181
Views
0
CrossRef citations to date
0
Altmetric
Review

15 Years of molecular simulation of drug-binding kinetics

Pages 1333-1348 | Received 20 Jul 2023, Accepted 26 Sep 2023, Published online: 04 Oct 2023

References

  • Tummino PJ, Copeland RA. Residence time of receptor-ligand complexes and its effect on biological function. Biochemistry (Mosc). 2008 May 20;47(20):5481–5492. doi: 10.1021/bi8002023
  • Copeland RA, Pompliano DL, Meek TD. Drug-target residence time and its implications for lead optimization. Nat Rev Drug Discov. 2006 Sep;5(9):730–739. doi: 10.1038/nrd2082
  • Zhang R, Monsma F. The importance of drug-target residence time. Curr Opin Drug Discovery Dev. 2009 Jul;12(4):488–496.
  • Swinney DC. The role of binding kinetics in therapeutically useful drug action. Curr Opin Drug Discovery Dev. 2009 Jan;12(1):31–39.
  • Swinney DC. Can binding kinetics translate to a clinically differentiated drug? From theory to practice. Lett Drug Des Discovery. 2006;3(8):569–574. doi: 10.2174/157018006778194754
  • Swinney DC. Biochemical mechanisms of New molecular entities (NMEs) approved by United States FDA during 2001–2004: mechanisms leading to optimal efficacy and safety. Curr Top Med Chem. 2006;6(5):461–478. doi: 10.2174/156802606776743093
  • Swinney DC. Biochemical mechanisms of drug action: what does it take for success? Nat Rev Drug Discov. 2004;3(9):801–808. doi: 10.1038/nrd1500
  • Lu H, Tonge PJ. Drug-target residence time: critical information for lead optimization. Curr Opin Chem Biol. 2010 Aug;14(4):467–474. doi: 10.1016/j.cbpa.2010.06.176
  • Wong CF, Bairy S. Drug design for protein kinases and phosphatases: flexible-receptor docking, binding affinity and specificity, and drug-binding kinetics. Curr Pharm Des. 2013;19(26):4739–4754. doi: 10.2174/1381612811319260006
  • Bairy S, Wong CF. Influence of kinetics of drug binding on EGFR signaling: a comparative study of three EGFR signaling pathway models. Proteins Struct Funct Bioinf. 2011;79(8):2491–2504. doi: 10.1002/prot.23072
  • Goyal M, Rizzo M, Schumacher F, et al. Beyond thermodynamics: drug binding kinetics could influence epidermal growth factor signaling. J Med Chem. 2009 Sep 24;52(18):5582–5585. doi: 10.1021/jm900974p
  • Lipton SA. Paradigm shift in neuroprotection by NMDA receptor blockade: memantine and beyond. Nat Rev Drug Discov. 2006 Feb;5(2):160–170. doi: 10.1038/nrd1958
  • Wu H, Pfarr DS, Tang Y, et al. Ultra-potent antibodies against respiratory syncytial virus: effects of binding kinetics and binding valence on viral neutralization. J Mol Biol. 2005 Jul 1;350(1):126–144. doi: 10.1016/j.jmb.2005.04.049
  • Copeland RA. Evolution of the drug-target residence time model [article]. Expert Opin Drug Discov. 2021;16(12):1441–1451. doi: 10.1080/17460441.2021.1948997
  • Folmer RHA. Drug target residence time: a misleading concept [short survey]. Drug Discovery Today. 2018;23(1):12–16. doi: 10.1016/j.drudis.2017.07.016
  • Vauquelin G. Link between a high kon for drug binding and a fast clinical action: to be or not to be? MedChemcomm. 2018;9(9):1426–1438. doi: 10.1039/C8MD00296G
  • Huang Z, Wong CF. A mining minima approach to exploring the docking pathways of p-nitrocatechol sulfate to YopH. Biophys J. 2007 Dec 15;93(12):4141–4150. doi: 10.1529/biophysj.107.113860
  • Frauenfelder H, Sligar SG, Wolynes PG. The energy landscapes and motions of Proteins. Science. 1991 Dec 13;254(5038):1598–1603. doi: 10.1126/science.1749933
  • Elber R, Karplus M. Multiple conformational states of proteins: a molecular dynamics analysis of myoglobin. Science. 1987 Jan 16;235(4786):318–321. doi: 10.1126/science.3798113
  • Huang Z, Wong CF. A case study of scoring and rescoring in peptide docking. Methods Mol Biol. 2012;819:269–293.
