134
Views
0
CrossRef citations to date
0
Altmetric
Review

Advances in protein kinase drug discovery through targeting gatekeeper mutations

, &
Pages 1349-1366 | Received 11 May 2023, Accepted 27 Sep 2023, Published online: 09 Oct 2023

References

  • Viktorsson K, Rieckmann T, Fleischmann M, et al. Advances in molecular targeted therapies to increase efficacy of (chemo)radiation therapy. Strahlenther Onkol. 2023. doi:10.1007/s00066-023-02064-y
  • Ardito F, Giuliani M, Perrone D, et al. The crucial role of protein phosphorylation in cell signaling and its use as targeted therapy (review). Int J Mol Med. 2017;40(2):271–280. doi: 10.3892/ijmm.2017.3036
  • Bhullar KS, Lagarón NO, McGowan EM, et al. Kinase-targeted cancer therapies: progress, challenges and future directions. Mol Cancer. 2018;17(1):48. doi: 10.1186/s12943-018-0804-2
  • Cohen P, Cross D, Jänne PA. Kinase drug discovery 20 years after imatinib: progress and future directions. Nat Rev Drug Discov. 2021;20(7):551–569. doi: 10.1038/s41573-021-00195-4
  • Attwood MM, Fabbro D, Sokolov AV, et al. Trends in kinase drug discovery: targets, indications and inhibitor design. Nat Rev Drug Discov. 2021;20(11):839–861. doi: 10.1038/s41573-021-00252-y
  • Ward RA, Fawell S, Floc’h N, et al. Challenges and opportunities in Cancer drug resistance. Chem Rev. 2021;121(6):3297–3351. doi: 10.1021/acs.chemrev.0c00383
  • Persky NS, Hernandez D, Do Carmo M, et al. Defining the landscape of ATP-competitive inhibitor resistance residues in protein kinases. Nat Struct Mol Biol. 2020;27(1):92–104. doi: 10.1038/s41594-019-0358-z
  • Zhou Y, Xiang S, Yang F, et al. Targeting gatekeeper mutations for kinase drug Discovery. J Med Chem. 2022;65(23):15540–15558. doi: 10.1021/acs.jmedchem.2c01361
  • Yun C-H, Mengwasser KE, Toms AV, et al. The T790M mutation in EGFR kinase causes drug resistance by increasing the affinity for ATP. Proc Natl Acad Sci, USA. 2008;105(6):2070–2075. doi: 10.1073/pnas.0709662105
  • Azam M, Seeliger MA, Gray NS, et al. Activation of tyrosine kinases by mutation of the gatekeeper threonine. Nat Struct Mol Biol. 2008;15(10):1109–1118. doi: 10.1038/nsmb.1486
  • Sohl CD, Ryan MR, Luo B, et al. Illuminating the molecular mechanisms of tyrosine kinase inhibitor resistance for the FGFR1 gatekeeper mutation: the achilles’ heel of targeted therapy. ACS Chem Biol. 2015;10(5):1319–1329. doi: 10.1021/acschembio.5b00014
  • Besch A, Marsiglia WM, Mohammadi M, et al. Gatekeeper mutations activate FGF receptor tyrosine kinases by destabilizing the autoinhibited state. Proc Natl Acad Sci, USA. 2023;120(8):e2213090120. doi: 10.1073/pnas.2213090120
  • Palmer Ruth H, Vernersson E, Grabbe C, et al. Anaplastic lymphoma kinase: signalling in development and disease. Biochem J. 2009;420(3):345–361. doi: 10.1042/BJ20090387
  • Lemmon MA, Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell. 2010;141(7):1117–1134. doi: 10.1016/j.cell.2010.06.011
  • Chiarle R, Voena C, Ambrogio C, et al. The anaplastic lymphoma kinase in the pathogenesis of cancer. Nat Rev Cancer. 2008;8(1):11–23. doi: 10.1038/nrc2291
  • Della Corte CM, Viscardi G, Di Liello R, et al. Role and targeting of anaplastic lymphoma kinase in cancer. Mol Cancer. 2018;17(1):30. doi: 10.1186/s12943-018-0776-2
  • Cui JJ, Tran-Dubé M, Shen H, et al. Structure based drug design of crizotinib (PF-02341066), a potent and selective dual inhibitor of mesenchymal–epithelial transition factor (c-MET) kinase and anaplastic lymphoma kinase (ALK). J Med Chem. 2011;54(18):6342–6363. doi: 10.1021/jm2007613
