425
Views
0
CrossRef citations to date
0
Altmetric
Editorial

Lessons learnt from machine learning in early stages of drug discovery

, &
Pages 631-633 | Received 20 Mar 2024, Accepted 08 May 2024, Published online: 10 May 2024

References

  • Jimenez-Luna J, Grisoni F, Weskamp N, et al. Artificial intelligence in drug discovery: recent advances and future perspectives. Expert Opin Drug Discov. 2021 Sep;16(9):949–959. doi: 10.1080/17460441.2021.1909567
  • Vamathevan J, Clark D, Czodrowski P, et al. Applications of machine learning in drug discovery and development. Nat Rev Drug Discov. 2019 Jun;18(6):463–477. doi: 10.1038/s41573-019-0024-5
  • Di Filippo JI, Cavasotto CN. Guided structure-based ligand identification and design via artificial intelligence modeling. Expert Opin Drug Discovery. 2022;17(1):71–78. doi: 10.1080/17460441.2021.1979514
  • Chen L, Cruz A, Ramsey S, et al. Hidden bias in the DUD-E dataset leads to misleading performance of deep learning in structure-based virtual screening. PLoS One. 2019;14(8):e0220113. doi: 10.1371/journal.pone.0220113
  • Sieg J, Flachsenberg F, Rarey M. In need of bias control: evaluating chemical data for machine learning in structure-based virtual screening. J Chem Inf Model. 2019 Mar 25;59(3):947–961. doi: 10.1021/acs.jcim.8b00712
  • Tran-Nguyen VK, Jacquemard C, Rognan D. LIT-PCBA: an unbiased data set for machine learning and virtual screening. J Chem Inf Model. 2020 Sep 28;60(9):4263–4273. doi: 10.1021/acs.jcim.0c00155
  • Buttenschoen M, Morris GM, Deane CM. PoseBusters: AI-based docking methods fail to generate physically valid poses or generalise to novel sequences. Chem Sci. 2024 Feb 28;15(9):3130–3139. doi: 10.1039/D3SC04185A
  • Zhavoronkov A, Ivanenkov YA, Aliper A, et al. Deep learning enables rapid identification of potent DDR1 kinase inhibitors. Nat Biotechnol. 2019 Sep;37(9):1038–1040. doi: 10.1038/s41587-019-0224-x
  • Walters WP, Murcko M. Assessing the impact of generative AI on medicinal chemistry. Nat Biotechnol. 2020 Feb;38(2):143–145. doi: 10.1038/s41587-020-0418-2
  • Zhavoronkov A, Aspuru-Guzik A. Reply to ‘assessing the impact of generative AI on medicinal chemistry’. Nat Biotechnol. 2020 Feb;38(2):146. doi: 10.1038/s41587-020-0417-3
  • Jiménez-Luna J, Grisoni F, Schneider G. Drug discovery with explainable artificial intelligence. Nature Mach Intell. 2020 Oct 01;2(10):573–584. doi: 10.1038/s42256-020-00236-4
  • Rodrigues T. The good, the bad, and the ugly in chemical and biological data for machine learning. Drug Discov Today Technol. 2019 Dec;32-33:3–8. doi: 10.1016/j.ddtec.2020.07.001
  • Cavasotto CN, Scardino V. Machine learning toxicity prediction: latest advances by toxicity end point. ACS Omega. 2022 Dec 27;7(51):47536–47546. doi: 10.1021/acsomega.2c05693
  • Jumper J, Evans R, Pritzel A, et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021 Aug;596(7873):583–589. doi: 10.1038/s41586-021-03819-2
  • Subramaniam S, Kleywegt GJ. A paradigm shift in structural biology. Nat Methods. 2022 Jan 01;19(1):20–23. doi: 10.1038/s41592-021-01361-7
  • Finkelstein AV. Does AlphaFold predict the spatial structure of a protein from physics or recognize it (its main parts and their association) using databases? bioRxiv. 2022:2022.11.21.517308. doi: 10.1101/2022.11.21.517308
  • Tunyasuvunakool K, Adler J, Wu Z, et al. Highly accurate protein structure prediction for the human proteome. Nature. 2021 Aug;596(7873):590–596. doi: 10.1038/s41586-021-03828-1
  • Scardino V, Di Filippo JI, Cavasotto CN. How good are AlphaFold models for docking-based virtual screening? iScience. iScience. 2023 Jan 20;26(1):105920. doi: 10.1016/j.isci.2022.105920
  • Diaz-Rovira AM, Martin H, Beuming T, et al. Are deep learning structural models sufficiently accurate for virtual screening? Application of docking algorithms to AlphaFold2 predicted structures. J Chem Inf Model. 2023 Mar 27;63(6):1668–1674. doi: 10.1021/acs.jcim.2c01270
  • Zhang Y, Vass M, Shi D, et al. Benchmarking refined and unrefined AlphaFold2 structures for hit discovery. J Chem Inf Model. 2023 Mar 27;63(6):1656–1667. doi: 10.1021/acs.jcim.2c01219
  • Evans R, O’Neill M, Pritzel A, et al. Protein complex prediction with AlphaFold-Multimer. bioRxiv. 2021:2021.10.04.463034. doi: 10.1101/2021.10.04.463034
  • Bender A, Cortes-Ciriano I. Artificial intelligence in drug discovery: what is realistic, what are illusions? Part 2: a discussion of chemical and biological data. Drug Discov Today. 2021 Apr 01;26(4):1040–1052. doi: 10.1016/j.drudis.2020.11.037
  • Stokes JM, Yang K, Swanson K, et al. A deep learning approach to Antibiotic Discovery. Cell. 2020 Feb 20;180(4):688–702 e13. doi: 10.1016/j.cell.2020.01.021
  • Cavasotto CN, Di Filippo JI. The impact of supervised learning methods in ultralarge high-throughput docking. J Chem Inf Model. 2023 Apr 24;63(8):2267–2280. doi: 10.1021/acs.jcim.2c01471
  • Noé F, Tkatchenko A, Müller K-R, et al. Machine learning for molecular simulation. Annu Rev Phys Chem. 2020;71(1):361–390. doi: 10.1146/annurev-physchem-042018-052331
  • Graff DE, Shakhnovich EI, Coley CW. Accelerating high-throughput virtual screening through molecular pool-based active learning. Chem Sci. 2021 Apr 29;12(22):7866–7881. doi: 10.1039/D0SC06805E

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.