  • Huang Z, Wong CF. Docking flexible peptide to flexible protein by molecular dynamics using two implicit-solvent models: an evaluation in protein kinase and phosphatase systems. J Phys Chem B. 2009 Oct 29;113(43):14343–14354. doi: 10.1021/jp907375b
  • Huang Z, Wong CF. Conformational selection of protein kinase a revealed by flexible-ligand flexible-protein docking. J Comput Chem. 2009 Aug 18;30(4):631–644. doi: 10.1002/jcc.21090
  • Huang Z, Wong CF, Wheeler RA. Flexible protein-flexible ligand docking with disrupted velocity simulated annealing. Proteins. 2008 Apr;71(1):440–454. doi: 10.1002/prot.21781
  • Wong CF. Flexible ligand-flexible protein docking in protein kinase systems. Biochim Biophys Acta - Proteins Proteom. 2008 Jan;1784(1):244–251. doi: 10.1016/j.bbapap.2007.10.005
  • Wong CF. Molecular simulation of drug-binding kinetics. Mol Simulat. 2014;40(10–11):889–903. doi: 10.1080/08927022.2014.890722
  • Huang Z, Wong CF. Simulation reveals two major docking pathways between the hexapeptide GDYMNM and the catalytic domain of the insulin receptor protein kinase. Proteins Struct Funct Bioinf. 2012;80(9):2275–2286. doi: 10.1002/prot.24116
  • Wong CF. Incorporating drug-binding kinetics in drug design. In: Cavasotto C, editor. Silico drug discovery and design: theory, methods, challenges and applications. Boca Raton (FL): CRC Press; 2015. p. 483–505.
  • Johnson ME, Hummer G. Characterization of a dynamic string method for the construction of transition pathways in molecular reactions. J Phys Chem B. 2012;116(29):8573–8583. doi: 10.1021/jp212611k
  • Kramers HA. Brownian motion in a field of force and the diffusion model of chemical reactions [article]. Physica. 1940;7(4):284–304. doi: 10.1016/S0031-8914(40)90098-2
  • Wang J, Miao Y. Ligand Gaussian accelerated molecular dynamics 2 (LiGamd2): improved calculations of ligand binding thermodynamics and kinetics with closed protein pocket [article]. J Chem Theory Comput. 2023;19(3):733–745. doi: 10.1021/acs.jctc.2c01194
  • Miao Y. Acceleration of biomolecular kinetics in Gaussian accelerated molecular dynamics [article]. J Chem Phys. 2018;149(7). doi: 10.1063/1.5024217
  • Grubmüller H, Heymann B, Tavan P. Ligand binding: molecular mechanics calculation of the streptavidin-biotin rupture force [article]. Science. 1996;271(5251):997–999. doi: 10.1126/science.271.5251.997
  • Isralewitz B, Izrailev S, Schulten K. Binding pathway of retinal to bacterio-opsin: a prediction by molecular dynamics simulations. Biophys J. 1997 Dec;73(6):2972–2979. doi: 10.1016/S0006-3495(97)78326-7
  • Balsera M, Stepaniants S, Izrailev S, et al. Reconstructing potential energy functions from simulated force-induced unbinding processes. Biophys J. 1997 Sep;73(3):1281–1287. doi: 10.1016/S0006-3495(97)78161-X
  • Colizzi F, Perozzo R, Scapozza L, et al. Single-molecule pulling simulations can discern active from inactive enzyme inhibitors. J Am Chem Soc. 2010;132(21):7361–7371. doi: 10.1021/ja100259r
  • Patel JS, Berteotti A, Ronsisvalle S, et al. Steered molecular dynamics simulations for studying protein-ligand interaction in cyclin-dependent kinase 5. J Chem Inf Model. 2014;54(2):470–480. Article. doi: 10.1021/ci4003574
  • Wong CF. Steered molecular dynamics simulations for uncovering the molecular mechanisms of drug dissociation and for drug screening: a test on the focal adhesion kinase [article]. J Comput Chem. 2018;39(19):1307–1318. doi: 10.1002/jcc.25201
  • Spiriti J, Wong CF. Qualitative prediction of ligand dissociation kinetics from focal adhesion kinase using steered molecular dynamics [article]. Life. 2021;11(2):1–19. doi: 10.3390/life11020074
