals under in vitro conditions. J Food Sci Technol. 2015;52:5790–5798. doi: 10.1007/s13197-014-1704-0
  • Madhav H, Jameel E, Rehan M, et al. Recent advancements in chromone as a privileged scaffold towards the development of small molecules for neurodegenerative therapeutics [review]. RSC Med Chem. 2022;13(3):258–279. doi: 10.1039/D1MD00394A
  • Keuler T, Lemke C, Elsinghorst PW, et al. The chemotype of Chromanones as a privileged scaffold for multineurotarget anti-Alzheimer agents [article]. ACS Pharm Transl Sci. 2022;5(11):1097–1108. doi: 10.1021/acsptsci.2c00097
  • Grundman M. Vitamin E and Alzheimer disease: the basis for additional clinical trials. Am J Clin Nutr. 2000;71(2):630S–636S. editorAmerican Society for Nutrition; 10681271. 2). doi: 10.1093/ajcn/71.2.630s
  • Ballard C, Aarsland D, Cummings J, et al. Drug repositioning and repurposing for Alzheimer disease. Nat Rev Neurol. 2020;16(12):661–673. doi: 10.1038/s41582-020-0397-4
  • Zhang C, Griciuc A, Hudry E, et al. Cromolyn reduces levels of the Alzheimer’s disease-associated amyloid β-protein by promoting microglial phagocytosis [article]. Sci Rep. 2018;8(1). doi: 10.1038/s41598-018-19641-2
  • Shoup TM, Griciuc A, Normandin MD, et al. Evaluation of fluorinated cromolyn derivatives as potential therapeutics for Alzheimer’s disease [article]. J Alzheimer’s Dis. 2021;80(2):775–786. doi: 10.3233/JAD-201419
  • Wang Q, Dong X, Zhang R, et al. Flavonoids with potential anti-amyloidogenic effects as therapeutic drugs for treating Alzheimer’s disease [review]. J Alzheimer’s Dis. 2021;84(2):505–533. doi: 10.3233/JAD-210735
  • Dourado NS, Souza CDS, de Almeida MMA, et al. Neuroimmunomodulatory and neuroprotective effects of the flavonoid apigenin in in vitro models of neuroinflammation associated with Alzheimer’s disease [article]. Front Aging Neurosci. 2020;12:12. doi: 10.3389/fnagi.2020.00119
  • Boulaamane Y, Kandpal P, Chandra A, et al. Chemical library design, QSAR modeling and molecular dynamics simulations of naturally occurring coumarins as dual inhibitors of MAO-B and AChE [article]. J Biomol Struct Dyn. 2023;1–18.
  • Bhatia R, Chakrabarti SS, Kaur U, et al. Multi-target directed ligands (MTDLs): promising coumarin hybrids for Alzheimer’s disease [review]. Curr Alzheimer Res. 2021;18(10):802–830. doi: 10.2174/1567205018666211208140551
  • Husain A, Balushi KA, Akhtar MJ, et al. Coumarin linked heterocyclic hybrids: a promising approach to develop multi target drugs for Alzheimer’s disease [article]. J Mol Struct. 2021;1241:130618. doi: 10.1016/j.molstruc.2021.130618
  • Xie SS, Liu J, Tang C, et al. Design, synthesis and biological evaluation of rasagiline-clorgyline hybrids as novel dual inhibitors of monoamine oxidase-B and amyloid-β aggregation against Alzheimer’s disease [article]. Eur J Med Chem. 2020;202:202. doi: 10.1016/j.ejmech.2020.112475
  • Martin EF, Pollo LAE, da Silva LAL, et al. In vitro studies of a series of synthetic compounds for their anti-acetylcholinesterase activities identified arylpyrano[2,3-f]coumarins as hit compounds [article]. J Mol Struct. 2022;1260:132799. doi: 10.1016/j.molstruc.2022.132799
  • Shaik JB, Palaka BK, Penumala M, et al. Synthesis, biological evaluation, and molecular docking of 8-imino-2-oxo-2 H, 8 H -pyrano[2,3- f]chromene analogs: new dual AChE inhibitors as potential drugs for the treatment of Alzheimer’s disease. Chem Biol Drug Des. 2016;88(1):43–53. doi: 10.1111/cbdd.12732
  • Bubley A, Erofeev A, Gorelkin P, et al. Tacrine-based hybrids: past, present, and future [review]. Int J Mol Sci. 2023;24(2):1717. doi: 10.3390/ijms24021717
