924
Views
0
CrossRef citations to date
0
Altmetric
Editorial

On-demand modular assembly for expedited PROTAC development

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 769-772 | Received 23 Apr 2024, Accepted 03 Jun 2024, Published online: 06 Jun 2024

References

  • Békés M, Langley DR, Crews CM. PROTAC targeted protein degraders: the past is prologue. Nat Rev Drug Discov. 2022;21(3):181–200. doi: 10.1038/s41573-021-00371-6
  • Kolb HC, Finn MG, Sharpless KB. Click chemistry: diverse chemical function from a few good reactions. Angew Chem Int Ed Engl. 2001;40:2004–2021. doi: 10.1002/1521-3773(20010601)40:11<2004:AID-ANIE2004>3.0.CO;2-5
  • Yang C, Tripathi R, Wang B. Click chemistry in the development of PROTACs. RSC Chem Biol. 2024;5(3):189–197. doi: 10.1039/d3cb00199g
  • Pasieka A, Diamanti E, Uliassi E, et al. Click chemistry and targeted degradation: a winning combination for medicinal chemists? ChemMedchem. 2023;18(20):e202300422. doi: 10.1002/cmdc.202300422
  • Wurz RP, Dellamaggiore K, Dou H, et al. A “click chemistry platform” for the rapid synthesis of bispecific molecules for inducing protein degradation. J Med Chem. 2018;61(2):453–461. doi: 10.1021/acs.jmedchem.6b01781
  • Liu J, Chen H, Kaniskan HÜ, et al. TF-PROTACs enable targeted degradation of transcription factors. J Am Chem Soc. 2021;143(23):8902–8910. doi: 10.1021/jacs.1c03852
  • Roberts BL, Ma Z-X, Gao A, et al. Two-stage strategy for development of proteolysis targeting chimeras and its application for estrogen receptor degraders. ACS Chem Biol. 2020;15(6):1487–1496. doi: 10.1021/acschembio.0c00140
  • Guo L, Zhou Y, Nie X, et al. A platform for the rapid synthesis of proteolysis targeting chimeras (Rapid-TAC) under miniaturized conditions. Eur J Med Chem. 2022;236:114317. doi: 10.1016/j.ejmech.2022.114317
  • Li J, Li C, Zhang Z, et al. A platform for the rapid synthesis of molecular glues (Rapid-Glue) under miniaturized conditions for direct biological screening. Eur J Med Chem. 2023;258:115567. doi: 10.1016/j.ejmech.2023.115567
  • Gui W, Kodadek T. Applications and limitations of oxime-linked “split PROTACs”. Chembiochem. 2022;23(18):e202200275. doi: 10.1002/cbic.202200275
  • Hendrick CE, Jorgensen JR, Chaudhry C, et al. Direct-to-biology accelerates PROTAC synthesis and the evaluation of linker effects on permeability and degradation. ACS Med Chem Lett. 2022;13(7):1182–1190. doi: 10.1021/acsmedchemlett.2c00124
  • Gesmundo NJ, Sauvagnat B, Curran PJ, et al. Nanoscale synthesis and affinity ranking. Nature. 2018;557(7704):228–232. doi: 10.1038/s41586-018-0056-8
  • Plesniak MP, Taylor EK, Eisele F, et al. Rapid PROTAC discovery platform: nanomole-scale array synthesis and direct screening of reaction mixtures. ACS Med Chem Lett. 2023;14(12):1882–1890. doi: 10.1021/acsmedchemlett.3c00314
  • Stevens R, Bendito-Moll E, Battersby DJ, et al. Integrated direct-to-biology platform for the nanoscale synthesis and biological evaluation of PROTACs. J Med Chem. 2023;66(22):15437–15452. doi: 10.1021/acs.jmedchem.3c01604
  • Atilaw Y, Poongavanam V, Svensson Nilsson C, et al. Solution conformations shed light on PROTAC cell permeability. ACS Med Chem Lett. 2021;12(1):107–114. doi: 10.1021/acsmedchemlett.0c00556