  • Kokh DB, Amaral M, Bomke J, et al. Estimation of drug-target residence times by τ-random Acceleration molecular dynamics simulations [article]. J Chem Theory Comput. 2018;14(7):3859–3869. doi: 10.1021/acs.jctc.8b00230
  • Kokh DB, Kaufmann T, Kister B, et al. Machine learning analysis of τRAMD trajectories to decipher molecular determinants of drug-target residence times [article]. Front Mol Biosci. 2019;6(MAY). doi: 10.3389/fmolb.2019.00036
  • Berger BT, Amaral M, Kokh DB, et al. Structure-kinetic relationship reveals the mechanism of selectivity of FAK inhibitors over PYK2 [article]. Cell Chem Biol. 2021;28(5):686–698.e7. doi: 10.1016/j.chembiol.2021.01.003
  • Mollica L, Decherchi S, Zia SR, et al. Kinetics of protein-ligand unbinding via smoothed potential molecular dynamics simulations [article]. Sci Rep. 2015;5(1). doi: 10.1038/srep11539
  • Mollica L, Theret I, Antoine M, et al. Molecular dynamics simulations and kinetic measurements to estimate and predict protein-ligand residence times [article]. J Med Chem. 2016;59(15):7167–7176. doi: 10.1021/acs.jmedchem.6b00632
  • Schuetz DA, Bernetti M, Bertazzo M, et al. Predicting residence time and drug unbinding pathway through scaled molecular dynamics [article]. J Chem Inf Model. 2019;59(1):535–549. doi: 10.1021/acs.jcim.8b00614
  • Bianciotto M, Gkeka P, Kokh DB, et al. Contact map fingerprints of protein-ligand unbinding trajectories reveal mechanisms determining residence times computed from scaled molecular dynamics [article]. J Chem Theory Comput. 2021;17(10):6522–6535. doi: 10.1021/acs.jctc.1c00453
  • Deb I, Frank AT. Accelerating rare dissociative processes in biomolecules using selectively scaled MD simulations [article]. J Chem Theory Comput. 2019;15(11):5817–5828. doi: 10.1021/acs.jctc.9b00262
  • Shaw DE, Deneroff MM, Dror RO, et al. Anton, a special-purpose machine for molecular dynamics simulation. Commun ACM. 2008;51(7):91–97. doi: 10.1145/1364782.1364802
  • Dror RO, Pan AC, Arlow DH, et al. Pathway and mechanism of drug binding to G-protein-coupled receptors. Proc Natl Acad Sci U S A. 2011;108(32):13118–13123. doi: 10.1073/pnas.1104614108
  • Shan Y, Kim ET, Eastwood MP, et al. How does a drug molecule find its target binding site? J Am Chem Soc. 2011;133(24):9181–9183. doi: 10.1021/ja202726y
  • Guo D, Pan AC, Dror RO, et al. Molecular basis of ligand dissociation from the adenosine A2A receptor [article]. Mol Pharmacol. 2016;89(5):485–491. doi: 10.1124/mol.115.102657
  • McCammon JA, Karplus M. Dynamics of tyrosine ring rotations in a globular protein [article]. Biopolymers. 1980;19(7):1375–1405. doi: 10.1002/bip.1980.360190712
  • Kumar S, Bouzida D, Swendsen RH, et al. The weighted histogram analysis method for free-energy calculations on biomolecules. I. The method. J Comput Chem. 1992;13:1011–1021. doi: 10.1002/jcc.540130812
  • Shirts MR, Chodera JD. Statistically optimal analysis of samples from multiple equilibrium states [article]. J Chem Phys. 2008;129(12). doi: 10.1063/1.2978177
  • Eyring H. The activated complex in chemical reactions [article]. J Chem Phys. 1935;3(2):63–71. doi: 10.1063/1.1749604
  • Chandler D. Statistical mechanics of isomerization dynamics in liquids and the transition state approximatiion. J Chem Phys. 1978;68:2959. doi: 10.1063/1.436049
  • Spiriti J, Noé F, Wong CF. Simulation of ligand dissociation kinetics from the protein kinase PYK2 [article]. J Comput Chem. 2022;43(28):1911–1922. doi: 10.1002/jcc.26991
  • You W, Tang Z, Chang CEA. Potential mean force from umbrella sampling simulations: what can we learn and what is missed? J Chem Theory Comput. 2019;15(4):2433–2443. Article. doi: 10.1021/acs.jctc.8b01142
  • Ribeiro JML, Bravo P, Wang Y, et al. Reweighted autoencoded variational Bayes for enhanced sampling (RAVE) [Article]. J Chem Phys. 2018;149(7). doi: 10.1063/1.5025487