  • Babaei E, Küçükkılınç TT, Jalili-Baleh L, et al. Novel coumarin–pyridine hybrids as potent multi-target directed ligands aiming at symptoms of Alzheimer’s disease [article]. Front Chem. 2022;10:10. doi: 10.3389/fchem.2022.895483
  • Egan MF, Kost J, Tariot PN, et al. Randomized trial of verubecestat for mild-to-moderate Alzheimer’s disease [article]. New Engl J Med. 2018;378(18):1691–1703. doi: 10.1056/NEJMoa1706441
  • Egan MF, Kost J, Voss T, et al. Randomized trial of verubecestat for prodromal Alzheimer’s disease [article]. New Engl J Med. 2019;380(15):1408–1420. doi: 10.1056/NEJMoa1812840
  • Koriyama Y, Hori A, Ito H, et al. Discovery of atabecestat (JNJ-54861911): a thiazine-based β-amyloid precursor protein cleaving enzyme 1 inhibitor advanced to the phase 2b/3 EARLY clinical trial [article]. J Med Chem. 2021;64(4):1873–1888. doi: 10.1021/acs.jmedchem.0c01917
  • Wessels AM, Tariot PN, Zimmer JA, et al. Efficacy and safety of lanabecestat for treatment of early and mild Alzheimer disease: the AMARANTH and DAYBREAK-ALZ Randomized clinical trials [article]. JAMA Neurol. 2020;77(2):199–209. doi: 10.1001/jamaneurol.2019.3988
  • Roberts C, Kaplow J, Giroux M, et al. Amyloid and APOE status of screened subjects in the elenbecestat MissionAD phase 3 program [article]. J Prev Alzheimer’s Dis. 2021;8(2):218–223. doi: 10.14283/jpad.2021.4
  • Schechter I, Berger A. On the size of the active site in proteases. I. Papain. Biochem Biophys Res Commun. 1967;27(2):157–162. doi: 10.1016/S0006-291X(67)80055-X
  • Machauer R, Lueoend R, Hurth K, et al. Discovery of umibecestat (CNP520): a potent, selective, and efficacious β-secretase (BACE1) inhibitor for the prevention of Alzheimer’s disease [article]. J Med Chem. 2021;64(20):15262–15279. doi: 10.1021/acs.jmedchem.1c01300
  • Graf A, Riviere M-E, Liu F, et al. Umibecestat in the API generation program: worsening in RBANS and/or CDR on treatment reverses after wash-out. Alzheimer’s Dement. 2020;16(S9):e041140. doi: 10.1002/alz.041140
  • Zhou D, Zhang M, Ye X, et al. In vitro metabolism of α7 neuronal nicotinic receptor agonist AZD0328 and enzyme identification for its N-oxide metabolite [article]. Xenobiotica. 2011;41(3):232–242. doi: 10.3109/00498254.2010.536855
  • Lee CH, Hung SY. Physiologic functions and therapeutic applications of α7 nicotinic acetylcholine receptor in brain disorders [review]. Pharmaceutics. 2023;15(1):31. doi: 10.3390/pharmaceutics15010031
  • Davidson M, Levi L, Park J, et al. The effects of JNJ-39393406 a positive allosteric nicotine modulator on mood and cognition in patients with unipolar depression: a double-blind, add-on, placebo-controlled trial [article]. Eur Neuropsychopharmacol. 2021;51:33–42. doi: 10.1016/j.euroneuro.2021.04.020
  • Siddiqui BA, Chapin BF, Jindal S, et al. Immune and pathologic responses in patients with localized prostate cancer who received daratumumab (anti-CD38) or edicotinib (CSF-1R inhibitor) [article]. J Immunother Cancer. 2023;11(3):e006262. doi: 10.1136/jitc-2022-006262
  • Mancuso R, Fryatt G, Cleal M, et al. CSF1R inhibitor JNJ-40346527 attenuates microglial proliferation and neurodegeneration in P301S mice [article]. Brain. 2019;142(10):3243–3264. doi: 10.1093/brain/awz241
  • Han J, Chitu V, Stanley ER, et al. Inhibition of colony stimulating factor-1 receptor (CSF-1R) as a potential therapeutic strategy for neurodegenerative diseases: opportunities and challenges [review]. Cell Mol Life Sci. 2022;79(4). doi: 10.1007/s00018-022-04225-1