  • Kwak EL, Bang Y-J, Camidge DR, et al. Anaplastic lymphoma kinase inhibition in non–small-Cell lung Cancer. N Engl J Med. 2010;363(18):1693–1703. doi: 10.1056/NEJMoa1006448
  • Katayama R, Shaw AT, Khan TM, et al. Mechanisms of acquired crizotinib resistance in ALK-Rearranged lung cancers. Sci, trans med. 2012;4(120):120ra17. doi: 10.1126/scitranslmed.3003316
  • Katayama R. Drug resistance in anaplastic lymphoma kinase-rearranged lung cancer. Cancer Sci. 2018;109(3):572–580. doi: 10.1111/cas.13504
  • Kong X, Pan P, Sun H, et al. Drug Discovery targeting anaplastic lymphoma kinase (ALK). J Med Chem. 2019;62(24):10927–10954. doi: 10.1021/acs.jmedchem.9b00446
  • Simionato F, Frizziero M, Carbone C, et al. Current strategies to overcome resistance to ALK-Inhibitor agents. Curr Drug Metab. 2015;16(7):585–596. doi: 10.2174/1389200216666150812142059
  • Griesinger F, Roeper J, Pöttgen C, et al. Brain metastases in ALK-positive NSCLC – time to adjust current treatment algorithms. Oncotarget. 2018;9(80):35181–35194. doi: 10.18632/oncotarget.26073
  • Johnson TW, Richardson PF, Bailey S, et al. Discovery of (10R)-7-amino-12-fluoro-2,10,16-trimethyl-15-oxo-10,15,16,17-tetrahydro-2H-8,4-(metheno)pyrazolo[4,3-h][2,5,11]-benzoxadiazacyclotetradecine-3-carbonitrile (PF-06463922), a macrocyclic inhibitor of Anaplastic Lymphoma Kinase (ALK) and c-ros Oncogene 1 (ROS1) with preclinical brain exposure and broad-spectrum potency against ALK-Resistant mutations. J Med Chem. 2014;57(11):4720–4744. doi: 10.1021/jm500261q
  • Zou Helen Y, Friboulet L, Kodack David P, et al. PF-06463922, an ALK/ROS1 inhibitor, overcomes resistance to first and second generation ALK inhibitors in preclinical models. Cancer Cell. 2015;28(1):70–81. doi: 10.1016/j.ccell.2015.05.010
  • Drilon A, S-HI O, Cho BC, et al. Repotrectinib (TPX-0005) is a next-generation ROS1/TRK/ALK inhibitor that potently inhibits ROS1/TRK/ALK solvent-front mutations. Cancer Discovery. 2018;8(10):1227–1236. doi: 10.1158/2159-8290.CD-18-0484
  • Gainor JF, Tan DSW, De Pas T, et al. Progression-free and overall survival in ALK-Positive NSCLC patients treated with sequential crizotinib and Ceritinib. Clin Cancer Res. 2015;21(12):2745–2752. doi: 10.1158/1078-0432.CCR-14-3009
  • Cui JJ, Rogers E, Zhai D, et al. TPX-0131: a next generation macrocyclic ALK inhibitor that overcomes ALK resistant mutations refractory to current approved ALK inhibitors. Cancer Res. 2020;80(16_Supplement):5226. doi: 10.1158/1538-7445.AM2020-5226
  • Pelish HE, Tangpeerachaikul A, Kohl NE, et al. Abstract 1468: NUV-655 (NVL-655) is a selective, brain-penetrant ALK inhibitor with antitumor activity against the lorlatinib-resistant G1202R/L1196M compound mutation. Cancer Res. 2021;81(13_Supplement):1468. doi: 10.1158/1538-7445.AM2021-1468
  • Murray BW, Zhai D, Deng W, et al. TPX-0131, a potent CNS-penetrant, next-generation inhibitor of wild-type ALK and ALK-resistant mutations. Mol Cancer Ther. 2021;20(9):1499–1507. doi: 10.1158/1535-7163.MCT-21-0221
  • Gao Y, Jiang B, Kim H, et al. Catalytic degraders effectively address kinase site mutations in EML4-ALK oncogenic fusions. J Med Chem. 2023;66(8):5524–5535. doi: 10.1021/acs.jmedchem.2c01864
  • JJ CUI, Yishan LI, ROGERS EW, et al. Chiral diaryl macrocycles and uses thereof. WO/2017/015367 2017.