  • Smith Z, Pramanik D, Tsai ST, et al. Multi-dimensional spectral gap optimization of order parameters (SGOOP) through conditional probability factorization [article]. J Chem Phys. 2018;149(23). doi: 10.1063/1.5064856
  • Bowman GR, Beauchamp KA, Boxer G, et al. Progress and challenges in the automated construction of Markov state models for full protein systems. J Chem Phys. 2009;131(12). doi: 10.1063/1.3216567
  • Noé F, Rosta E. Markov models of molecular kinetics [editorial]. J Chem Phys. 2019;151(19). doi: 10.1063/1.5134029
  • Zimmerman MI, Bowman GR. FAST conformational searches by balancing exploration/exploitation trade-offs. J Chem Theory Comput. 2015;11(12):5747–5757. Article. doi: 10.1021/acs.jctc.5b00737
  • Molgedey L, Schuster HG. Separation of a mixture of independent signals using time delayed correlations [article]. Phys Rev Lett. 1994;72(23):3634–3637. doi: 10.1103/PhysRevLett.72.3634
  • Pearson FRSK. On lines and planes of closest fit to systems of points in space. London, Edinburgh, Dublin Philos Mag J Sci. 1901;2(11):559–572. doi: 10.1080/14786440109462720
  • Jain A, Stock G. Hierarchical folding free energy landscape of HP35 revealed by most probable path clustering [article]. J Phys Chem B. 2014;118(28):7750–7760. doi: 10.1021/jp410398a
  • Berezhkovskii A, Hummer G, Szabo A. Reactive flux and folding pathways in network models of coarse-grained protein dynamics [article]. J Chem Phys. 2009;130(20). doi: 10.1063/1.3139063
  • Noé F, Schütte C, Vanden-Eijnden E, et al. Constructing the equilibrium ensemble of folding pathways from short off-equilibrium simulations [article]. Proc Natl Acad Sci U S A. 2009;106(45):19011–19016. doi: 10.1073/pnas.0905466106
  • Weinan E, Vanden-Eijnden E. Towards a theory of transition paths [article]. J Stat Mech. 2006;123(3):503–523. doi: 10.1007/s10955-005-9003-9
  • Buch I, Giorgino T, De Fabritiis G. Complete reconstruction of an enzyme-inhibitor binding process by molecular dynamics simulations. Proc Natl Acad Sci U S A. 2011;108(25):10184–10189. doi: 10.1073/pnas.1103547108
  • Nuria P, Noe F. Protein conformational plasticity and complex ligand-binding kinetics explored by atomistic simulations and Markov Models. Nat Commun. 2015;6:7653. doi: 10.1038/ncomms8653
  • Wu H, Paul F, Wehmeyer C, et al. Multiensemble markov models of molecular thermodynamics and kinetics [article]. Proc Natl Acad Sci U S A. 2016;113(23):E3221–E3230. doi: 10.1073/pnas.1525092113
  • Bowman GR, Ensign DL, Pande VS. Enhanced modeling via network theory: adaptive sampling of markov state models [article]. J Chem Theory Comput. 2010;6(3):787–794. doi: 10.1021/ct900620b
  • Wan H, Voelz VA. Adaptive Markov state model estimation using short reseeding trajectories [article]. J Chem Phys. 2020;152(2). doi: 10.1063/1.5142457
  • Doerr S, De Fabritiis G. On-the-fly learning and sampling of ligand binding by high-throughput molecular simulations [article]. J Chem Theory Comput. 2014;10(5):2064–2069. doi: 10.1021/ct400919u
  • Singhal N, Pande VS. Error analysis and efficient sampling in Markovian state models for molecular dynamics [article]. J Chem Phys. 2005;123(20). doi: 10.1063/1.2116947
  • Hinrichs NS, Pande VS. Calculation of the distribution of eigenvalues and eigenvectors in Markovian state models for molecular dynamics [article]. J Chem Phys. 2007;126(24). doi: 10.1063/1.2740261
  • Paul F, Wehmeyer C, Abualrous ET, et al. Protein-peptide association kinetics beyond the seconds timescale from atomistic simulations [article]. Nat Commun. 2017;8(1). doi: 10.1038/s41467-017-01163-6
  • Wu H, Noe F Variational approach for learning Markov processes from time series data. arXiv:170704659. 2017.