  • Law CSW, Yeong KY. Repurposing antihypertensive drugs for the management of alzheimer’s disease [short survey]. Curr Med Chem. 2021;28(9):1716–1730. doi: 10.2174/0929867327666200312114223
  • Joshi M, Joshi S, Khambete M, et al. Role of calcium dysregulation in Alzheimer’s disease and its therapeutic implications [review]. Chem Biol Drug Des. 2023;101(2):453–468. doi: 10.1111/cbdd.14175
  • Colbourne L, Harrison PJ. Brain-penetrant calcium channel blockers are associated with a reduced incidence of neuropsychiatric disorders [article]. Mol Psychiatry. 2022;27(9):3904–3912. doi: 10.1038/s41380-022-01615-6
  • Crossley CA, Rajani V, Yuan Q. Modulation of L-type calcium channels in Alzheimer’s disease: a potential therapeutic target [review]. Comput Struct Biotechnol J. 2023;21:11–20. doi: 10.1016/j.csbj.2022.11.049
  • Tan Z, Chen Y, Xie W, et al. Nimodipine attenuates tau phosphorylation at Ser396 via miR-132/GSK-3β pathway in chronic cerebral hypoperfusion rats [article]. Eur J Pharmacol. 2018;819:1–8. doi: 10.1016/j.ejphar.2017.10.027
  • Topcu A, Saral S, Ozturk A, et al. The effect of the calcium channel blocker nimodipine on hippocampal BDNF/Ach levels in rats with experimental cognitive impairment [article]. Neurol Res. 2023;45(6):544–553. doi: 10.1080/01616412.2022.2164452
  • Carlson AP, Hänggi D, Macdonald RL, et al. Nimodipine reappraised: an old drug with a future. Curr Neuropharmacol. 2020;18(1):65–82. doi: 10.2174/1570159X17666190927113021
  • Dhapola R, Sarma P, Medhi B, et al. Recent advances in molecular pathways and therapeutic implications targeting mitochondrial dysfunction for Alzheimer’s disease [review]. Mol Neurobiol. 2022;59(1):535–555. doi: 10.1007/s12035-021-02612-6
  • Lawlor B, Segurado R, Kennelly S, et al. Nilvadipine in mild to moderate Alzheimer disease: a randomised controlled trial [article]. PLOS Med. 2018;15(9):e1002660. doi: 10.1371/journal.pmed.1002660
  • Huang LK, Chao SP, Hu CJ. Clinical trials of new drugs for Alzheimer disease [review]. J Biomed Sci. 2020;27(1). doi: 10.1186/s12929-019-0609-7
  • Bachurin S, Bukatina E, Lermontova N, et al. Antihistamine agent dimebon as a novel neuroprotector and a cognition enhancer. Ann New York Acad Sci. 2001;939(1):425–435. editorsNew York Academy of Sciences. doi: 10.1111/j.1749-6632.2001.tb03654.x
  • Bharadwaj PR, Bates KA, Porter T, et al. Latrepirdine: molecular mechanisms underlying potential therapeutic roles in Alzheimer’s and other neurodegenerative diseases [review]. Transl Psychiatry. 2013;3(12):e332–e332. doi: 10.1038/tp.2013.97
  • Steele JW, Lachenmayer ML, Ju S, et al. Latrepirdine improves cognition and arrests progression of neuropathology in an Alzheimer’s mouse model [article]. Mol Psychiatry. 2013;18(8):889–897. doi: 10.1038/mp.2012.106
  • Doody RS, Gavrilova SI, Sano M, et al. Effect of dimebon on cognition, activities of daily living, behaviour, and global function in patients with mild-to-moderate Alzheimer’s disease: a randomised, double-blind, placebo-controlled study [article]. Lancet. 2008;372(9634):207–215. doi: 10.1016/S0140-6736(08)61074-0
  • Chau S, Herrmann N, Ruthirakuhan MT, et al. Latrepirdine for Alzheimer’s disease [review]. Cochrane Database Syst Rev. 2015;2015(4). doi: 10.1002/14651858.CD009524.pub2
  • Zhang C, Zhang Y, Lv Y, et al. Chromone-based monoamine oxidase B inhibitor with potential iron-chelating activity for the treatment of Alzheimer’s disease [article]. J Enzyme Inhib Med Chem. 2023;38(1):100–117. doi: 10.1080/14756366.2022.2134358
  • Matada BS, Pattanashettar R, Yernale NG. A comprehensive review on the biological interest of quinoline and its derivatives [article]. Bioorg Med Chem. 2021;32:32.