  • Huang EJ, Reichardt LF. Neurotrophins: roles in neuronal development and function. Annu Rev Neurosci. 2001;24(1):677–736. doi: 10.1146/annurev.neuro.24.1.677
  • Scott LJ. Larotrectinib: first global approval. Drugs. 2019;79(2):201–206. doi: 10.1007/s40265-018-1044-x
  • Drilon A, Laetsch TW, Kummar S, et al. Efficacy of Larotrectinib in TRK fusion–positive cancers in adults and children. N Engl J Med. 2018;378(8):731–739. doi: 10.1056/NEJMoa1714448
  • Al-Salama ZT, Keam SJ. Entrectinib: first global approval. Drugs. 2019;79(13):1477–1483. doi: 10.1007/s40265-019-01177-y
  • Ardini E, Menichincheri M, Banfi P, et al. Entrectinib, a pan-TRK, ROS1, and ALK inhibitor with activity in multiple molecularly defined Cancer indications. Mol Cancer Ther. 2016;15(4):628–639. doi: 10.1158/1535-7163.MCT-15-0758
  • Menichincheri M, Ardini E, Magnaghi P, et al. Discovery of Entrectinib: a New 3-aminoindazole as a potent Anaplastic Lymphoma Kinase (ALK), c-ros Oncogene 1 kinase (ROS1), and pan-Tropomyosin Receptor Kinases (pan-TRKs) inhibitor. J Med Chem. 2016;59(7):3392–3408. doi: 10.1021/acs.jmedchem.6b00064
  • Jiang T, Wang G, Liu Y, et al. Development of small-molecule Tropomyosin Receptor Kinase (TRK) inhibitors for NTRK fusion cancers. Acta Pharm Sin B. 2021;11(2):355–372. doi: 10.1016/j.apsb.2020.05.004
  • Drilon A, Nagasubramanian R, Blake JF, et al. A next-generation TRK kinase inhibitor overcomes acquired resistance to prior TRK kinase inhibition in patients with TRK fusion–positive solid tumors. Cancer Discovery. 2017;7(9):963–972. doi: 10.1158/2159-8290.CD-17-0507
  • Murray BW, Rogers E, Zhai D, et al. Molecular characteristics of repotrectinib that enable potent inhibition of TRK fusion proteins and resistant mutations. Mol Cancer Ther. 2021;20(12):2446–2456. doi: 10.1158/1535-7163.MCT-21-0632
  • Lennartsson J, Rönnstrand L. Stem cell factor receptor/c-kit: from Basic Science to clinical implications. Physiol Rev. 2012;92(4):1619–1649. doi: 10.1152/physrev.00046.2011
  • Klug LR, Kent JD, Heinrich MC. Structural and clinical consequences of activation loop mutations in class III receptor tyrosine kinases. Pharmacol Ther. 2018;191:123–134. doi: 10.1016/j.pharmthera.2018.06.016
  • Klug LR, Khosroyani HM, Kent JD, et al. New treatment strategies for advanced-stage gastrointestinal stromal tumours. Nat Rev Clin Oncol. 2022;19(5):328–341. doi: 10.1038/s41571-022-00606-4
  • Lopes LF, Bacchi CE. Imatinib treatment for gastrointestinal stromal tumour (GIST). J Cellular Molecular Medi. 2010;14(1–2):42–50. doi: 10.1111/j.1582-4934.2009.00983.x
  • Serrano C, Mariño-Enríquez A, Tao DL, et al. Complementary activity of tyrosine kinase inhibitors against secondary kit mutations in imatinib-resistant gastrointestinal stromal tumours. Br J Cancer. 2019;120(6):612–620. doi: 10.1038/s41416-019-0389-6
  • Evans EK, Gardino AK, Kim JL, et al. A precision therapy against cancers driven by KIT/PDGFRA mutations. Sci, trans med. 2017;9(414):eaao1690. doi: 10.1126/scitranslmed.aao1690
  • Smith BD, Kaufman MD, Lu W-P, et al. Ripretinib (DCC-2618) is a switch control kinase inhibitor of broad spectrum of oncogenic and drug-resistant KIT and PDGFRA variants. Cancer Cell. 2019;35(5):738–751.e9. doi: 10.1016/j.ccell.2019.04.006
  • Kettle JG, Anjum R, Barry E, et al. Discovery of N-(4-{[5-fluoro-7-(2-methoxyethoxy)quinazolin-4-yl]amino}phenyl)-2-[4-(propan-2-yl)-1H-1,2,3-triazol-1-yl]acetamide (AZD3229), a potent pan-KIT mutant inhibitor for the treatment of gastrointestinal stromal tumors. J Med Chem. 2018;61(19):8797–8810. doi: 10.1021/acs.jmedchem.8b00938
  • Banks E, Grondine M, Bhavsar D, et al. Discovery and pharmacological characterization of AZD3229, a potent KIT/PDGFRα inhibitor for treatment of gastrointestinal stromal tumors. Sci, trans med. 2020;12(541):eaaz2481. doi: 10.1126/scitranslmed.aaz2481