  • Rossi Sebastiano M, Doak BC, Backlund M, et al. Impact of dynamically exposed polarity on permeability and solubility of chameleonic drugs beyond the rule of 5. J Med Chem. 2018;61(9):4189–4202. doi: 10.1021/acs.jmedchem.8b00347
  • Lebraud H, Wright DJ, Johnson CN, et al. Protein degradation by In-cell self-assembly of proteolysis targeting chimeras. ACS Cent Sci. 2016;2(12):927–934. doi: 10.1021/acscentsci.6b00280
  • Kargbo RB. Therapeutic and effective CURE-PRO molecules for E3 ligase-mediated targeted protein degradation. ACS Med Chem Lett. 2022;13(8):1206–1208. doi: 10.1021/acsmedchemlett.2c00315
  • Gui W, Giardina SF, Balzarini M, et al. Reversible assembly of proteolysis targeting chimeras. ACS Chem Biol. 2023;18(7):1582–1593. doi: 10.1021/acschembio.3c00199
  • Giardina SF, Valdambrini E, Singh PK, et al. Combinatorial Ubiquitination REal-time PROteolysis (CURE-PROs): a modular platform for generating reversible, self-assembling bifunctional targeted degraders. J Med Chem. 2024;67(7):5473–5501. doi: 10.1021/acs.jmedchem.3c02097
  • Tomsho JW, Benkovic SJ. Elucidation of the mechanism of the reaction between phenylboronic acid and a model diol, alizarin red S. J Org Chem. 2012;77(5):2098–2106. doi: 10.1021/jo202250d
  • Schmidt P, Stress C, Gillingham D. Boronic acids facilitate rapid oxime condensations at neutral pH. Chem Sci. 2015;6(6):3329–3333. doi: 10.1039/c5sc00921a
  • Gillingham D. The role of boronic acids in accelerating condensation reactions of α-effect amines with carbonyls. Org Biomol Chem. 2016;14(32):7606–7609. doi: 10.1039/c6ob01193d
  • Maniaci C, Hughes SJ, Testa A, et al. Homo-PROTACs: bivalent small-molecule dimerizers of the VHL E3 ubiquitin ligase to induce self-degradation. Nat Commun. 2017;8(1):830. doi: 10.1038/s41467-017-00954-1
  • Blackman ML, Royzen M, Fox JM. Tetrazine ligation: fast bioconjugation based on inverse-electron-demand Diels−Alder reactivity. J Am Chem Soc. 2008;130(41):13518–13519. doi: 10.1021/ja8053805
  • Devaraj NK, Weissleder R, Hilderbrand SA. Tetrazine-based cycloadditions: application to pretargeted live cell imaging. Bioconjug Chem. 2008;19(12):2297–2299. doi: 10.1021/bc8004446
  • Srinivasan S, Yee NA, Wu K, et al. SQ3370 activates cytotoxic drug via click chemistry at tumor and elicits sustained responses in injected & non-injected lesions. Adv Ther(Weinh). 2021;4(3):2000243. doi: 10.1002/adtp.202000243
  • Wu K, Yee NA, Srinivasan S, et al. Click activated protodrugs against cancer increase the therapeutic potential of chemotherapy through local capture and activation. Chem Sci. 2021;12(4):1259–1271. doi: 10.1039/d0sc06099b
  • Srinivasan S, Yee NA, Zakharian M, et al. SQ3370, the first clinical click chemistry-activated cancer therapeutic, shows safety in humans and translatability across species. bioRxiv. 2023. doi: 10.1101/2023.03.28.534654
  • Kondengadan SM, Bansal S, Yang C, et al. Click chemistry and drug delivery: a bird’s-eye view. Acta Pharm Sin B. 2023;13(5):1990–2016. doi: 10.1016/j.apsb.2022.10.015
  • Moreau P, Richardson PG, Cavo M, et al. Proteasome inhibitors in multiple myeloma: 10 years later. Blood. 2012;120(5):947–959. doi: 10.1182/blood-2012-04-403733
  • Plescia J, Moitessier N. Design and discovery of boronic acid drugs. Eur J Med Chem. 2020;195:112270. doi: 10.1016/j.ejmech.2020.112270

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.