  • Matada BS, Pattanashettar R, Yernale NG. Corrigendum to “A comprehensive review on the biological interest of quinoline and its derivatives. Bioorg Med Chem. 2021;32:115973. 115973](S0968089620308038)(10.1016/j.bmc.2020.115973) [Erratum]. Bioorg Med Chem. 2021;37. doi: 10.1016/j.bmc.2020.115973
  • Gupta R, Luxami V, Paul K. Insights of 8-hydroxyquinolines: a novel target in medicinal chemistry. Bioorg Chem. 2021;108:104633. doi: 10.1016/j.bioorg.2021.104633
  • Moon M, Jung ES, Jeon SG, et al. Nurr1 (NR4A2) regulates Alzheimer’s disease-related pathogenesis and cognitive function in the 5XFAD mouse model [article]. Aging Cell. 2019;18(1). doi: 10.1111/acel.12866
  • Chen H, Yu X, Hu L, et al. Activation of Nurr1 with amodiaquine protected neuron and alleviated neuroinflammation after subarachnoid hemorrhage in rats [article]. Oxidative Med Cell Longevity. 2021;2021:1–15. doi: 10.1155/2021/6669787
  • Nirogi R, Jayarajan P, Shinde A, et al. Progress in investigational agents targeting serotonin-6 receptors for the treatment of brain disorders [review]. Biomolecules. 2023;13(2):309. doi: 10.3390/biom13020309
  • Cuddy LK, Alia AO, Salvo MA, et al. Farnesyltransferase inhibitor LNK-754 attenuates axonal dystrophy and reduces amyloid pathology in mice [article]. Mol Neurodegener. 2022;17(1). doi: 10.1186/s13024-022-00561-9
  • Danao KR, Malghade PM, Mahapatra DK, et al. Progressive insights into the pharmacological importance of isoquinoline derivatives in modern therapeutics [article]. Intern J Cur Res Rev. 2021;13(4):83–90. doi: 10.31782/IJCRR.2021.13421
  • Cahlíková L, Vrabec R, Pidaný F, et al. Recent progress on biological activity of Amaryllidaceae and further isoquinoline alkaloids in connection with Alzheimer’s disease [review]. Molecules. 2021;26(17):5240. doi: 10.3390/molecules26175240
  • Siatka T, Adamcová M, Opletal L, et al. Cholinesterase and prolyl oligopeptidase inhibitory activities of alkaloids from Argemone platyceras (Papaveraceae) [article]. Molecules. 2017;22(7):1181. doi: 10.3390/molecules22071181
  • Altinoz MA, Guloksuz S, Ozpinar A. Immunomodifying and neuroprotective effects of noscapine: implications for multiple sclerosis, neurodegenerative, and psychiatric disorders [review]. Chem-Biol Interact. 2022;352:109794. doi: 10.1016/j.cbi.2021.109794
  • Sahu S, Behera P, Panda S, et al. Developments in chemistry and biological application of cotarnine & its analogs. Tetrahedron. 2020;76(50):131663. doi: 10.1016/j.tet.2020.131663
  • Gomes LM, Bataglioli JC, Storr T. Metal complexes that bind to the amyloid-β peptide of relevance to Alzheimer’s disease. Coord Chem Rev. 2020;412:213255. doi: 10.1016/j.ccr.2020.213255
  • Shimokawa K-I, Katayama M, Matsuda Y, et al. Matrix metalloproteinase (MMP)-2 and MMP-9 activities in human seminal plasma. Mol Hum Reprod. 2002;8(1):32–36. doi: 10.1093/molehr/8.1.32
  • Gladis EHE, Nagashri K, Krishnendu A. Synthesis, structural elucidation, DNA binding, cleavage, AChE and BuChE cholinesterase efficiencies of metal complexes with 1,10-phenanthroline scaffold [article]. Nucleosides Nucleotides Nucleic Acids. 2022;41(3):285–313. doi: 10.1080/15257770.2021.2011915
  • Gladis EHE, Nagashri K, Suman A, et al. Multifunctional 1,10-phenanthroline derivative and its metal complexes as an anti-Alzheimer’s agent: structure-based drug design, synthesis, characterization and pharmacological studies [article]. J Coord Chem. 2020;73(23):3267–3290. doi: 10.1080/00958972.2020.1852223