  • Mohamed AJ, Yu L, Bäckesjö C-M, et al. Bruton’s tyrosine kinase (Btk): function, regulation, and transformation with special emphasis on the PH domain. Immunol Rev. 2009;228(1):58–73. doi: 10.1111/j.1600-065X.2008.00741.x
  • Swerdlow SH, Campo E, Pileri SA, et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood. 2016;127(20):2375–2390. doi: 10.1182/blood-2016-01-643569
  • Liu J, Chen C, Wang D, et al. Emerging small-molecule inhibitors of the Bruton’s tyrosine kinase (BTK): Current development. Eur J Med Chem. 2021;217:113329. doi: 10.1016/j.ejmech.2021.113329
  • Sun S-L, Wu S-H, Kang J-B, et al. Medicinal Chemistry strategies for the development of Bruton’s tyrosine kinase inhibitors against resistance. J Med Chem. 2022;65(11):7415–7437. doi: 10.1021/acs.jmedchem.2c00030
  • Ran F, Liu Y, Wang C, et al. Review of the deñelopment of BTK inhibitors in overcoming the clinical limitations of ibrutinib. Eur J Med Chem. 2022;229:114009. doi: 10.1016/j.ejmech.2021.114009
  • Estupiñán HY, Wang Q, Berglöf A, et al. BTK gatekeeper residue variation combined with cysteine 481 substitution causes super-resistance to irreversible inhibitors acalabrutinib, ibrutinib and zanubrutinib. Leukemia. 2021;35(5):1317–1329. doi: 10.1038/s41375-021-01123-6
  • Dobrovolsky D, Wang ES, Morrow S, et al. Bruton tyrosine kinase degradation as a therapeutic strategy for cancer. Blood. 2019;133(9):952–961. doi: 10.1182/blood-2018-07-862953
  • Wang E, Mi X, Thompson MC, et al. Mechanisms of resistance to Noncovalent Bruton’s tyrosine kinase inhibitors. N Engl J Med. 2022;386(8):735–743. doi: 10.1056/NEJMoa2114110
  • Johnson AR, Kohli PB, Katewa A, et al. Battling btk mutants with Noncovalent inhibitors that overcome Cys481 and Thr474 mutations. ACS Chem Biol. 2016;11(10):2897–2907. doi: 10.1021/acschembio.6b00480
  • Crawford JJ, Johnson AR, Misner DL, et al. Discovery of GDC-0853: a potent, selective, and Noncovalent Bruton’s tyrosine kinase inhibitor in early clinical development. J Med Chem. 2018;61(6):2227–2245. doi: 10.1021/acs.jmedchem.7b01712
  • Saha D, Ryan KR, Lakkaniga NR, et al. Targeting rearranged during transfection in Cancer: a perspective on small-molecule inhibitors and their clinical development. J Med Chem. 2021;64(16):11747–11773. doi: 10.1021/acs.jmedchem.0c02167
  • Solomon BJ, Tan L, Lin JJ, et al. RET solvent front mutations mediate acquired resistance to selective RET inhibition in RET-driven malignancies. J Thorac Oncol. 2020;15(4):541–549. doi: 10.1016/j.jtho.2020.01.006
  • Thein KZ, Velcheti V, Mooers BHM, et al. Precision therapy for RET-altered cancers with RET inhibitors. Trends Cancer. 2021;7(12):1074–1088. doi: 10.1016/j.trecan.2021.07.003
  • Rosen EY, Won HH, Zheng Y, et al. The evolution of RET inhibitor resistance in RET-driven lung and thyroid cancers. Nat Commun. 2022;13(1):1450. doi: 10.1038/s41467-022-28848-x
  • Xia B, Ou S-HI. Simultaneous RET solvent-front and gatekeeper resistance mutations in trans: a rare TKI-Specific therapeutic challenge? J Thorac Oncol. 2020;15(4):479–481. doi: 10.1016/j.jtho.2020.02.001
  • Miyazaki I, Ishida K, Kato M, et al. Discovery of TAS0953/HM06, a novel next generation RET-specific inhibitor capable of inhibiting RET solvent front mutations. Mol Cancer Ther. 2021;20(12_Supplement):06–02. doi: 10.1158/1535-7163.TARG-21-P06-02
  • Odintsov I, Lui AJW, Delasos L, et al. TA0953/HM06, a novel RET-specific inhibitor effective in extracranial and CNS disease models of NSCLC with RETfusions. J Thorac Oncol. 2022;17(9):S90–S91. doi: 10.1016/j.jtho.2022.07.151
  • Drilon A, Rogers E, Zhai D, et al. TPX-0046 is a novel and potent RET/SRC inhibitor for RET-driven cancers. Ann Oncol. 2019;30:v190–v191. doi: 10.1093/annonc/mdz244.068
  • Keegan M, Wilcoxen K, Ho PT. BOS172738: a novel highly potent and selective RET kinase inhibitor in phase 1 clinical development. Cancer Res. 2019;79(13_Supplement):2199. doi: 10.1158/1538-7445.AM2019-2199