  • Mardt A, Pasquali L, Wu H, et al. Vampnets for deep learning of molecular kinetics [article]. Nat Commun. 2018;9(1). doi: 10.1038/s41467-017-02388-1
  • West AMA, Elber R, Shalloway D. Extending molecular dynamics time scales with milestoning: example of complex kinetics in a solvated peptide. J Chem Phys. 2007;126(14). doi: 10.1063/1.2716389
  • Elber R. A milestoning study of the kinetics of an allosteric transition: atomically detailed simulations of deoxy scapharca hemoglobin. Biophys J. 2007 May 1;92(9):L85–L87. doi: 10.1529/biophysj.106.101899
  • Faradjian AK, Elber R. Computing time scales from reaction coordinates by milestoning. J Chem Phys. 2004;120(23):10880–10889. doi: 10.1063/1.1738640
  • Shalloway D, Faradjian AK. Efficient computation of the first passage time distribution of the generalized master equation by steady-state relaxation [article]. J Chem Phys. 2006;124(5). doi: 10.1063/1.2161211
  • Narayan B, Buchete NV, Elber R. Computer simulations of the dissociation mechanism of gleevec from abl kinase with milestoning [article]. J Phys Chem B. 2021;125(22):5706–5715. doi: 10.1021/acs.jpcb.1c00264
  • Vanden-Eijnden E, Venturoli M, Ciccotti G, et al. On the assumptions underlying milestoning. J Chem Phys. 2008;129(17). doi: 10.1063/1.2996509
  • Vanden-Eijnden E, Venturoli M. Markovian milestoning with Voronoi tessellations [article]. J Chem Phys. 2009;130(19). doi: 10.1063/1.3129843
  • Maragliano L, Vanden-Eijnden E, Roux B. Free energy and kinetics of conformational transitions from Voronoi tessellated milestoning with restraining potentials. J Chem Theory Comput. 2009 Oct;5(10):2589–2594. doi: 10.1021/ct900279z
  • Weinan E, Ren WQ, Vanden-Eijnden E. String method for the study of rare events. Phys Rev B. 2002 Aug 1;66(5). doi: 10.1103/PhysRevB.66.052301
  • Ren W, Vanden-Eijnden E, Maragakis P, et al. Transition pathways in complex systems: application of the finite-temperature string method to the alanine dipeptide. J Chem Phys. 2005;123(13):1–12. doi: 10.1063/1.2013256
  • W E, Ren W, Vanden-Eijnden E. Finite temperature string method for the study of rare events [article]. J Phys Chem B. 2005;109(14):6688–6693. doi: 10.1021/jp0455430
  • W E, Ren W, Vanden-Eijnden E. Transition pathways in complex systems: reaction coordinates, isocommittor surfaces, and transition tubes [article]. Chem Phys Lett. 2005;413(1–3):242–247. doi: 10.1016/j.cplett.2005.07.084
  • Maragliano L, Fischer A, Vanden-Eijnden E, et al. String method in collective variables: minimum free energy paths and isocommittor surfaces [article]. J Chem Phys. 2006;125(2). doi: 10.1063/1.2212942
  • Rathnayake S, Narayan B, Elber R, et al. Milestoning simulation of ligand dissociation from the glycogen synthase kinase 3β [article]. Proteins Struct Funct Bioinf. 2023;91(2):209–217. doi: 10.1002/prot.26423
  • Tang Z, Chen SH, Chang CEA. Transient states and barriers from molecular simulations and the milestoning Theory: kinetics in ligand–protein recognition and compound design. J Chem Theory Comput. 2020;16(3):1882–1895. doi: 10.1021/acs.jctc.9b01153
  • Huber GA, McCammon JA. Browndye: a software package for Brownian dynamics [article]. Comput Phys Commun. 2010;181(11):1896–1905. doi: 10.1016/j.cpc.2010.07.022
  • Jagger BR, Ojha AA, Amaro RE. Predicting ligand binding kinetics using a Markovian milestoning with Voronoi Tessellations multiscale approach. J Chem Theory Comput. 2020;16(8):5348–5357. Article. doi: 10.1021/acs.jctc.0c00495
  • Votapka LW, Stokely AM, Ojha AA, et al. SEEKR2: versatile multiscale milestoning utilizing the OpenMM molecular dynamics Engine [article]. J Chem Inf Model. 2022;62(13):3253–3262. doi: 10.1021/acs.jcim.2c00501