  • Yi Y, Han J, Park MH, et al. Tunable regulatory activities of 1,10-phenanthroline derivatives towards acid sphingomyelinase and Zn(ii)-amyloid-β [article]. Chem Commun. 2019;55(42):5847–5850. doi: 10.1039/C9CC01005J
  • Duarte Y, Gutierrez M, Álvarez R, et al. Experimental and theoretical approaches in the study of phenanthroline-tetrahydroquinolines for Alzheimer’s disease [article]. ChemistryOpen. 2019;8(5):627–636. doi: 10.1002/open.201900073
  • Prasher P, Sharma M. Medicinal chemistry of acridine and its analogues [review]. MedChemcomm. 2018;9(10):1589–1618. doi: 10.1039/C8MD00384J
  • Park S, Kim HY, Oh H-A, et al. Quinacrine directly dissociates amyloid plaques in the brain of 5XFAD transgenic mouse model of Alzheimer’s disease. Sci Rep. 2021;11(1):12043. doi: 10.1038/s41598-021-91563-y
  • Yamali C, Donmez S. Recent Developments in tacrine-based hybrids as a therapeutic option for Alzheimer’s disease. Mini Rev Med Chem. 2023;23(7):869–880. doi: 10.2174/1389557523666221201145141
  • Mitra S, Muni M, Shawon NJ, et al. Tacrine derivatives in neurological disorders: focus on molecular mechanisms and neurotherapeutic potential [review]. Oxidative Med Cell Longevity. 2022;2022:1–22. doi: 10.1155/2022/7252882
  • Marasco D, Vicidomini C, Krupa P, et al. Plant isoquinoline alkaloids as potential neurodrugs: a comparative study of the effects of benzo[c]phenanthridine and berberine-based compounds on β-amyloid aggregation [article]. Chem-Biol Interact. 2021;334:109300. doi: 10.1016/j.cbi.2020.109300
  • Thirupataiah B, Reddy GS, Ghule SS, et al. Synthesis of 11,12-dihydro benzo[c]phenanthridines via a Pd-catalyzed unusual construction of isocoumarin ring/FeCl3-mediated intramolecular arene-allyl cyclization: first identification of a benzo[c]phenanthridine based PDE4 inhibitor [article]. Bioorg Chem. 2020;97:103691. doi: 10.1016/j.bioorg.2020.103691
  • Vrabec R, Blunden G, Cahlíková L. Natural alkaloids as multi-target compounds towards factors implicated in Alzheimer’s disease. Int J Mol Sci. 2023;24(5):4399. doi: 10.3390/ijms24054399
  • Moyano P, Vicente-Zurdo D, Blázquez-Barbadillo C, et al. Neuroprotective action of multitarget 7-aminophenanthridin-6(5H)-one derivatives against metal-induced Cell death and oxidative stress in SN56 cells [article]. ACS Chem Neurosci. 2021;12(18):3358–3372. doi: 10.1021/acschemneuro.1c00333
  • Rocchi D, Blazquez-Barbadillo C, Agamennone M, et al. Discovery of 7-aminophenanthridin-6-one as a new scaffold for matrix metalloproteinase inhibitors with multitarget neuroprotective activity. Eur J Med Chem. 2021;210:113061. doi: 10.1016/j.ejmech.2020.113061
  • Bhat M, Belagali SL. Structural activity relationship and importance of benzothiazole derivatives in medicinal chemistry: a comprehensive review. Mini-Rev Org Chem. 2020;17(3):323–350. doi: 10.2174/1570193X16666190204111502
  • Law CSW, Yeong KY. Current trends of benzothiazoles in drug discovery: a patent review (2015–2020). Expert Opin Ther Patents. 2022;32(3):299–315. doi: 10.1080/13543776.2022.2026327
  • Das S, Indurthi HK, Asati P, et al. Benzothiazole based fluorescent probes for the detection of biomolecules, physiological conditions, and ions responsible for diseases. Dyes Pigments. 2022;199:110074. doi: 10.1016/j.dyepig.2021.110074
  • Pereira A Glutamatergic dysfunction in cognitive Aging: riluzole in mild Alzheimer’s disease; clinical trial registration NCT01703117; Clinicaltrials.Gov. 2021. [cited 2023 May 31]. Available from: https://clinicaltrials.gov/ct2/show/results/NCT01703117?view=results.