  • Drilon A, Zhong J, Lu Y, et al. Abstract 5363: the preclinical selectivity and activity of APS03118, a highly selective and potent next-generation RET inhibitor. Cancer Res. 2022;82(12_Supplement):5363. doi: 10.1158/1538-7445.AM2022-5363
  • Kolakowski GR, Anderson ED, Ballard JA, et al. Abstract 1464: pre-clinical characterization of potent and selective next-generation RET inhibitors. Cancer Res. 2021;81(13_Supplement):1464. doi: 10.1158/1538-7445.AM2021-1464
  • Braun TP, Eide CA, Druker BJ. Response and resistance to BCR-ABL1-Targeted therapies. Cancer Cell. 2020;37(4):530–542. doi: 10.1016/j.ccell.2020.03.006
  • Hughes T, Deininger M, Hochhaus A, et al. Monitoring CML patients responding to treatment with tyrosine kinase inhibitors: review and recommendations for harmonizing current methodology for detecting BCR-ABL transcripts and kinase domain mutations and for expressing results. Blood. 2006;108(1):28–37. doi: 10.1182/blood-2006-01-0092
  • O’Hare T, Eide CA, Deininger MWN. Bcr-Abl kinase domain mutations, drug resistance, and the road to a cure for chronic myeloid leukemia. Blood. 2007;110(7):2242–2249. doi: 10.1182/blood-2007-03-066936
  • O’Hare T, Shakespeare WC, Zhu X, et al. AP24534, a Pan-BCR-ABL inhibitor for chronic myeloid leukemia, potently inhibits the T315I mutant and overcomes mutation-based resistance. Cancer Cell. 2009;16(5):401–412. doi: 10.1016/j.ccr.2009.09.028
  • Huang W-S, Metcalf CA, Sundaramoorthi R, et al. Discovery of 3-[2-(Imidazo[1,2-b]pyridazin-3-yl)ethynyl]-4-methyl-N-{4-[(4-methylpiperazin-1-yl)methyl]-3-(trifluoromethyl)phenyl}benzamide (AP24534), a potent, orally active pan-inhibitor of Breakpoint Cluster Region-Abelson (BCR-ABL) kinase including the T315I gatekeeper mutant. J Med Chem. 2010;53(12):4701–4719. doi: 10.1021/jm100395q
  • Singh AP, Umbarkar P, Tousif S, et al. Cardiotoxicity of the BCR-ABL1 tyrosine kinase inhibitors: emphasis on ponatinib. Int J Cardiol. 2020;316:214–221. doi: 10.1016/j.ijcard.2020.05.077
  • Ren X, Pan X, Zhang Z, et al. Identification of GZD824 as an orally bioavailable inhibitor that targets phosphorylated and nonphosphorylated breakpoint cluster region–Abelson (bcr-Abl) kinase and overcomes clinically acquired mutation-induced resistance against imatinib. J Med Chem. 2013;56(3):879–894. doi: 10.1021/jm301581y
  • Pemovska T, Johnson E, Kontro M, et al. Axitinib effectively inhibits BCR-ABL1(T315I) with a distinct binding conformation. Nature. 2015;519(7541):102–105. doi: 10.1038/nature14119
  • Schoepfer J, Jahnke W, Berellini G, et al. Discovery of asciminib (ABL001), an allosteric inhibitor of the tyrosine kinase activity of BCR-ABL1. J Med Chem. 2018;61(18):8120–8135. doi: 10.1021/acs.jmedchem.8b01040
  • Teng M, Luskin MR, Cowan-Jacob SW, et al. The dawn of allosteric BCR-ABL1 drugs: from a phenotypic screening hit to an approved drug. J Med Chem. 2022;65(11):7581–7594. doi: 10.1021/acs.jmedchem.2c00373
  • Yang Y, Gao H, Sun X, et al. Global PROTAC toolbox for degrading BCR–ABL overcomes drug-resistant mutants and adverse effects. J Med Chem. 2020;63(15):8567–8583. doi: 10.1021/acs.jmedchem.0c00967
  • Jiang L, Wang Y, Li Q, et al. Design, synthesis, and biological evaluation of bcr-Abl PROTACs to overcome T315I mutation. Acta Pharm Sin B. 2021;11(5):1315–1328. doi: 10.1016/j.apsb.2020.11.009
  • Liu H, Mi Q, Ding X, et al. Discovery and characterization of novel potent BCR-ABL degraders by conjugating allosteric inhibitor. Eur J Med Chem. 2022;244:114810. doi: 10.1016/j.ejmech.2022.114810
  • Quach D, Tang G, Anantharajan J, et al. Strategic design of catalytic lysine-targeting reversible covalent BCR-ABL inhibitors. Angewandte Chemie. 2021;60(31):17131–17137. doi: 10.1002/anie.202105383