  • Eastman P, Swails J, Chodera JD, et al. OpenMM 7: rapid development of high performance algorithms for molecular dynamics [article]. PLoS Comp Biol. 2017;13(7):e1005659. doi: 10.1371/journal.pcbi.1005659
  • Huber GA, Kim S. Weighted-ensemble Brownian dynamics simulations for protein association reactions. Biophys J. 1996;70(1):97–110. doi: 10.1016/S0006-3495(96)79552-8
  • Northrup SH, Allison SA, McCammon JA. Brownian dynamics simulation of diffusion-influenced bimolecular reactions. J Chem Phys. 1984;80(4):1517. doi: 10.1063/1.446900
  • Dickson A, Mustoe AM, Salmon L, et al. Efficient in silico exploration of RNA interhelical conformations using Euler angles and WExplore [article]. Nucleic Acids Res. 2014;42(19):12126–12137. doi: 10.1093/nar/gku799
  • Abdul-Wahid B, Feng H, Rajan D, et al. AWE-WQ: fast-forwarding molecular dynamics using the accelerated weighted ensemble [article]. J Chem Inf Model. 2014;54(10):3033–3043. doi: 10.1021/ci500321g
  • Zwier MC, Pratt AJ, Adelman JL, et al. Efficient atomistic simulation of pathways and calculation of rate constants for a protein-peptide binding process: application to the MDM2 protein and an intrinsically disordered p53 peptide [article]. J Phys Chem Lett. 2016;7(17):3440–3445. doi: 10.1021/acs.jpclett.6b01502
  • Adelman JL, Grabe M. Simulating current-voltage relationships for a narrow ion channel using the weighted ensemble method [article]. J Chem Theory Comput. 2015;11(4):1907–1918. doi: 10.1021/ct501134s
  • Dickson A, Lotz SD. Ligand release pathways obtained with WExplore: residence times and mechanisms [article]. J Phys Chem B. 2016;120(24):5377–5385. doi: 10.1021/acs.jpcb.6b04012
  • Roussey NM, Dickson A. Quality over quantity: sampling high probability rare events with the weighted ensemble algorithm [article]. J Comput Chem. 2023;44(8):935–947. doi: 10.1002/jcc.27054
  • Lotz SD, Dickson A. Unbiased molecular dynamics of 11 min timescale drug unbinding reveals transition state stabilizing interactions [article]. J Am Chem Soc. 2018;140(2):618–628. doi: 10.1021/jacs.7b08572
  • Dickson A, Lotz SD. Multiple ligand unbinding pathways and ligand-induced destabilization revealed by WExplore [article]. Biophys J. 2017;112(4):620–629. doi: 10.1016/j.bpj.2017.01.006
  • Zwier MC, Adelman JL, Kaus JW, et al. WESTPA: an interoperable, highly scalable software package for weighted ensemble simulation and analysis [article]. J Chem Theory Comput. 2015;11(2):800–809. doi: 10.1021/ct5010615
  • Dickson A, Brooks CL. Wexplore: hierarchical exploration of high-dimensional spaces using the weighted ensemble algorithm [article]. J Phys Chem B. 2014;118(13):3532–3542. doi: 10.1021/jp411479c
  • Huang D, Caflisch A, de Groot BL. The free energy landscape of small molecule unbinding. PLoS Comp Biol. 2011;7(2):e1002002. doi: 10.1371/journal.pcbi.1002002
  • Donyapour N, Roussey NM, Dickson A. REVO: resampling of ensembles by variation optimization [article]. J Chem Phys. 2019;150(24). doi: 10.1063/1.5100521
  • Dixon T, Uyar A, Ferguson-Miller S, et al. Membrane-mediated ligand unbinding of the PK-11195 ligand from TSPO [article]. Biophys J. 2021;120(1):158–167. doi: 10.1016/j.bpj.2020.11.015
  • Ray D, Andricioaei I. Weighted ensemble milestoning (WEM): a combined approach for rare event simulations [article]. J Chem Phys. 2020;152(23). doi: 10.1063/5.0008028
  • Ray D, Stone SE, Andricioaei I. Markovian weighted ensemble Milestoning (M-WEM): long-time kinetics from short trajectories. J Chem Theory Comput. 2022;18(1):79–95. doi: 10.1021/acs.jctc.1c00803