  • Rosales Hernández MC, Fragoso Morales LG, Correa Basurto J, et al. In silico and in vitro studies of benzothiazole-isothioureas derivatives as a multitarget compound for Alzheimer’s disease [article]. Int J Mol Sci. 2022;23(21):12945. doi: 10.3390/ijms232112945
  • Mohr E, Nair NV, Sampson M, et al. Treatment of Alzheimer’s disease with sabeluzole: functional and structural correlates. Clin Neuropharmacol. 1997;20(4):338–345. doi: 10.1097/00002826-199708000-00005
  • Beiner M, Wirtz V, L’Italien G, et al. Analysis of 96 week, long-term open label extension phase of study BHV4157-201: a phase IIb/III, Randomized, Double-blind, placebo-controlled trial of the safety and efficacy of troriluzole in adult subjects with spinocerebellar ataxia (2837). Neurol. 2021;96(15 Supplement):2837. https://n.neurology.org/content/96/15_Supplement/2837
  • Matthews DC, Mao X, Dowd K, et al. Riluzole, a glutamate modulator, slows cerebral glucose metabolism decline in patients with Alzheimer’s disease. Brain. 2021;144(12):3742–3755. doi: 10.1093/brain/awab222
  • Mishra CB, Shalini S, Gusain S, et al. Development of novel N-(6-methanesulfonyl-benzothiazol-2-yl)-3-(4-substituted-piperazin-1-yl)-propionamides with cholinesterase inhibition, anti-β-amyloid aggregation, neuroprotection and cognition enhancing properties for the therapy of Alzheimer’s disease. RSC Adv. 2020;10(30):17602–17619. doi: 10.1039/d0ra00663g
  • Satpati A, Neylan T, Grinberg LT. Histaminergic neurotransmission in aging and Alzheimer’s disease: a review of therapeutic opportunities and gaps. Alzheimer’s & Dementia: Transl Res Clin Interventions. 2023;9(2):e12379. doi: 10.1002/trc2.12379
  • Maramai S, Benchekroun M, Gabr MT, et al. Multitarget therapeutic strategies for Alzheimer’s disease: review on emerging target combinations [review]. Biomed Res Int. 2020;2020:1–27. doi: 10.1155/2020/5120230
  • Jończyk J, Lodarski K, Staszewski M, et al. Search for multifunctional agents against Alzheimer’s disease among non-imidazole histamine H3 receptor ligands. In vitro and in vivo pharmacological evaluation and computational studies of piperazine derivatives [article]. Bioorg Chem. 2019;90:103084. doi: 10.1016/j.bioorg.2019.103084
  • Makhouri FR, Ghasemi JB. In silico studies in drug research against neurodegenerative diseases [review]. Curr Neuropharmacol. 2018;16(6):664–725. doi: 10.2174/1570159X15666170823095628
  • Gaspar A, Milhazes N, Santana L, et al. Oxidative stress and neurodegenerative diseases: looking for a therapeutic solution inspired on benzopyran chemistry [article]. Curr Top Med Chem. 2015;15(5):432–445. doi: 10.2174/1568026614666141229124141
  • Li ZH, Yin LQ, Zhao DH, et al. SAR studies of quinoline and derivatives as potential treatments for Alzheimer’s disease [review]. Arab J Chem. 2023;16(2):104502. doi: 10.1016/j.arabjc.2022.104502
  • Zhang H, Wu C, Chen X, et al. Novel pyridine-containing sultones: structure-activity relationship and biological evaluation as selective AChE inhibitors for the treatment of Alzheimer’s disease [article]. ChemMedchem. 2021;16(20):3189–3200. doi: 10.1002/cmdc.202100272
  • Hafez DE, Dubiel M, La Spada G, et al. Novel benzothiazole derivatives as multitargeted-directed ligands for the treatment of Alzheimer’s disease [article]. J Enzyme Inhib Med Chem. 2023;38(1). doi: 10.1080/14756366.2023.2175821
  • Do Carmo Carreiras M, Ismaili L, Marco-Contelles J. Propargylamine-derived multi-target directed ligands for Alzheimer’s disease therapy [review]. Bioorg Med Chem Lett. 2020;30(3):126880. doi: 10.1016/j.bmcl.2019.126880
  • Makhoba XH, Viegas C Jr., Mosa RA, et al. Potential impact of the multi-target drug approach in the treatment of some complex diseases. Drug Des Devel Ther. 2020;14:3235–3249. doi: 10.2147/DDDT.S257494
  • Parvathaneni V, Kulkarni NS, Muth A, et al. Drug repurposing: a promising tool to accelerate the drug discovery process. Drug Discov Today. 2019 Oct;24(10):2076–2085. doi: 10.1016/j.drudis.2019.06.014

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.