  • Chen P, Sun J, Zhu C, et al. Cell-active, reversible, and irreversible covalent inhibitors that selectively target the catalytic Lysine of BCR-ABL kinase. Angewandte Chemie. 2022;61(26):e202203878. doi: 10.1002/anie.202203878
  • Lynch TJ, Bell DW, Sordella R, et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non–small-Cell lung Cancer to gefitinib. N Engl J Med. 2004;350(21):2129–2139. doi: 10.1056/NEJMoa040938
  • Kobayashi S, Boggon TJ, Dayaram T, et al. EGFR mutation and resistance of non–small-Cell lung Cancer to gefitinib. N Engl J Med. 2005;352(8):786–792. doi: 10.1056/NEJMoa044238
  • Obst-Sander U, Ricci A, Kuhn B, et al. Discovery of novel allosteric EGFR L858R inhibitors for the treatment of non-small-cell lung Cancer as a single agent or in combination with osimertinib. J Med Chem. 2022;65(19):13052–13073. doi: 10.1021/acs.jmedchem.2c00893
  • Ou S-H. Second-generation irreversible Epidermal Growth Factor Receptor (EGFR) Tyrosine Kinase Inhibitors (TKIs): a better mousetrap? A review of the clinical evidence. Crit Rev Oncol Hematol. 2012;83(3):407–421. doi: 10.1016/j.critrevonc.2011.11.010
  • Finlay MRV, Anderton M, Ashton S, et al. Discovery of a potent and selective EGFR inhibitor (AZD9291) of both sensitizing and T790M resistance mutations that spares the wild type form of the receptor. J Med Chem. 2014;57(20):8249–8267. doi: 10.1021/jm500973a
  • Yan X-E, Ayaz P, Zhu S-J, et al. Structural basis of AZD9291 selectivity for EGFR T790M. J Med Chem. 2020;63(15):8502–8511. doi: 10.1021/acs.jmedchem.0c00891
  • Thress KS, Paweletz CP, Felip E, et al. Acquired EGFR C797S mutation mediates resistance to AZD9291 in non–small cell lung cancer harboring EGFR T790M. Nature Med. 2015;21(6):560–562. doi: 10.1038/nm.3854
  • Ercan D, Choi HG, Yun C-H, et al. EGFR mutations and resistance to irreversible pyrimidine-based EGFR inhibitors. Clin Cancer Res. 2015;21(17):3913–3923. doi: 10.1158/1078-0432.CCR-14-2789
  • Jia Y, Yun C-H, Park E, et al. Overcoming EGFR(T790M) and EGFR(C797S) resistance with mutant-selective allosteric inhibitors. Nature. 2016;534(7605):129–132. doi: 10.1038/nature17960
  • To C, Jang J, Chen T, et al. Single and dual targeting of mutant EGFR with an allosteric inhibitor. Cancer Discovery. 2019;9(7):926–943. doi: 10.1158/2159-8290.CD-18-0903
  • To C, Beyett TS, Jang J, et al. An allosteric inhibitor against the therapy-resistant mutant forms of EGFR in non-small cell lung cancer. Nat Cancer. 2022;3(4):402–417. doi: 10.1038/s43018-022-00351-8
  • Engelhardt H, Böse D, Petronczki M, et al. Start selective and Rigidify: the Discovery path toward a next generation of EGFR tyrosine kinase inhibitors. J Med Chem. 2019;62(22):10272–10293. doi: 10.1021/acs.jmedchem.9b01169
  • Chen H, Lai M, Zhang T, et al. Conformational constrained 4-(1-sulfonyl-3-indol)yl-2-phenylaminopyrimidine derivatives as New fourth-generation epidermal growth factor receptor inhibitors targeting T790M/C797S mutations. J Med Chem. 2022;65(9):6840–6858. doi: 10.1021/acs.jmedchem.2c00168
  • Jang J, To C, De Clercq DJH, et al. Mutant-selective allosteric EGFR degraders are effective against a broad range of drug-resistant mutations. Angewandte Chemie. 2020;59(34):14481–14489. doi: 10.1002/anie.202003500
  • Zhang H, Xie R, Ai-Furas H, et al. Design, synthesis, and biological evaluation of novel EGFR PROTACs targeting Del19/T790M/C797S mutation. ACS Med Chem Lett. 2022;13(2):278–283. doi: 10.1021/acsmedchemlett.1c00645
  • Du Y, Chen Y, Wang Y, et al. HJM-561, a potent, selective, and orally bioavailable EGFR PROTAC that overcomes osimertinib-resistant EGFR triple mutations. Mol Cancer Ther. 2022;21(7):1060–1066. doi: 10.1158/1535-7163.MCT-21-0835
  • Tiong KH, Mah LY, Leong C-O. Functional roles of fibroblast growth factor receptors (FGFRs) signaling in human cancers. Apoptosis. 2013;18(12):1447–1468. doi: 10.1007/s10495-013-0886-7