  • Laio A, Parrinello M. Escaping free-energy minima. Proc Natl Acad Sci U S A. 2002 Oct 1;99(20):12562–12566. doi: 10.1073/pnas.202427399
  • Laio A, Rodriguez-Fortea A, Gervasio FL, et al. Assessing the accuracy of metadynamics. J Phys Chem B. 2005 Apr 14;109(14):6714–6721. doi: 10.1021/jp045424k
  • Barducci A, Bussi G, Parrinello M. Well-tempered metadynamics: a smoothly converging and tunable free-energy method [article]. Phys Rev Lett. 2008;100(2). doi: 10.1103/PhysRevLett.100.020603
  • Tiwary P, Parrinello M. From metadynamics to dynamics [article]. Phys Rev Lett. 2013;111(23). doi: 10.1103/PhysRevLett.111.230602
  • Salvalaglio M, Tiwary P, Parrinello M. Assessing the reliability of the dynamics reconstructed from metadynamics [article]. J Chem Theory Comput. 2014;10(4):1420–1425. doi: 10.1021/ct500040r
  • Tiwary P, Mondal J, Berne BJ. How and when does an anticancer drug leave its binding site? Sci Adv. 2017;3(5). Article. doi: 10.1126/sciadv.1700014
  • Casasnovas R, Limongelli V, Tiwary P, et al. Unbinding kinetics of a p38 MAP kinase type II inhibitor from metadynamics simulations [article]. J Am Chem Soc. 2017;139(13):4780–4788. doi: 10.1021/jacs.6b12950
  • Capelli R, Lyu W, Bolnykh V, et al. Accuracy of molecular simulation-based predictions of koff values: a metadynamics study [article]. J Phys Chem Lett. 2020;11(15):6373–6381. doi: 10.1021/acs.jpclett.0c00999
  • Bayly CI, Cieplak P, Cornell WD, et al. A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model. J Phys Chem. 1993;97(40):10269–10280. doi: 10.1021/j100142a004
  • Becke AD. A new mixing of hartree-fock and local density-functional theories. J Chem Phys. 1993;98(2):1372. doi: 10.1063/1.464304
  • Stephens PJ, Devlin FJ, Chabalowski CF, et al. Ab Initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields [article]. J Phys Chem. 1994;98(45):11623–11627. doi: 10.1021/j100096a001
  • Haldar S, Comitani F, Saladino G, et al. A multiscale simulation approach to modeling drug-protein binding kinetics [article]. J Chem Theory Comput. 2018;14(11):6093–6101. doi: 10.1021/acs.jctc.8b00687
  • Juraszek J, Saladino G, Van Erp TS, et al. Efficient numerical reconstruction of protein folding kinetics with partial path sampling and pathlike variables [article]. Phys Rev Lett. 2013;110(10). doi: 10.1103/PhysRevLett.110.108106
  • Zwanzig RW. High-temperature equation of state by a perturbation method. I. Nonpolar gases. J Chem Phys. 1954;22(8):1420–1426. doi: 10.1063/1.1740409
  • Becke AD. Density-functional Exchange-energy approximation with correct asymptotic behavior. Phys Rev A. 1988;38(6):3098–3100. doi: 10.1103/PhysRevA.38.3098
  • Lee C, Yang W, Parr RG. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B. 1988;37(2):785–789. doi: 10.1103/PhysRevB.37.785
  • Chiu SH, Xie L. Toward high-throughput predictive modeling of protein binding/unbinding kinetics [article]. J Chem Inf Model. 2016;56(6):1164–1174. doi: 10.1021/acs.jcim.5b00632
  • Nunes-Alves A, Kokh DB, Wade RC. Ligand unbinding mechanisms and kinetics for T4 lysozyme mutants from τRAMD simulations [article]. Curr Res Struct Biol. 2021;3:106–111. doi: 10.1016/j.crstbi.2021.04.001
  • Huang S, Zhang D, Mei H, et al. SMD-Based interaction-energy fingerprints can predict accurately the dissociation rate constants of HIV-1 protease inhibitors [article]. J Chem Inf Model. 2019;59(1):159–169. doi: 10.1021/acs.jcim.8b00567
  • Lamim Ribeiro JM, Tiwary P. Toward achieving Efficient and accurate ligand-protein unbinding with deep learning and molecular dynamics through RAVE. J Chem Theory Comput. 2019;15(1):708–719. Article. doi: 10.1021/acs.jctc.8b00869

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.