238
Views
0
CrossRef citations to date
0
Altmetric
Editorial

Challenges with drug efficacy prediction of in vitro models of biofilms infecting cystic fibrosis airway

&
Pages 635-638 | Received 04 Feb 2024, Accepted 29 Apr 2024, Published online: 07 May 2024

References

  • Cystic fibrosis Foundation Patient Registry 2021 Annual Data Report. Bethesda, Maryland: Cystic Fibrosis Foundation; 2021.
  • Silva E, Monteiro R, Grainha T, et al. Fostering innovation in the treatment of chronic polymicrobial cystic fibrosis-associated infections exploring aspartic acid and succinic acid as ciprofloxacin adjuvants. Front Cell Infect Microbiol. 2020;10:10. doi: 10.3389/fcimb.2020.00441
  • Ghodake V, Dhoble S, Vavilala SL, et al. Anti-biofilm potential against P. aeruginosa biofilm in cystic fibrosis infection by systemically developed garlic extract incorporated liposomal formulation. J Drug Deliv Sci Technol. 2023;82:104359. doi: 10.1016/j.jddst.2023.104359
  • Bjarnsholt T, Jensen PO, Fiandaca MJ, et al. Pseudomonas aeruginosa biofilms in the respiratory tract of cystic fibrosis patients. Pediatr Pulmonol. 2009 May 7;44(6):547–558. doi: 10.1002/ppul.21011
  • Kragh KN, Alhede M, Kvich L, et al. Into the well-A close look at the complex structures of a microtiter biofilm and the crystal violet assay. Biofilm. 2019;1:100006. doi: 10.1016/j.bioflm.2019.100006
  • Yang L, Nilsson M, Gjermansen M, et al. Pyoverdine and PQS mediated subpopulation interactions involved in Pseudomonas aeruginosa biofilm formation. Mol Microbiol. 2009;74(6):1380–1392. doi: 10.1111/j.1365-2958.2009.06934.x
  • la Fuente-Núñez C, Mansour SC, Wang Z, et al. Anti-biofilm and immunomodulatory activities of peptides that inhibit biofilms formed by pathogens isolated from cystic fibrosis patients. Antibiotics [Internet]. 2014;3:509–526. doi: 10.3390/antibiotics3040509
  • Monteiro R, Magalhães AP, Pereira MO, et al. Long-term coexistence of Pseudomonas aeruginosa and staphylococcus aureus using an in vitro cystic fibrosis model. Future Microbiol. 2021;16(12):879–893. doi: 10.2217/fmb-2021-0025
  • Drevinek P, Holden MTG, Ge Z, et al. Gene expression changes linked to antimicrobial resistance, oxidative stress, iron depletion and retained motility are observed when Burkholderia cenocepacia grows in cystic fibrosis sputum. BMC Infect Dis. 2008;8(1):121. doi: 10.1186/1471-2334-8-121
  • Sriramulu DD, Lunsdorf H, Lam JS, et al. Microcolony formation: a novel biofilm model of Pseudomonas aeruginosa for the cystic fibrosis lung. J Med Microbiol. 2005;54(7):667–676. doi: 10.1099/jmm.0.45969-0
  • Palmer KL, Aye LM, Whiteley M. Nutritional cues control Pseudomonas aeruginosa multicellular behavior in cystic fibrosis sputum. J Bacteriol. 2007 Sep 18;189:8079–8087. doi: 10.1128/JB.01138-07
  • Turner KH, Wessel AK, Palmer GC, et al. Essential genome of Pseudomonas aeruginosa in cystic fibrosis sputum. Proc Natl Acad Sci USA. 2015;112(13):4110–4115. doi: 10.1073/pnas.1419677112
  • Kirchner S, Fothergill JL, Wright EA, et al. Use of artificial sputum medium to test antibiotic efficacy against pseudomonas aeruginosa in conditions more relevant to the cystic fibrosis lung. J Vis Exp. 2012;(64):e3857. doi: 10.3791/3857
  • Cornforth DM, Dees JL, Ibberson CB, et al. Pseudomonas aeruginosa transcriptome during human infection. Proc Natl Acad Sci U S A. 2018;115(22):E5125–E5134. doi: 10.1073/pnas.1717525115
  • Harrington NE, Sweeney E, Harrison F. Building a better biofilm - formation of in vivo-like biofilm structures by Pseudomonas aeruginosa in a porcine model of cystic fibrosis lung infection. Biofilm. 2020;2:100024. doi: 10.1016/j.bioflm.2020.100024
  • Sweeney E, Harrington NE, Harley Henriques AG, et al. An ex vivo cystic fibrosis model recapitulates key clinical aspects of chronic staphylococcus aureus infection. Microbiology. 2021;167(1):167. doi: 10.1099/mic.0.000987
  • Cidem A, Bradbury P, Traini D, et al. Modifying and integrating in vitro and ex vivo respiratory models for inhalation drug screening. Front Bioeng Biotechnol [Internet]. 2020;8. doi: 10.3389/fbioe.2020.581995
  • Plebani R, Potla R, Soong M, et al. Modeling pulmonary cystic fibrosis in a human lung airway-on-a-chip. J Cyst Fibros [Internet]. 2022;21(4):606–615. Available from: https://www.sciencedirect.com/science/article/pii/S1569199321021068
  • Wu Y, Romero M, Robertson SN, et al. Co-assembling living material as an in vitro lung epithelial infection model. Matter [Internet]. 2024;7:216–236. Available from: https://www.sciencedirect.com/science/article/pii/S2590238523005519
  • OG A, Aurélie C, Rolf K, et al. Model systems to study the chronic, Polymicrobial Infections in Cystic fibrosis: Current approaches and exploring future directions. MBio. 2021;12(5). e01763–21. doi: 10.1128/mbio.01763-21
  • Son MS, Matthews WJJ, Kang Y, et al. In vivo evidence of Pseudomonas aeruginosa nutrient acquisition and pathogenesis in the lungs of cystic fibrosis patients. Infect Immun. 2007;75(11):5313–5324. doi: 10.1128/IAI.01807-06
  • Schaible B, Taylor CT, Schaffer K. Hypoxia increases antibiotic resistance in Pseudomonas aeruginosa through altering the composition of multidrug efflux pumps. Antimicrob Agents Chemother. 2012;56(4):2114–2118. doi: 10.1128/AAC.05574-11
  • Van den BS, De BE, Coenye T, et al. The cystic fibrosis lung microenvironment alters antibiotic activity: causes and effects. Eur Respir Rev. 2021;30(161):210055. doi: 10.1183/16000617.0055-2021

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.