  • Perera TPS, Jovcheva E, Mevellec L, et al. Discovery and pharmacological characterization of JNJ-42756493 (erdafitinib), a functionally selective small-molecule FGFR family inhibitor. Mol Cancer Ther. 2017;16(6):1010–1020. doi: 10.1158/1535-7163.MCT-16-0589
  • Patani H, Bunney TD, Thiyagarajan N, et al. Landscape of activating cancer mutations in FGFR kinases and their differential responses to inhibitors in clinical use. Oncotarget. 2016;7(17):24252–24268. doi: 10.18632/oncotarget.8132
  • Wu L, Zhang C, He C, et al. Discovery of pemigatinib: a potent and selective fibroblast growth factor receptor (FGFR) inhibitor. J Med Chem. 2021;64(15):10666–10679. doi: 10.1021/acs.jmedchem.1c00713
  • Lin Q, Chen X, Qu L, et al. Characterization of the cholangiocarcinoma drug pemigatinib against FGFR gatekeeper mutants. Communications Chemistry. 2022;5(1):100. doi: 10.1038/s42004-022-00718-z
  • Guagnano V, Furet P, Spanka C, et al. Discovery of 3-(2,6-dichloro-3,5-dimethoxy-phenyl)-1-{6-[4-(4-ethyl-piperazin-1-yl)-phenylamino]-pyrimidin-4-yl}-1-methyl-urea (NVP-BGJ398), a potent and selective inhibitor of the fibroblast growth factor receptor family of receptor tyrosine kinase. J Med Chem. 2011;54(20):7066–7083. doi: 10.1021/jm2006222
  • Pal SK, Rosenberg JE, Hoffman-Censits JH, et al. Efficacy of BGJ398, a fibroblast growth factor receptor 1–3 inhibitor, in patients with Previously treated advanced urothelial carcinoma with FGFR3 alterations. Cancer Discovery. 2018;8(7):812–821. doi: 10.1158/2159-8290.CD-18-0229
  • Ito S, Otsuki S, Ohsawa H, et al. Discovery of futibatinib: the first covalent FGFR kinase inhibitor in clinical use. ACS Med Chem Lett. 2023;14(4):396–404. doi: 10.1021/acsmedchemlett.3c00006
  • Goyal L, Shi L, Liu LY, et al. TAS-120 overcomes resistance to ATP-Competitive FGFR inhibitors in patients with FGFR2 fusion–positive Intrahepatic Cholangiocarcinoma. Cancer Discovery. 2019;9(8):1064–1079. doi: 10.1158/2159-8290.CD-19-0182
  • Kalyukina M, Yosaatmadja Y, Middleditch MJ, et al. TAS-120 Cancer target binding: defining reactivity and revealing the first Fibroblast Growth Factor Receptor 1 (FGFR1) irreversible structure. ChemMedchem. 2019;14(4):494–500. doi: 10.1002/cmdc.201800719
  • Qu L, Chen X, Wei H, et al. Structural insights into the potency and selectivity of covalent pan-FGFR inhibitors. Communications Chemistry. 2022;5(1):5. doi: 10.1038/s42004-021-00623-x
  • Casaletto J, Maglic D, Toure BB, et al. RLY-4008, a novel precision therapy for FGFR2-driven cancers designed to potently and selectively inhibit FGFR2 and FGFR2 resistance mutations. Cancer Res. 2021;81(13_Supplement):1455. doi: 10.1158/1538-7445.AM2021-1455
  • Kim RD, Sarker D, Meyer T, et al. First-in-human phase I study of fisogatinib (BLU-554) validates aberrant FGF19 signaling as a driver event in hepatocellular carcinoma. Cancer Discovery. 2019;9(12):1696–1707. doi: 10.1158/2159-8290.CD-19-0555
  • Hatlen MA, Schmidt-Kittler O, Sherwin CA, et al. Acquired on-target clinical resistance validates FGFR4 as a driver of hepatocellular carcinoma. Cancer Discovery. 2019;9(12):1686–1695. doi: 10.1158/2159-8290.CD-19-0367
  • Wu D, Guo M, Min X, et al. LY2874455 potently inhibits FGFR gatekeeper mutants and overcomes mutation-based resistance. Chem Comm. 2018;54(85):12089–12092. doi: 10.1039/C8CC07546H
  • Fairhurst RA, Knoepfel T, Buschmann N, et al. Discovery of roblitinib (FGF401) as a reversible-covalent inhibitor of the kinase activity of fibroblast growth factor receptor 4. J Med Chem. 2020;63(21):12542–12573. doi: 10.1021/acs.jmedchem.0c01019
  • Shao M, Chen X, Yang F, et al. Design, synthesis, and biological evaluation of aminoindazole derivatives as highly selective covalent inhibitors of wild-type and gatekeeper mutant FGFR4. J Med Chem. 2022;65(6):5113–5133. doi: 10.1021/acs.jmedchem.2c00096
  • Lategahn J, Keul M, Rauh D. Lessons to be learned: the molecular basis of kinase-targeted therapies and drug resistance in non-small cell lung Cancer. Angewandte Chemie. 2018;57(9):2307–2313. doi: 10.1002/anie.201710398
  • Smith CC, Zhang C, Lin KC, et al. Characterizing and overriding the structural mechanism of the quizartinib-resistant FLT3 “gatekeeper” F691L mutation with PLX3397. Cancer Discovery. 2015;5(6):668–679. doi: 10.1158/2159-8290.CD-15-0060
  • Friboulet L, Li N, Katayama R, et al. The ALK inhibitor ceritinib overcomes crizotinib resistance in non–small cell lung Cancer. Cancer Discovery. 2014;4(6):662–673. doi: 10.1158/2159-8290.CD-13-0846
  • Cui JJ, Zhai D, Deng W, et al. TPX-0005, a supreme ROS1 inhibitor, overcomes crizotinib-resistant ROS1 mutations including solvent front mutation G2032R and gatekeeper mutation L2026M. Mol Cancer Ther. 2018;17(1_Supplement):B185. doi: 10.1158/1535-7163.TARG-17-B185
  • Weisberg E, Manley PW, Cowan-Jacob SW, et al. Second generation inhibitors of BCR-ABL for the treatment of imatinib-resistant chronic myeloid leukaemia. Nat Rev Cancer. 2007;7(5):345–356. doi: 10.1038/nrc2126
  • Guida T, Anaganti S, Provitera L, et al. Sorafenib inhibits imatinib-resistant KIT and platelet-derived growth factor receptor β gatekeeper mutants. Clin Cancer Res. 2007;13(11):3363–3369. doi: 10.1158/1078-0432.CCR-06-2667
  • Kissova M, Maga G, Crespan E. The human tyrosine kinase kit and its gatekeeper mutant T670I, show different kinetic properties: implications for drug design. Bioorg Med Chem. 2016;24(19):4555–4562. doi: 10.1016/j.bmc.2016.07.059
  • Cross DAE, Ashton SE, Ghiorghiu S, et al. AZD9291, an irreversible EGFR TKI, overcomes T790M-Mediated resistance to EGFR inhibitors in lung Cancer. Cancer Discovery. 2014;4(9):1046–1061. doi: 10.1158/2159-8290.CD-14-0337
  • Getlik M, Grütter C, Simard JR, et al. Hybrid compound design to overcome the gatekeeper T338M mutation in cSrc. J Med Chem. 2009;52(13):3915–3926. doi: 10.1021/jm9002928
  • Kobayashi S, Canepa HM, Bailey AS, et al. Compound EGFR mutations and response to EGFR tyrosine kinase inhibitors. J Thorac Oncol. 2013;8(1):118–122. doi: 10.1097/JTO.0b013e3182781e35
  • Khorashad JS, Kelley TW, Szankasi P, et al. BCR-ABL1 compound mutations in tyrosine kinase inhibitor–resistant CML: frequency and clonal relationships. Blood. 2013;121(3):489–498. doi: 10.1182/blood-2012-05-431379
  • Cummings MD, Sekharan S. Structure-based macrocycle design in small-molecule drug Discovery and simple metrics to identify opportunities for Macrocyclization of small-molecule ligands. J Med Chem. 2019;62(15):6843–6853. doi: 10.1021/acs.jmedchem.8b01985
  • Lai AC, Crews CM. Induced protein degradation: an emerging drug discovery paradigm. Nat Rev Drug Discov. 2017;16(2):101–114. doi: 10.1038/nrd.2016.211
  • Choi SR, Wang HM, Shin MH, et al. Hydrophobic tagging-mediated degradation of transcription coactivator SRC-1. Int J Mol Sci. 2021;22(12):6407. doi: 10.3390/ijms22126407
  • Dong G, Ding Y, He S, et al. Molecular glues for targeted protein degradation: from serendipity to rational Discovery. J Med Chem. 2021;64(15):10606–10620. doi: 10.1021/acs.jmedchem.1c00895
  • Shah NP, Tran C, Lee FY, et al. Overriding imatinib resistance with a novel ABL kinase inhibitor. Science. 2004;305(5682):399–401. doi: 10.1126/science.1099480
  • Schiering N, Knapp S, Marconi M, et al. Crystal structure of the tyrosine kinase domain of the hepatocyte growth factor receptor c-Met and its complex with the microbial alkaloid K-252a. Proc Natl Acad Sci, USA. 2003;100(22):12654–12659. doi: 10.1073/pnas.1734128100
  • Kummar S, Chen HX, Wright J, et al. Utilizing targeted cancer therapeutic agents in combination: novel approaches and urgent requirements. Nat Rev Drug Discov. 2010;9(11):843–856. doi: 10.1038/nrd3216

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.